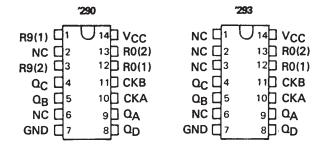
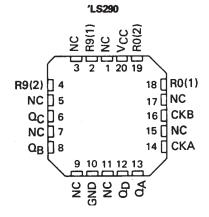
'290, 'LS290 . . . DECADE COUNTERS
'293, 'LS293 . . . 4-BIT BINARY COUNTERS

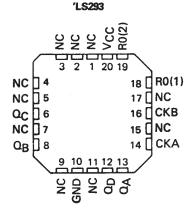
 GND and V_{CC} on Corner Pins (Pins 7 and 14 Respectively)

description

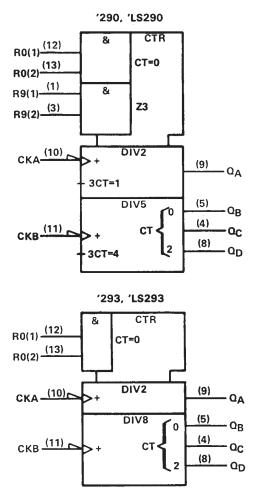

The SN54290/SN74290, SN54LS290/SN74LS290, SN54293/SN74293, and SN54LS293/SN74LS293 counters are electrically and functionally identical to the SN5490A/SN7490A, SN54LS90/SN74LS90, SN5493A/SN7493A, and SN54LS93/SN74LS93, respectively. Only the arrangement of the terminals has been changed for the '290, 'LS290, '293, and 'LS293.

Each of these monolithic counters contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the '290 and 'LS290 and divide-by-eight for the '293 and 'LS293.


All of these counters have a gated zero reset and the '290 and 'LS290 also have gated set-to-nine inputs for use in BCD nine's complement applications.


To use the maximum count length (decade or four-bit binary) of these counters, the B input is connected to the Ω_A output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical divide-byten count can be obtained from the '290 and 'LS290 counters by connecting the Ω_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Ω_A .

SN54290, SN54LS290, SN54293, SN54LS293 . . . J OR W PACKAGE SN74290, SN74293 . . . N PACKAGE SN74LS290, SN74LS293 . . . D OR N PACKAGE (TOP VIEW)


SN54LS290, SN54LS293 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols†

 $^{^\}dagger$ These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

'290, 'LS290 BCD COUNT SEQUENCE (See Note A)

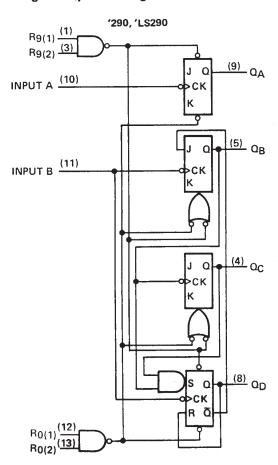
,-			,	
COUNT		OUT	PUT	
COONT	a_{D}	αç	αB	QA
0	L	L	L	L
1	L	L	L	н
2	L	L	н	L
3	Ł	L	н	н
4	L	Н	L	L
5	L	Н	L	н
6	L	Н	н	L
7	L	н	н	н
8	н	L	L	L
9	н	L	L	н

'290, 'LS290 BI-QUINARY (5-2) (See Note B)

(See Note B)												
COUNT		OUT	PUT									
COUNT	QA	σ_{D}	αc	σ^{B}								
0	L	L	L	L								
1	L	L	L	H								
2	L	L	н	L								
3	L	L	Н	Н								
4	L	Н	L	L								
5	н	L	L	L								
6	н	L	L	Н								
7	н	L.	н	L								
8	н	L	Н	Н								
9	н	н	L	L								

