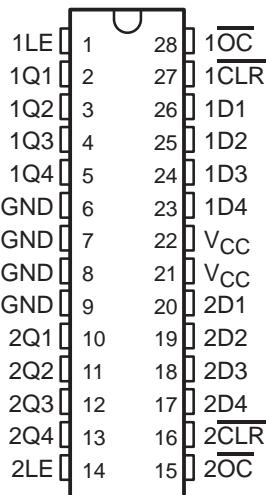


- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- **EPIC™** (Enhanced-Performance Implanted CMOS) 1- μ m Process
- 500-mA Typical Latch-Up Immunity at 125°C


description

This dual 4-bit transparent D-type latch features 3-state outputs designed specifically for bus driving. This makes these devices particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

When the latch-enable (1LE or 2LE) input is high, the Q outputs will follow the data (D) inputs in true form, according to the function table. When LE is taken low, the outputs will be latched. When the clear (1CLR or 2CLR) input goes low, the Q outputs go low independently of LE. The outputs are in a high-impedance state when the output-control (1OC or 2OC) input is at a high logic level.

The 74AC11873 is characterized for operation from –40°C to 85°C.

DW PACKAGE
(TOP VIEW)

FUNCTION TABLE
(each 4-bit latch)

INPUTS				OUTPUT Q
OC	CLR	LE	D	
L	L	X	X	L
L	H	H	H	H
L	H	H	L	L
L	H	L	X	Q ₀
H	X	X	X	Z

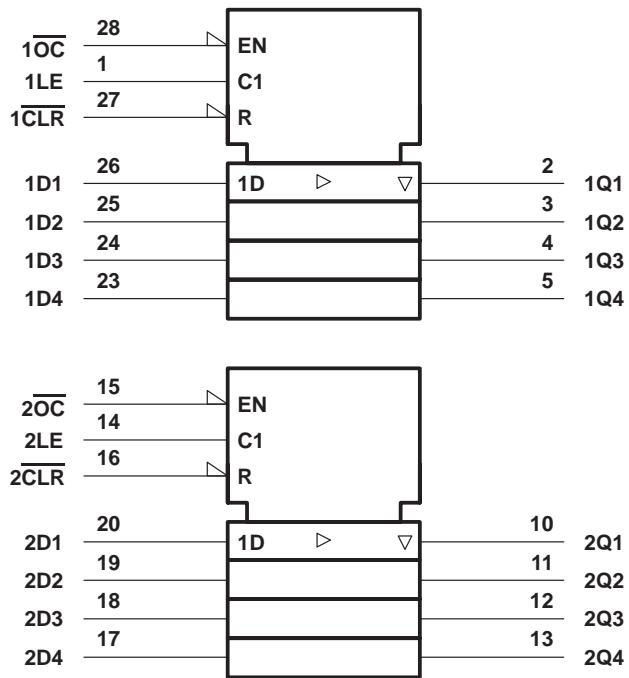
EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

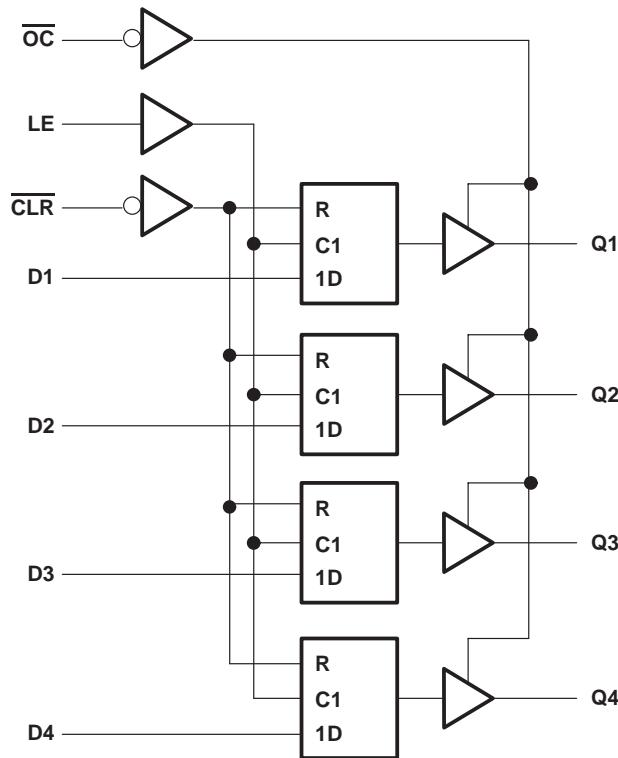
Copyright © 1993, Texas Instruments Incorporated

TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


74AC11873

DUAL 4-BIT D-TYPE LATCH


WITH 3-STATE OUTPUTS

SCAS095 – JANUARY 1990 – REVISED APRIL 1993

logic symbol†

logic diagram, each quad latch (positive logic)

