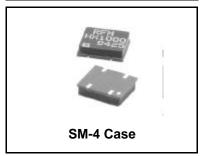


- Ideal for 916.5 MHz Unlicensed Transmitters in the USA and Canada
- Self-Contained RF Functions Shorten Development Time
- Compact, Surface-Mount Case with < 90 mm² Footprint


The HX2000 is a miniature transmitter module that generates on-off keyed (OOK) modulation from an external digital encoder (not included). The carrier frequency is quartz, surface-acoustic-wave (SAW) stabilized, and output harmonics are suppressed by a SAW filter. The result is excellent performance in a simple-to-use, surface-mount device with a low external component count. The HX2000 is designed specifically for unlicensed remote-control, wireless security, and data-link transmitters operating in the USA under FCC Part 15.249 and in Canada under TRS RSS-210.

Absolute Maximum Ratings

Rating	Value	Units
Power Supply and/or Modulation Input Voltage	10	V
Nonoperating Case Temperature	-40 to +85	°C
Ten-Second Soldering Temperature	230	°C

HX2000

916.5 MHz Hybrid Transmitter

Electrical Characteristics

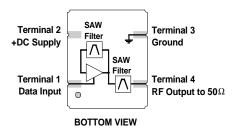
C	Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency	Absolute Frequency	f _O	1, 2, 3, 4,	916.300		916.700	MHz
	Tolerance from 916.500 MHz	Δf_{O}	10			±200	kHz
RF Output Power into 50 Ω at 25°C		Po	2, 4, 5, 10	-3	0		dBm
	Within Specified Temperature Range		2, 3, 4, 5	-5	0		ubili
Harmonic Spurious Emiss	ions		2, 3, 4, 5		-40		dBc
Modulation Input	Input HIGH Voltage	V _{IH}		2.5		V _{CC}	V
	Input LOW Voltage	V _{IL}	3, 4, 5	0.0		0.3	v
	Input HIGH Current	I _{IH}	3, 4, 5			100	
	Input LOW Current	I _{IL}		0.0			μA
Data Timing Parameters	Modulation Rise Time	t _R			10	20	0
	Modulation Fall Time	t _F	3, 4, 5, 6		10	20	μs
Power Supply	Voltage	V _{CC}	5, 7	2.7	3	3.3	VDC
	Peak Current	I _{CC}	3, 4, 5, 8		9	11	mA
	Standby Current		5, 9			1.0	μA
Operating Case Temperature Range		T _C	5	-40		+85	°C
Lid Symbolization (in addi	Lid Symbolization (in addition to Lot and/or Date Codes) RFM HX2000						

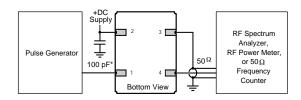
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

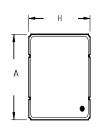
- 1. One or more of the following United States patents apply: 4,454,488; 4,616,197; 4,670,681; and 4,760,352.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Applies over the specified range of operating temperature.
- 4. Applies over the specified range of operating power supply voltage.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6. The maximum modulation bandwidth (and data rate) is dependent on the characteristics of the external encoding circuitry (not included).
- 7. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$, test load impedance = 50 Ω , and modulation input is at logic HIGH.
- 8. The maximum operating current occurs at the maximum specified power supply voltage and maximum specified operating temperature.
- 9. Standby current is defined as the supply current consumed with the modulation input at logic LOW.
- 10. Improper antenna loading affects performance of HX device.

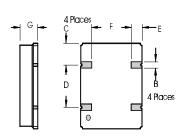
Electrical Connections


Terminal Number	Connections		
1	Data Input		
2	+DC Supply		
3	Ground		
4	RF Output to 50 Ω		

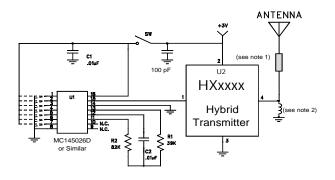

Footprint

Block Diagram




Typical Test Circuit

*Note: Bypass required only for "HX2..." series transmitters in the 902 to 928 MHz band.


Case Design

Dimensions	Millimeters		Inches	
Difficusions	Min	Max	Min	Max
Α		10.67		0.420
В	1.27 Nominal		0.050 Nominal	
С	2.67 Nominal		0.105 Nominal	
D	5.08 Nominal		0.200 Nominal	
Е	1.70 Nominal		0.067 Nominal	
F	5.36 Nominal		0.211 Nominal	
G		2.80		0.110
Н		9.02		0.355

Typical Transmitter Application

Notes:

- This matching component is required only for antennas that are not 50 ohms. It is typically a chip inductor to match to stub antennas shorter than ¼ wavelength. For very low radiated field-strength applications, a resistor can also be used.
- 2. For ESD protection.