'290, 'LS290 RESET/COUNT FUNCTION TABLE

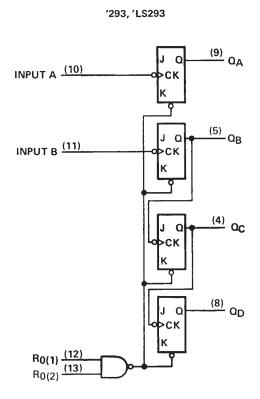
1	RESET	INPUTS	OUTPUT							
R ₀₍₁₎	R ₀₍₂₎	R ₉₍₁₎	R ₉₍₂₎	QD	α_{C}	αB	QA			
Н	Н	L	X	L	L	L	L			
н	н	×	L	L	L	L	L			
×	×	н	н	н	L	L	н			
×	L	×	L		СО	UNT				
L	х	L	×		CO	UNT				
L	×	×	L		СО	UNT				
×	L	L	X		со	UNT				
X		<u> </u>	X	L	CO	UNI				


'293, 'LS293
RESET/COUNT FUNCTION TABLE

RESET	INPUTS		OUT	PUT	
R ₀₍₁₎	R ₀₍₂₎	αp	QC	αB	QA
н	н	L	L	L.	L
L	×		CO	TNL	
×	L		COL	TNL	

'293, 'LS293 COUNT SEQUENCE (See Note C)

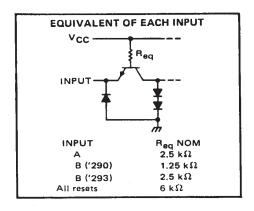
COUNT		TUO	PUT	
000.41	a_{D}	α_{C}	α_{B}	QA
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	н	Н	н
8	н	L	L	L
9	н	L	L	Н
10	н	L	н	L
11	н	L	н	Н
12	H	н	L	L
13	н	н	L	Н
14	н	н	н	L
15	н	н	н	Н

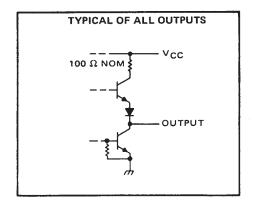

logic diagrams (positive logic)

NOTES: A. Output Ω_A is connected to input B for BCD count.

C. Output Q_A is connected to input B. D. H = high level, L = low level, X = irrelevant

B. Output QD is connected to input A for bi-quinary




Pin numbers shown are for D, J, N, and W packages.

The J and K inputs shown without connection are for reference only and are functionally at a high level.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .																					7 V
Input voltage																					5.5 V
Interemitter voltage (see Note 2) .																					
Operating free-air temperature range:	S	N5	4	C	irc	uit	S										-5	5°	C to	o 1:	25°C
	S	N7	4'	C	irc	uit	S											0	°C	to	70°C
Storage temperature range																	6	5°	C to	o 1!	50°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the two R₀ inputs, and for the '290 circuit, it also applies between the two R9 inputs.

recommended operating conditions

			SN5	4'		SN74	,	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
	A input	0		32	0		32	MHz
Count frequency, f _{count}	B input	0		16	0		16	IVITIZ
	A input	15			15			
Pulse width, tw	B input	30			30			ns
	Reset inputs	15		-	15			
Reset inactive-state setup time, t _{su}		25			25			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

						'290			'293		1
	PARAMETER		TEST CONDI	TIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage				2			2			٧
VIL	Low-level input voltage						0.8			0.8	٧
VIK	Input clamp voltage		V _{CC} = MIN, II =	-12 mA			-1.5			-1.5	\ \ \ _
VOH	High-level output voltage		V _{CC} = MIN, V _I V _{IL} = 0.8 V, I _O	•	2.4	3.4		2.4	3.4	-	V
VOL	Low-level output voltage		V _{CC} = MIN, V _{II} V _{IL} = 0.8 V, I _{OL}	•		0.2	0.4		0.2	0.4	V
11	Input current at maximum in	put voltage	V _{CC} = MAX, V _I	= 5.5 V			1			1	mA
		Any reset					40			40	1
Ιн	High-level input current	A input	VCC = MAX, VI	= 2.4 V			80			80	μΑ
		B input	1				120			80	
		Any reset					-1.6			-1.6	
IL	Low-level input current	A input	VCC = MAX, VI	= 0.4 V	<u> </u>		-3.2			-3.2	mA
		B input	1				-4.8			-3.2	<u> </u>
	Short-circuit output current	3	V00 = MAY	SN54'	-20		-57	-20		-57	mA
los	Snort-circuit output currents	•	V _{CC} = MAX	SN74'	-18		-57	-18		– 57	1
Icc	Supply current	·	V _{CC} = MAX, See	Note 3		29	42		26	39	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

