

AUR9503

General Description

AUR9503 is a low-noise and high-PSRR LDO linear voltage regulator which operates from 2.5V to 5.5V and provides up to 150mA output current.

AUR9503 achieves ultra low quiescent current to be ideally used with green operational portable products. Fixed output voltage options are provided with an internal built-in feedback circuit and optimized for stable operations with small $1\mu F$ ceramic output capacitors for excellent transient performance. EN pin enables the main chip operation and enables the output to be turned off to allow reduced power consumption in shutdown mode with a smaller than $0.1\mu A$ shutdown current. The low dropout voltage is 100 mV at a load current of 150 mA for system power efficiency. An internal current limit circuit is designed and operated as a short circuit protection for the regulator output pin.

The AUR9503 is available in tiny DFN-1.6×1.6-6 package for a small footprint solution to satisfy the portable design needs.

Features

- Low Noise for RF Application
- Low Dropout Voltage: 100mV @ 150mA
- Standby Current: 55μA
- < 0.1µA Standby Current When Shutdown
- Thermal Shutdown Protection
- Current Limiting Protection
- Only 1µF Output Capacitor Required for Stability
- Wide Operating Voltage Range: 2.5V to 5.5V

Applications

- Battery-powered Device or Equipment
- Mobile Phone, Digital Camera and MP3 Player
- · Radios, Other Hand-held Games and Instruments
- Post DC-DC Voltage Regulation
- Mini PCI & PCI-E Card
- WiFi Card



Figure 1. Package Type of AUR9503

AUR9503

Pin Configuration

D Package (DFN-1.6×1.6-6)

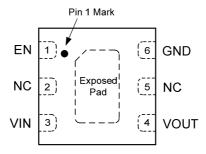


Figure 2. Pin Configuration of AUR9503 (Top View)

Pin Description

Pin Number	Pin Name	Function				
1	EN	Enable input signal, a $100k\Omega$ pull-down resistor is needed when there is no digital signal connected				
2, 5	NC	No internal connection				
3	VIN	Regulator input supply voltage with 1µF or greater capacitor				
4	VOUT	Regulator voltage output pin, 1µF or greater capacitor is needed				
6	GND	Ground connection				

AUR9503

Functional Block Diagram

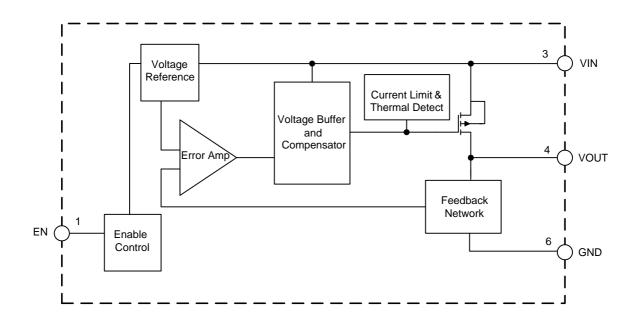
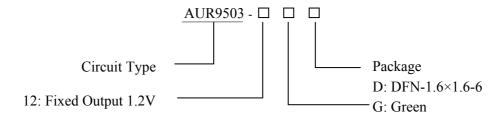



Figure 3. Functional Block Diagram of AUR9503

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
DFN-1.6×1.6-6	-40 to 80°C	AUR9503-12GD	503	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G" in the part number, are RoHS compliant and green.

AUR9503

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Supply Input Voltage	$V_{\rm IN}$	0 to 6.0	V
Enable Input Voltage	V_{EN}	-0.3 to V _{IN} +0.3	V
Output Voltage	V _{OUT}	0 to V _{IN} +0.3	V
Power Dissipation (On PCB, T _A =25°C)	P_{D}	0.55	W
Empirical Thermal Resistance (On PCB, T _A =25°C)	θ_{JA}	180	°C/W
Operating Junction Temperature	T_{J}	160	°C
Operating Temperature	T_{OP}	-40 to 85	°C
Storage Temperature	T_{STG}	-55 to 150	°C
ESD (Human Body Model)	V_{HBM}	2000	V
ESD (Machine Model)	V_{MM}	200	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Input Voltage	V _{IN}	2.5	5.5	V
Junction Temperature Range	T_{J}	-40	125	°C
Ambient Temperature Range	T_A	-40	80	°C

AUR9503

Electrical Characteristics (Note 2)

V_{IN}=V_{OUT}+0.5V, C_{IN}=C_{OUT}=1μF (Ceramic), T_A=25°C, unless otherwise specified.

Parameter		Symbol	Conditions		Min	Тур	Max	Unit	
Supply Voltage		V_{IN}			2.5		5.5	V	
Output Voltage Accuracy		$\Delta V_{OUT}/V_{OUT}$	I _{OUT} =1mA		-2		2	%	
Shutdown Current		I_{SD}	EN=Low, I _{OUT} =0mA			0.1	1	μΑ	
Quiescent C	Current	I_Q	EN=High, No Load			55		μΑ	
Maximum Current	Output	I_{MAX}	$R_{LOAD}=1\Omega$		180	300	410	mA	
Enable	"H" Level	V_{IH}			1.6		5.5	3.7	
Input Voltage	"L" Level	$V_{\rm IL}$			0		0.3	V	
Dropout Vo (Note 3)	Dropout Voltage		$I_{OUT} = 150 \text{mA}$		50		200	mV	
Load Regul	Load Regulation		1mA< I _{OUT} <150mA, 2.5V <v<sub>IN<5.5V</v<sub>				1.0	%	
Line Regulation		ΔV_{LINE}	V_{IN} =(V_{OUT} +0.5V) to 5.5V, I_{OUT} =1mA to 150mA			0.01	0.2	%	
			$C_{IN}=C_{OUT}=1\mu F,$ $I_{OUT}=10mA$	f=1kHz		70			
Power Supply Rejection Ratio		PSRR		f=10kHz		60		dB	
				f=100kHz		40			
Output Voltage Noise		V_{NO}	C _{OUT} =1μF, I _{OUT} =0mA, f=10Hz to 100kHz			30		μV_{RMS}	
Junction Shutdown T	Temperature Threshold	T_{SD}				160		°C	
Thermal Shutdown Temperature Hysteresis		T_{SDH}				30		°C	

Note 2: Exceeding the absolute maximum rating may cause damage to the device.

Note 3: Dropout voltage is defined as the difference between the input and output voltage when the output voltage drops 0.1V below its nominal value.

AUR9503

Typical Performance Characteristics

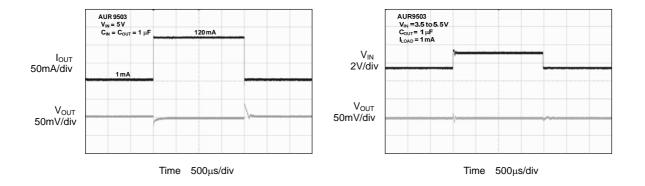


Figure 4. Load Transient Response

Figure 5. Line Transient Response

AUR9503

Application Information

Along with the highly development of portable devices, the LDO linear regulators are applied in many modern digital products like mobile phone, digital camera and MP3 player, etc. Hence, the battery of the hand-held device is widely used and it is important to design a LDO regulator with low quiescent current to extend the battery's life-time. When applied in RF application which is easily affected by noise, low noise supply voltage is also necessary. AUR9503, a low-noise and high-PSRR product, is ideally designed for such portable applications.

The basic application circuit of AUR9503 is shown in Figure 6.

1. Thermal Protection

The efficiency of a LDO linear regulator is determined by the difference between input and output voltage. The larger difference may cause overheat problems within the integrated circuit and reduce the efficiency. AUR9503 has a built-in over-temperature and over-current protection circuit. When the junction temperature exceeds 160°C,

thermal shutdown circuit is enabled to prevent heat danger.

2. External Capacitors

The AUR9503 is stable using an output capacitor of $1\mu F$. The ceramic capacitors can be used to attain better AC response. Moreover, low ESR can provide smaller undershoot and overshoot when loading current varies. Besides, an input capacitor of $1\mu F$ is required to stabilize VIN. All the capacitors' ground is recommended to share the IC's GND pin as direct and short as possible.

3. Enable Input

The AUR9503 can be operated or shutdown by the voltage level of EN pin. For continuous ON state, the EN pin is tied to VIN.

4. PCB Layout Consideration

The AUR9503 needs $1\mu F$ capacitors on VIN and VOUT pin. Place the capacitors as close as possible to the pin.

Typical Application

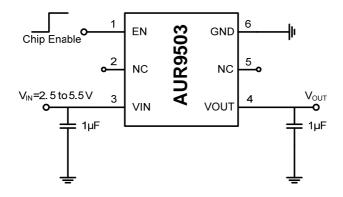
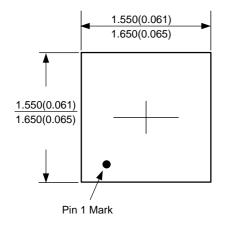
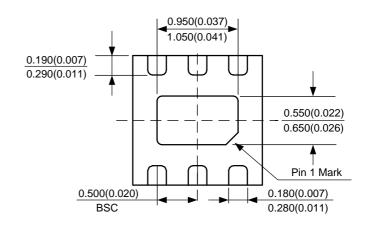
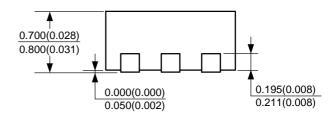


Figure 6. Typical Application Circuit of AUR9503




AUR9503


Unit: mm(inch)

Mechanical Dimensions

DFN-1.6×1.6-6

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarter

BCD (Shanghai) Micro-electronics Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, P. R.C. Tel: +86-021-2416-2266, Fax: +86-021-2416-2277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203,Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District Shenzhen 518057, China

Tel: +86-0755-8660-4900 Fax: +86-0755-8660-4958

Taiwan Office (Hsinchu) BCD Semiconductor (Taiwan) Company Limited 8F, No.176, Sec. 2, Gong-Dao 5th Road, East District HsinChu City 300, Taiwan, R.O.C Tel: +886-3-5160181, Fax: +886-3-5160181

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yishan Road, Shanghai 200233, China Tel: +021-6485-1491, Fax: +86-021-5450-0008

Taiwan Office (Taipei)

BCD Semiconductor (Taiwan) Company Limited 3F, No.17, Lane 171, Sec. 2, Jiu-Zong Rd., Nei-Hu Dist., Taipei(114), Taiwan, R.O.C Tel: +886-2-2656 2808

Fax: +886-2-2656-2806/26562950

BCD Semiconductor Corp. 48460 Kato Road, Fremont, CA 94538, USA

Tel: +1-510-668-1950 Fax: +1-510-668-1990 BCD Semiconductor Limited Korea office. Room 101-1112, Digital-Empire II, 486 Sin-dong, Yeongtong-Gu, Suwon-city, Gyeonggi-do, Korea Tel: +82-31-695-8430