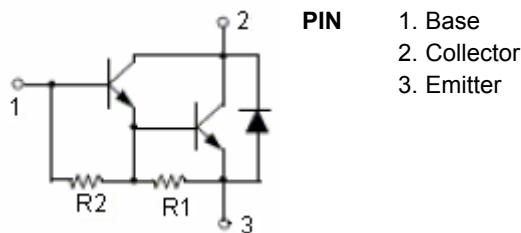
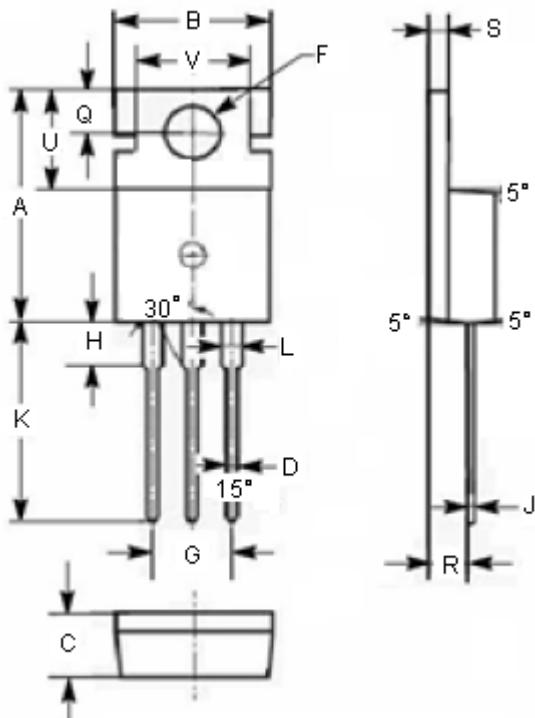


Darlington Power Transistor

multicomp



Features:


- Silicon NPN
- High DC current gain : $h_{FE} = 1,000$ (Minimum) at $I_C = 4\text{ A}$
- Collector - emitter sustaining voltage : $V_{CEO(\text{SUS})} = 100\text{ V}(\text{Minimum})$
- Low collector - emitter saturation voltage : $V_{CE(\text{sat})} = 2\text{ V}(\text{Maximum})$ at $I_C = 4\text{ A}$

Application:

Designed for general-purpose amplifier and low-speed switching applications

TO-220C

Dimension	mm	
	Minimum	Maximum
A	15.7	15.9
B	9.9	10.1
C	4.2	4.4
D	0.7	0.9
F	3.4	3.6
G	4.98	5.18
H	2.7	2.9
J	0.44	0.46
K	13.2	13.4
L	1.1	1.3
Q	2.7	2.9
R	2.5	2.7
S	1.29	1.31
U	6.45	6.65
V	8.66	8.86

Dimensions : Millimetres

Silicon NPN Power Transistor

multicomp

Absolute Maximum Ratings ($T_a = 25^\circ\text{C}$)

Symbol	Parameter	Value	Unit
V_{CBO}	Collector-base voltage	100	V
V_{CEO}	Collector - emitter voltage	100	V
V_{EBO}	Emitter - base voltage	5	V
I_C	Collector current - continuous	8	A
I_{CM}	Collector current - peak	12	A
I_B	Base current - continuous	0.3	A
P_C	Collector power dissipation at $T_C = 25^\circ\text{C}$	70	W
	Collector power dissipation at $T_C = 25^\circ\text{C}$	2	W
T_j	Junction temperature	150	$^\circ\text{C}$
T_{stg}	Storage temperature range	-65 to 150	$^\circ\text{C}$

Thermal Characteristics

Symbol	Parameter	Maximum	Unit
$R_{th\ j-c}$	Thermal resistance, junction to case	1.785	$^\circ\text{C}/\text{W}$
$R_{th\ j-a}$	Thermal resistance, junction to ambient	63.5	$^\circ\text{C}/\text{W}$

Electrical Characteristics ($T_C = 25^\circ\text{C}$ Unless Otherwise Specified)

Symbol	Parameter	Conditions	Minimum	Maximum	Unit
$V_{CEO\ (SUS)}$	Collector - emitter sustaining voltage	$I_C = 30\text{ mA}, I_B = 0$	100	-	V
$V_{CE\ (sat)-1}$	Collector - emitter saturation voltage	$I_C = 4\text{ A}, I_B = 16\text{ mA}$	-	2	V
$V_{CE\ (sat)-2}$	Collector - emitter saturation voltage	$I_C = 6\text{ A}; I_B = 30\text{ mA}$	-	3	V
$V_{BE(on)}$	Base - emitter on voltage	$I_C = 4\text{ A}; V_{CE} = 4\text{ V}$	-	2.5	V
I_{CBO}	Collector cutoff current	$V_{CB} = 100\text{ V}, I_E = 0$	-	0.2	mA
I_{CEO}	Collector cutoff current	$V_{CE} = 50\text{ V}, I_B = 0$	-	0.5	mA
I_{EBO}	Emitter cutoff current	$V_{EB} = 5\text{ V}; I_C = 0$	-	5	mA
h_{FE-1}	DC current gain	$I_C = 1\text{ A}; V_{CE} = 4\text{ V}$	500	-	-
h_{FE-2}	DC current gain	$I_C = 4\text{ A}; V_{CE} = 4\text{ V}$	1,000	15,000	-

Part Number Table

Description	Part Number
Silicon NPN Darlington Power Transistor	TIP132

Important Notice : This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2011.