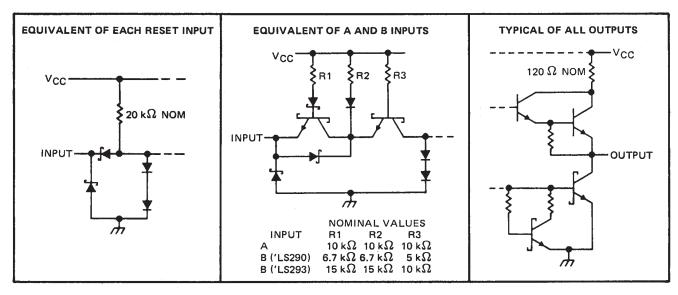
switching characteristics, VCC = 5 V, TA = 25°C

	FROM		′290			'293		UNIT		
PARAMETER#	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	O.V.
	Α	QΑ		32	42		32	42		MHz
f _{max}	В	QΒ		16			16			1411.12
t _{PLH}	Α	0.			10	16		10	16	ns
^t PHL	1 ^	·QΑ			12	18		12	18	
t _{PLH}	^	0-			32	48		46	70	ns
^t PHL	Α	σ_{D}	C _L = 15 pF, R _L = 400 Ω,		34	50		46	70	1
^t PLH		0			10	16		10	16	ns
tPHL.	В	QΒ	See Note 4		14	21		14	21	1,13
tPLH .		_	See Note 4		21	32		21	32	ns
tPHL	В	σC			23	35		23	35	113
tPLH			1		21	32		34	51	ns
tPHL	В	σD			23	35		34	51	1113
tPHL	Set-to-0	Any			26	40		26	40	ns
tPLH	1	Q_A, Q_D			20	30				ns
tPHL.	Set-to-9	Q _B , Q _C	1		26	40] '''

 $^{\#}f_{max}$ = maximum count frequency

 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Not more than one output should be shorted at a time.


 $[\]P_{Q_A}$ outputs are tested at I_{OL} = 16 mA plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full

tpLH = propagation delay time, low-to-high-level output

tPHL = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 5)				 	7 V
Input voltage: R inputs				 	7 V
A and B inputs .				 	5.5 V
Operating free-air temperature range:	: SN54LS29	0, SN54LS293	3	 	-55°C to 125°C
	SN74LS29	0, SN74LS293	3	 	. 0°C to 70°C
Storage temperature range				 	-65°C to 150°C

NOTE 5: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	N54LS	,		SN74LS'				
				MIN	NOM	MAX	UNIT			
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧		
High-level output current, IOH				-400			-400	μА		
Low-level output current, IOL				4			8.	mΑ		
	A input	0		32	0		32	MHz		
Count frequency, f _{count}	B input	0		16	0		16	WIFTZ		
	A input	15			15					
Pulse width, tw	B input	30			30			ns		
•	Reset inputs	30			30					
Reset inactive-state setup time, t _{su}		25			25			ns		
Operating free-air temperature, TA		-55		125	0		70	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					+		SN54LS	•		SN74LS	*	
	PARAMET	ER	TES	ST CONDITIONS	51	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level inpu	t voltage				2			2			٧
VIL	Low-level input	voltage						0.7			0.8	V
VIK	Input clamp vo	Itage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	V
	High-level outp	ut voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V,		2.5	3.4		2.7	3.4		v
Voi	Low-level outp	ut voltage	VCC = MIN,	V _{1H} = 2 V,	1 _{OL} = 4 mA¶		0.25	0.4		0.25	0.4	v
VOL	Low-level outp	at voltage	VIL = VIL max		IOL = 8 mA¶					0.35	0.5	
	Input current	Any reset	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	1
1.	at maximum	A input						0.2			0.2	mA
Ч		B of 'LS290	V _{CC} = MAX,	V ₁ = 5.5 V				0.4			0,4	
	input voltage	B of 'LS293						0.2			0.2	
		Any reset						20			20]
	High-level	A input],, _,,,,	V = 0.7.V				40			40	
ЧH	input current	B of 'LS290	V _{CC} = MAX,	V _i = 2.7 V				80			80	μΑ
		B of 'LS293						40			40	
		Any reset						-0.4			-0.4	
	Low-level	A input	1					-2.4			-2.4	
HL	input current	B of 'LS290	V _{CC} = MAX,	$V_{\parallel} = 0.4 V$				-3.2			-3.2	mA
		B of 'LS293						-1.6			-1.6	
los	Short-circuit or	utput current §	V _{CC} = MAX			-20		-100	-20		-100	mA
	2 1		\/ - MAY	Can Nama 2	'LS290		9	15		9	15	mA
ICC	Supply current		V _{CC} = MAX,	See Note 3	'LS293		9	15		9	15	11112

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

D40445750#	FROM	то	TEST COMPLETIONS	'LS290			'LS293			UNIT
PARAMETER#	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	CIAII
	Α	QA		32	42		32	42		MHz
^f max	В	QB		16			16			101112
^t PLH	A	Q _A			10	16		10	16	ns ns
tPHL	1 ^				12	18		12	18	
^t PLH					32	48		46	70	
tPHL	A		C _L = 15 pF, R _L = 2 kΩ, See Note 4		34	50		46	70	
^t PLH	В	0-			10	16		10	16	ns ns
[†] PHL	1 6	QB			14	21		14	21	
^t PLH		α _C			21	32		21	32	
^t PHL	В				23	35		23	35	
^t PLH		0-			21	32		34	51	ns
tPHL	В	σD			23	35		34	51	
t _{PHL}	Set-to-0	Any			26	40		26	40	ns
^t PLH	C-1 1-0	Q_A, Q_D			20	30				ns
†PHL	Set-to-9	Q _B , Q _C	1		26	40				

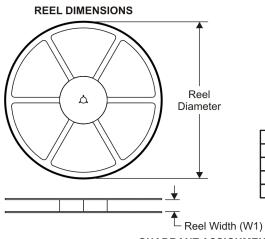
[#]fmax = maximum count frequency

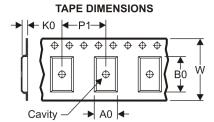
NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{\Delta} = 25^{\circ}\text{C}$.

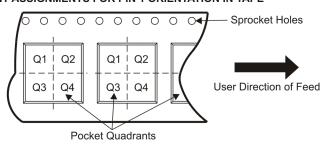
Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

[¶]QA outputs are tested at specified IOL plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

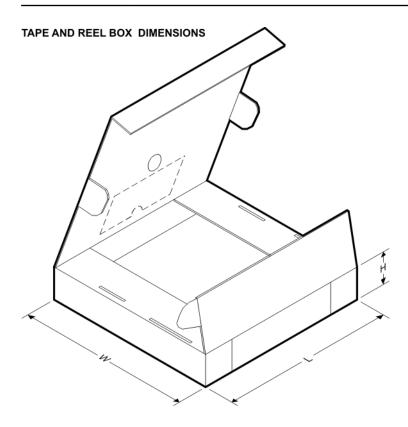

NOTE 3: I_{CC} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.


tpLH = propagation delay time, low-to-high-level output

 $t_{\mbox{\scriptsize PHL}}$ = propagation delay time, high-to-low-level output


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS293DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS293DR	SOIC	D	14	2500	346.0	346.0	33.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated