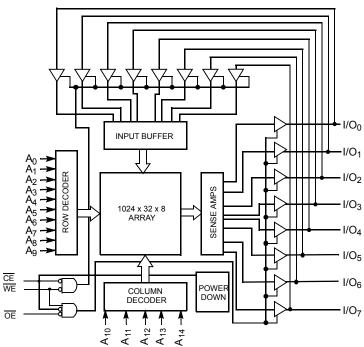


Features

- High speed
 □ 15 ns
- Fast t_{DOE}
- CMOS for optimum speed/power
- Low active power

 □ 550 mW (max, 15 ns "L" version)
- Low standby power
 □ 0.275 mW (max, "L" version)
- 2 V data retention ("L" version only)
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description


The CY7C199N is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (CE) and active LOW Output Enable (OE) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 81% when deselected. The CY7C199N is available in 28-pin TSOP I package.

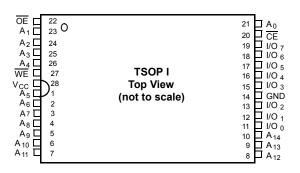
An active LOW Write Enable signal ($\overline{\text{WE}}$) controls the writing/reading operation of the memory. When $\overline{\text{CE}}$ and $\overline{\text{WE}}$ inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}$ and $\overline{\text{OE}}$ active LOW, while $\overline{\text{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and Write Enable (WE) is HIGH. A die coat is used to improve alpha immunity.

For a complete list of related documentation, click here.

Logic Block Diagram

Contents


Pin Configuration	3
Selection Guide	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	5
Data Retention Waveform	5
Switching Characteristics	6
Switching Waveforms	
Typical DC and AC Characteristics	
Truth Table	10

Ordering Information	10
Ordering Code Definitions	
Package Diagrams	
Acronyms	
Document Conventions	
Units of Measure	
Document History Page	13
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	14
Cypress Developer Community	
Technical Support	

Pin Configuration

Figure 1. 28-pin TSOP 1 pinout

Selection Guide

Description			Unit
Maximum Access Time		15	ns
Maximum Operating Current	L	100	mA
Maximum CMOS Standby Current	L	0.05	mA

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature-65 °C to +150 °C Ambient Temperature with Power Applied55 °C to +125 °C Supply Voltage to Ground Potential (Pin 28 to Pin 14)–0.5 V to +7.0 V DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5 V to V $_{\rm CC}$ + 0.5 V

DC Input Voltage [1]	0.5 V to V _{CC} + 0.5 V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001 V
Latch-up Current	> 200 mA

Operating Range

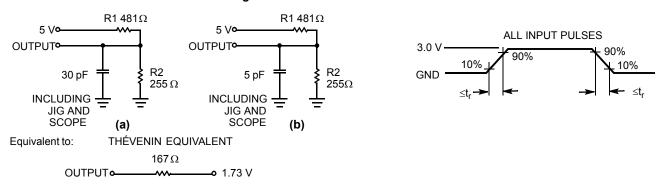
Range	Ambient Temperature [2]	V _{CC}
Commercial	0 °C to +70 °C	5 V \pm 10%

Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		-1	15	Unit
Parameter	Description	rest Conditions		Min	Max	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min, I _{OH} = -4.0 mA		2.4	-	V
V _{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 8.0 mA		_	0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage			-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		- 5	+5	μА
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output Disabled		- 5	+5	μА
I _{CC}	V _{CC} Operating Supply Current	V_{CC} = Max, I_{OUT} = 0 mA, f = f_{MAX} = 1/ t_{RC}	L	_	100	mA
I _{SB1}	Automatic CE Power-down Current – TTL Inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f = f}_{\text{MAX}} \end{aligned}$	L	_	5	mA
I _{SB2}	Automatic CE Power-down Current – CMOS Inputs	$\label{eq:max} \begin{split} &\frac{\text{Max}}{\text{CE}} V_{\text{CC}}, \\ &\text{CE} \geq V_{\text{CC}} - 0.3 \text{V}, \\ &V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V}, \text{or} V_{\text{IN}} \leq 0.3 \text{V}, \text{f} = 0 \end{split}$	L	-	0.05	mA

V_{IL} (min) = -2.0 V for pulse durations of less than 20 ns.
 T_A is the "instant on" case temperature.

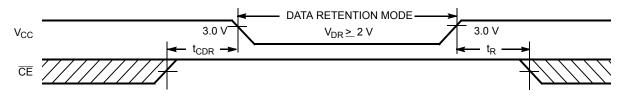


Capacitance

Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}$, $f = 1 ^{\circ}\text{MHz}$, $V_{CC} = 5.0 ^{\circ}\text{V}$	8	pF
C _{OUT}	Output capacitance		8	pF

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms [4]


Data Retention Characteristics

Over the Operating Range (L-version only)

Parameter	Description	Conditions ^[5]	Min	Max	Unit
V_{DR}	V _{CC} for Data Retention	$V_{CC} = V_{DR} = 2.0 \text{ V},$ $CE \ge V_{CC} - 0.3 \text{ V},$	2.0	-	V
I _{CCDR}	Data Retention Current L]CE ≥ V _{CC} – 0.3 V, _V _{IN} ≥ V _{CC} – 0.3 V or	_	10	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$V_{IN} \leq 0.3 V$	0	-	ns
t _R ^[4]	Operation Recovery Time		200	_	μS

Data Retention Waveform

Figure 3. Data Retention Waveform

- Tested initially and after any design or process changes that may affect these parameters.
- t_R≤ 3 ns for -15 speed.
- 5. No input may exceed V_{CC} + 0.5 V.

Switching Characteristics

Over the Operating Range

Parameter [6]	Decembrish	7C19	99-15	I I mit					
Parameter [8]	Description	Min	Max	Unit					
Read Cycle	Read Cycle								
t _{RC}	Read Cycle Time	15	_	ns					
t _{AA}	Address to Data Valid	_	15	ns					
t _{OHA}	Data Hold from Address Change	3	_	ns					
t _{ACE}	CE LOW to Data Valid	_	15	ns					
t _{DOE}	OE LOW to Data Valid	_	7	ns					
t _{LZOE}	OE LOW to Low Z [7]	0	_	ns					
t _{HZOE}	OE HIGH to High Z [7, 8]	_	7	ns					
t _{LZCE}	CE LOW to Low Z [7]	3	_	ns					
t _{HZCE}	CE HIGH to High Z [7, 8]	_	7	ns					
t _{PU}	CE LOW to Power-up	0	_	ns					
t _{PD}	CE HIGH to Power-down	_	15	ns					
Write Cycle [9,	10]								
t _{WC}	Write Cycle Time	15	_	ns					
t _{SCE}	CE LOW to Write End	10	-	ns					
t _{AW}	Address Set-up to Write End	10	_	ns					
t _{HA}	Address Hold from Write End	0	_	ns					
t _{SA}	Address Set-up to Write Start	0	_	ns					
t _{PWE}	WE Pulse Width	9	_	ns					
t _{SD}	Data Set-up to Write End	9	_	ns					
t _{HD}	Data Hold from Write End		_	ns					
t _{HZWE}	WE LOW to High Z [8]	_	7	ns					
t _{LZWE}	WE HIGH to Low Z [7]	3	_	ns					

Notes

- 6. Test conditions assume signal transition time of 3 ns or less for -15 speed, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
- 8. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with C_L = 5 pF as in part (b) of Figure 2 on page 5. Transition is measured ± 500 mV from steady-state voltage.
- 9. The internal write time of the memory is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 10. The minimum write cycle time for write cycle #3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

Document Number: 001-06493 Rev. *G

Switching Waveforms

Figure 4. Read Cycle No. 1 [11, 12]

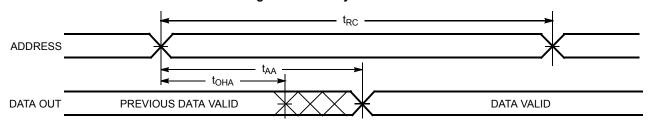


Figure 5. Read Cycle No. 2 [12, 13]

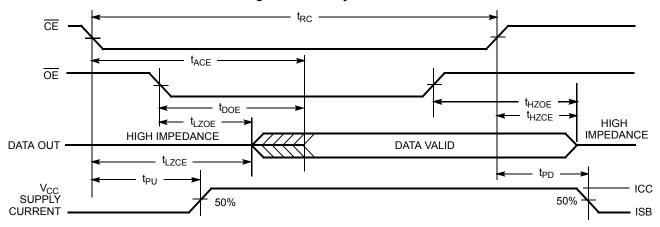
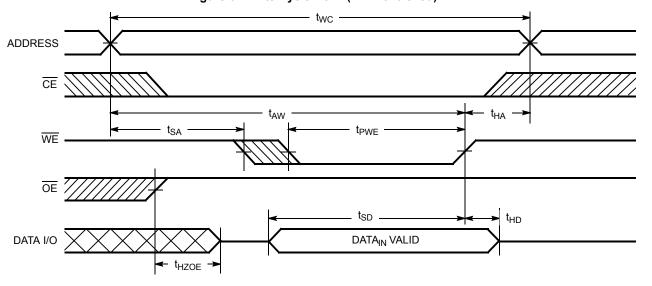



Figure 6. Write Cycle No. 1 (WE Controlled) [14, 15, 16]

- 11. <u>Device</u> is continuously selected. OE, CE = V_{IL}. 12. WE is HIGH for read cycle.

- 12. We is Filed for feat cycle.
 13. Address valid prior to or coincident with CE transition LOW.
 14. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 15. Data I/O is high impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) [17, 18, 19]

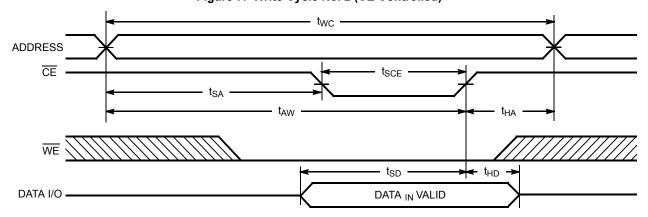
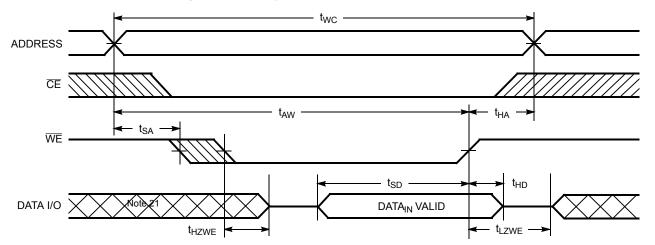
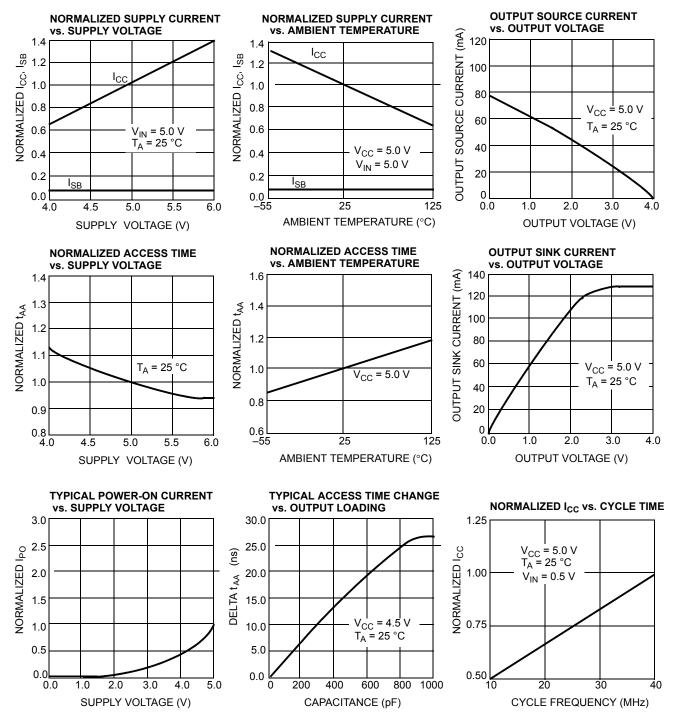



Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW) [19, 20]

^{17.} t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of Figure 2 on page 5. Transition is measured ±500 mV from steady-state voltage.

^{18.} Data I/O is high impedance if $\overline{OE} = V_{IH}$.

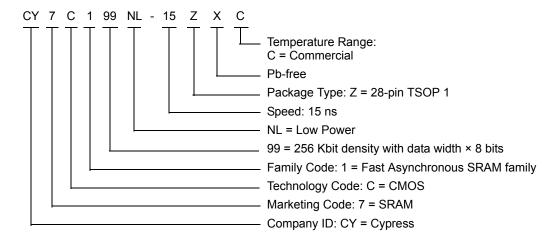

^{19.} If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

^{20.} The minimum write cycle time for Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

^{21.} During this period, the I/Os are in the output state. Do not apply input signals.

Typical DC and AC Characteristics

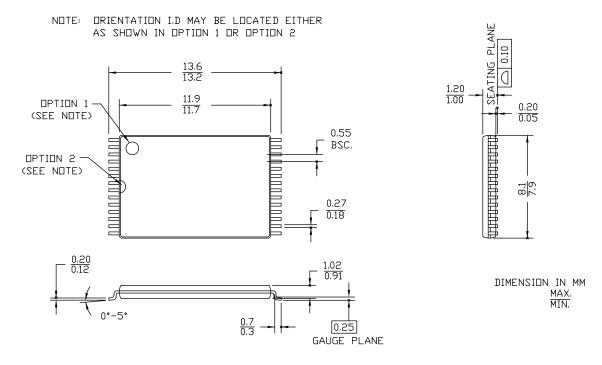
Truth Table


CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Output disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
15	CY7C199NL-15ZXC	51-85071	28-pin TSOP 1 (Pb-free)	Commercial

Contact your Local Cypress sales representative for availability of these parts


Ordering Code Definitions

Package Diagrams

Figure 9. 28-pin TSOP I (8 × 13.4 × 1.2 mm) Package Outline, 51-85071

51-85071 *J

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal-Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SOJ	Small Outline J-lead
SRAM	Static Random Access Memory
TTL	Transistor-Transistor Logic
TSOP	Thin Small Outline Package
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
μs	microsecond			
mA	milliampere			
mW	milliwatt			
ns	nanosecond			
Ω	ohm			
%	percent			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Documer Documer	Document Title: CY7C199N, 32 K × 8 Static RAM Document Number: 001-06493					
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change		
**	423877	See ECN	NXR	New data sheet.		
*A	2892510	03/18/2010	VKN	Removed speed bins (12 ns, 20 ns, 25 ns, 35 ns, and 55 ns) related information in all instances across the document. Removed Industrial and Military Temperature Range related information in all instances across the document. Removed 28-pin PDIP (300 Mils) package related information in all instances across the document. Updated Ordering Information. Updated Package Diagrams.		
*B	3109199	12/13/2010	AJU	Added Ordering Code Definitions.		
*C	3244591	04/29/2011	PRAS	Updated Package Diagrams. Added Acronyms and Units of Measure. Updated to new template.		
*D	4379476	05/14/2014	VINI	Updated Switching Waveforms: Added Note 21 and referred the same note in DATA I/O in Figure 8. Updated Package Diagrams: spec 51-85071 – Changed revision from *I to *J. Updated to new template. Completing Sunset Review.		
*E	4573121	11/18/2014	VINI	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.		
*F	4776874	05/26/2015	VINI	Updated Functional Description: Updated description. Completing Sunset Review.		
*G	5984694	12/05/2017	AESATMP8	Updated logo and Copyright.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/interface

Memorycypress.com/memoryMicrocontrollerscypress.com/mcuPSoCcypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2006-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicenses) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-06493 Rev. *G Revised December 5, 2017 Page 14 of 14