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V_{CC}	-0.5 V to 7 V
Input voltage range, V_I (see Note 1)	-0.5 V to $V_{CC} + 0.5$ V
Output voltage range, V_O (see Note 1)	-0.5 V to $V_{CC} + 0.5$ V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V_{CC} or GND	±200 mA
Storage temperature range	-65°C to 150°C

‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		3	5	5.5	V
V_{IH}	High-level input voltage	$V_{CC} = 3\text{ V}$	2.1			V
		$V_{CC} = 4.5\text{ V}$	3.15			
		$V_{CC} = 5.5\text{ V}$	3.85			
V_{IL}	Low-level input voltage	$V_{CC} = 3\text{ V}$		0.9		V
		$V_{CC} = 4.5\text{ V}$		1.35		
		$V_{CC} = 5.5\text{ V}$		1.65		
V_I	Input voltage		0	V_{CC}		V
V_O	Output voltage		0	V_{CC}		V
I_{OH}	High-level output current	$V_{CC} = 3\text{ V}$			-4	mA
		$V_{CC} = 4.5\text{ V}$			-24	
		$V_{CC} = 5.5\text{ V}$			-24	
I_{OL}	Low-level output current	$V_{CC} = 3\text{ V}$		12		mA
		$V_{CC} = 4.5\text{ V}$		24		
		$V_{CC} = 5.5\text{ V}$		24		
$\Delta t/\Delta v$	Input transition rise or fall rate		0	10	ns/V	
T_A	Operating free-air temperature		-40	85	$^{\circ}\text{C}$	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{CC}	$T_A = 25^{\circ}\text{C}$			UNIT
			MIN	TYP	MAX	
V_{OH}	$I_{OH} = -50\text{ }\mu\text{A}$	3 V	2.9		2.9	V
		4.5 V	4.4		4.4	
		5.5 V	5.4		5.4	
	$I_{OH} = -4\text{ mA}$	3 V	2.58		2.48	
		4.5 V	3.94		3.8	
		5.5 V	4.94		4.8	
V_{OL}	$I_{OH} = -75\text{ mA}^{\dagger}$	5.5 V			3.85	V
	$I_{OL} = 50\text{ }\mu\text{A}$	3 V		0.1	0.1	
		4.5 V		0.1	0.1	
		5.5 V		0.1	0.1	
	$I_{OL} = 12\text{ mA}$	3 V		0.36	0.44	
		4.5 V		0.36	0.44	
		5.5 V		0.36	0.44	
	$I_{OL} = 24\text{ mA}$	5.5 V			1.65	V
	$I_{OL} = 75\text{ mA}^{\dagger}$	5.5 V				
		3 V		0.1	0.1	
		4.5 V		0.1	0.1	
	$I_{OL} = 24\text{ mA}$	5.5 V		0.1	0.1	
		3 V		0.36	0.44	
		4.5 V		0.36	0.44	
I_I	$V_I = V_{CC}$ or GND	5.5 V		± 0.1	± 1	μA
I_{OZ}	$V_O = V_{CC}$ or GND	5.5 V		± 0.5	± 5	μA
I_{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V		8	80	μA
C_i	$V_I = V_{CC}$ or GND	5 V		4.5		pF
C_o	$V_O = V_{CC}$ or GND	5 V		13.5		pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

74AC11873

DUAL 4-BIT D-TYPE LATCH

WITH 3-STATE OUTPUTS

SCAS095 – JANUARY 1990 – REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

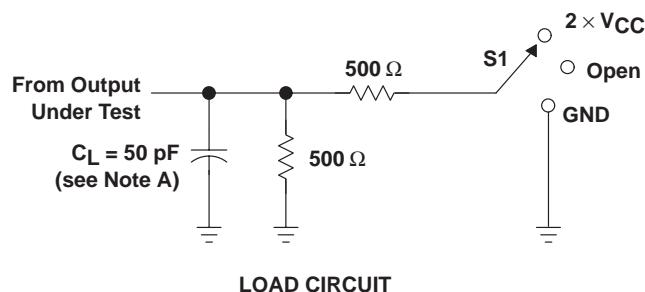
		$T_A = 25^\circ\text{C}$	MIN	MAX	UNIT
t_W	Pulse duration	CLR low	5	5	ns
		LE high	5	5	
t_{SU}	Setup time, data before LE↓	High	3	3	ns
		Low	4	4	
t_H	Hold time, data after LE↓	High	1	1	ns
		Low	1	1	

timing requirements over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)

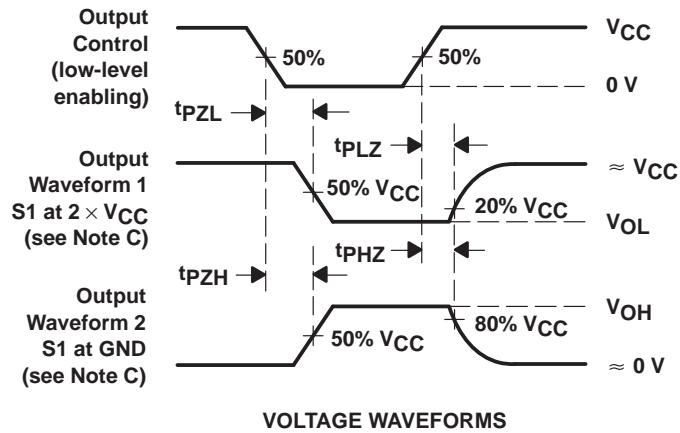
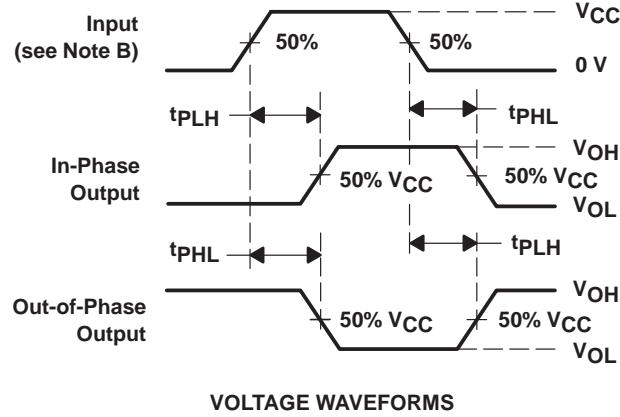
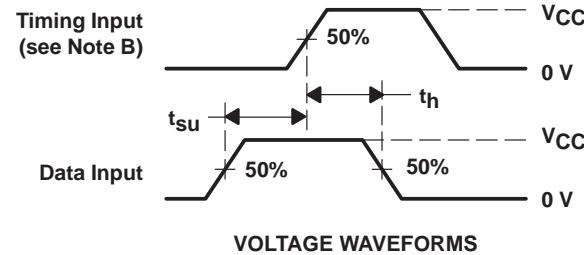
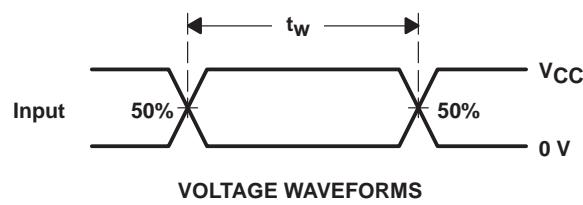
		$T_A = 25^\circ\text{C}$	MIN	MAX	UNIT
t_W	Pulse duration	CLR low	5	5	ns
		LE high	5	5	
t_{SU}	Setup time, data before LE↓	High	2	2	ns
		Low	3	3	
t_H	Hold time, data after LE↓	High	1	1	ns
		Low	1	1	

switching characteristics over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^\circ\text{C}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
t_{PLH}	D	Q	2.8	8.8	11.2	2.8	13	ns
			2.8	9	11.2	2.8	12.7	
t_{PLH}	LE	Q	3	9.4	11.8	3	13.6	ns
			2.9	9.4	11.7	2.9	13.2	
t_{PHL}	\overline{CLR}	Q	2.3	8.2	10.3	2.3	11.5	ns
t_{PZH}	\overline{OC}	Q	1.8	6.4	8.4	1.8	9.7	ns
			2.7	9.9	12.5	2.7	14.4	
t_{PHZ}	\overline{OC}	Q	3.8	6.8	8.4	3.8	9	ns
			3.5	6.8	8.5	3.5	9.1	


switching characteristics over recommended operating free-air temperature range,
 $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^\circ\text{C}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
t_{PLH}	D	Q	2.2	5.5	7.3	2.2	8.4	ns
t_{PHL}			2.1	5.5	7.2	2.1	8.2	
t_{PLH}	LE	Q	2.4	5.9	7.8	2.4	8.9	ns
t_{PHL}			2.2	5.8	7.6	2.2	8.7	
t_{PHL}	\overline{CLR}	Q	1.7	5.1	6.8	1.7	7.6	ns
t_{PZH}	\overline{OC}	Q	1.2	4.1	5.6	1.2	6.4	ns
t_{PZL}			1.9	5.5	7.3	1.9	8.5	
t_{PHZ}	\overline{OC}	Q	3.5	5.9	7.4	3.5	7.9	ns
t_{PLZ}			3.3	5.5	7	3.3	7.6	





operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$

PARAMETER		TEST CONDITIONS		TYP	UNIT
C_{pd}	Power dissipation capacitance per latch	Outputs enabled	$C_L = 50 \text{ pF}$, $f = 1 \text{ MHz}$	43	pF
		Outputs disabled		9	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	2 \times V _{CC}
t_{PHZ}/t_{PZH}	GND

NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.

C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated