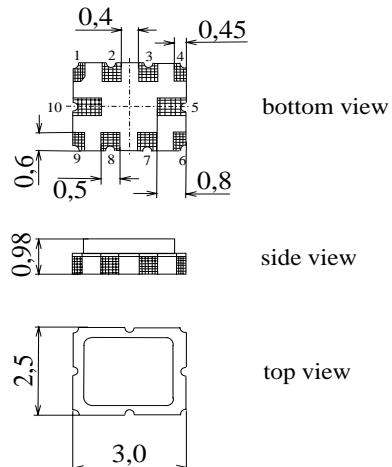


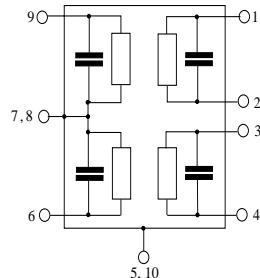
SAW Components

Data Sheet B4235

Data Sheet


SAW Components
B4235
Low-Loss Dual Band Filter for Mobile Communication
942,5/1842,5 MHz
Data Sheet

Features


- Low-loss RF filter for mobile telephone GSM 900/1800 system, receive path
- Usable passband:
 - Filter 1 (GSM900): 35 MHz
 - Filter 2 (GSM1800): 75 MHz
- Unbalanced to balanced operation of both filters
- Impedance transformation from 50Ω to 150Ω for both filters
- Suitable for GPRS class 1 to 12
- Ceramic package for Surface Mounted Technology (SMT)
- RoHS compliant

Terminals

- Ni, gold-plated

Ceramic package QCC10G

Dimensions in mm, approx. weight 27 mg
Pin configuration

1, 2	Output, balanced [Filter 1]
3, 4	Output, balanced [Filter 2]
6	Input [Filter 2]
7, 8	Case ground
9	Input [Filter 1]
5, 10	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B4235	B39182-B4235-H910	C61157-A7-A142	F61074-V8174-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T	$-40 / +85$	$^{\circ}\text{C}$	
Storage temperature range	T_{stg}	$-40 / +85$	$^{\circ}\text{C}$	
DC voltage	V_{DC}	5	V	
ESD voltage	V_{ESD}^*	50	V	Machine Model, 10 pulses
Input power at Tx bands: GSM850, GSM900 GSM1800, GSM1900	P_{IN}	15	dBm	peak power of GSM signal, duty cycle 4:8

* - acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

SAW Components

B4235

Low-Loss Dual Band Filter for Mobile Communication

942,5/1842,5 MHz

Data Sheet

Characteristics Filter 1 (GSM900)

Operating temperature range:

 $T = +25 \pm 2 \text{ }^{\circ}\text{C}$

Terminating source impedance:

 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 150 \Omega$ (balanced) || 68 nH

			min.	typ.	max.	
Center frequency		f_c	—	942,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	1,8	2,2	dB
	925,0 ... 960,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	0,6	1,2	dB
	925,0 ... 960,0	MHz				
Input VSWR			—	1,9	2,1	
	925,0 ... 960,0	MHz				
Output VSWR			—	1,9	2,1	
	925,0 ... 960,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-2,0	—	2,0	dB
	925,0 ... 960,0	MHz				
Output phase balance ($(\phi(S_{31}) - \phi(S_{21}) + 180^\circ)$)			-10,0	—	10,0	degree
	925,0 ... 960,0	MHz				
Absolute attenuation		α_{abs}				
	10,0 ... 480,0	MHz	45,0	53,0	—	dB
	480,0 ... 880,0	MHz	30,0	38,0	—	dB
	880,0 ... 905,0	MHz	24,0	27,0	—	dB
	905,0 ... 915,0	MHz	20,0	25,0	—	dB
	980,0 ... 1050,0	MHz	23,0	30,0	—	dB
	1050,0 ... 3500,0	MHz	30,0	34,0	—	dB
	3500,0 ... 4500,0	MHz	22,0	26,0	—	dB
	4500,0 ... 6000,0	MHz	15,0	17,0	—	dB

SAW Components

B4235

Low-Loss Dual Band Filter for Mobile Communication

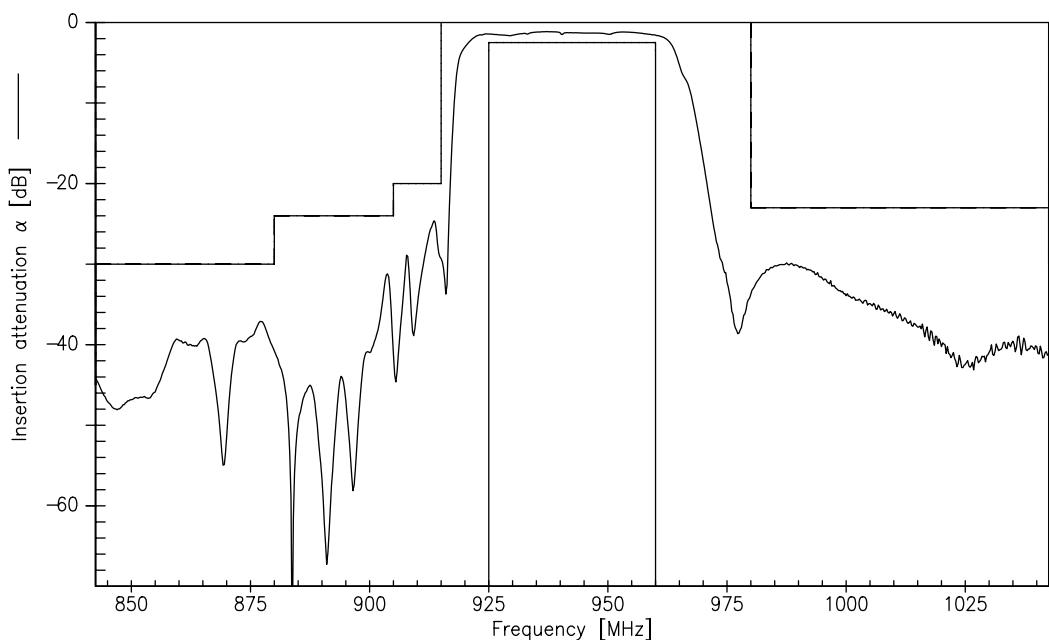
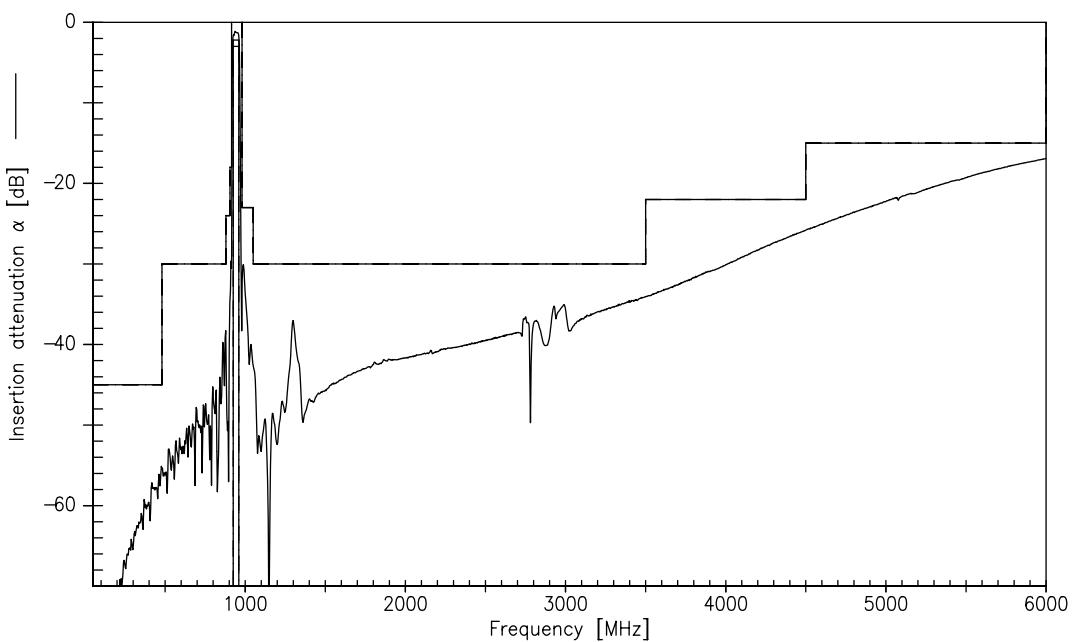
942,5/1842,5 MHz

Data Sheet

Characteristics Filter 1 (GSM900)

Operating temperature range:

 $T = -20$ to $+75^\circ\text{C}$



Terminating source impedance:

 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 150 \Omega$ (balanced) || 68 nH

			min.	typ.	max.	
Center frequency		f_c	—	942,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	1,8	2,5	dB
	925,0 ... 960,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	0,9	1,5	dB
	925,0 ... 960,0	MHz				
Input VSWR			—	1,9	2,1	
	925,0 ... 960,0	MHz				
Output VSWR			—	1,9	2,1	
	925,0 ... 960,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-2,5	—	2,5	dB
	925,0 ... 960,0	MHz				
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-12,0	—	12,0	degree
	925,0 ... 960,0	MHz				
Absolute attenuation		α_{abs}				
	10,0 ... 480,0	MHz	45,0	50,0	—	dB
	480,0 ... 880,0	MHz	30,0	38,0	—	dB
	880,0 ... 905,0	MHz	24,0	27,0	—	dB
	905,0 ... 915,0	MHz	11,0	18,0	—	dB
	980,0 ... 1050,0	MHz	23,0	30,0	—	dB
	1050,0 ... 3500,0	MHz	30,0	34,0	—	dB
	3500,0 ... 4500,0	MHz	22,0	26,0	—	dB
	4500,0 ... 6000,0	MHz	15,0	17,0	—	dB

Transfer function of filter 1 (Narrow Band)

Transfer function of filter 1 (Wide Band)

SAW Components

B4235

Low-Loss Dual Band Filter for Mobile Communication

942,5/1842,5 MHz

Data Sheet

Characteristics Filter 2 (GSM1800)

Operating temperature range:

 $T = +25 \pm 2 \text{ }^{\circ}\text{C}$

Terminating source impedance:

 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 150 \Omega$ (balanced) || 12.0 nH

			min.	typ.	max.	
Center frequency		f_c	—	1842,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,4	2,7	dB
	1805,0 ... 1880,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	1,2	1,5	dB
	1805,0 ... 1880,0	MHz				
Input VSWR			—	2,4	2,6	
	1805,0 ... 1880,0	MHz				
Output VSWR			—	2,2	2,4	
	1805,0 ... 1880,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-1,5	—	1,5	dB
	1805,0 ... 1880,0	MHz				
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-10,0	—	10,0	degree
	1805,0 ... 1880,0	MHz				
Absolute attenuation		α_{abs}				
	10,0 ... 1000,0	MHz	40,0	50,0	—	dB
	1000,0 ... 1705,0	MHz	26,0	28,0	—	dB
	1705,0 ... 1785,0	MHz	13,0	17,0	—	dB
	1920,0 ... 1980,0	MHz	15,0	24,0	—	dB
	1980,0 ... 2030,0	MHz	24,0	28,0	—	dB
	2030,0 ... 5000,0	MHz	30,0	34,0	—	dB
	5000,0 ... 6000,0	MHz	25,0	30,0	—	dB

SAW Components

B4235

Low-Loss Dual Band Filter for Mobile Communication

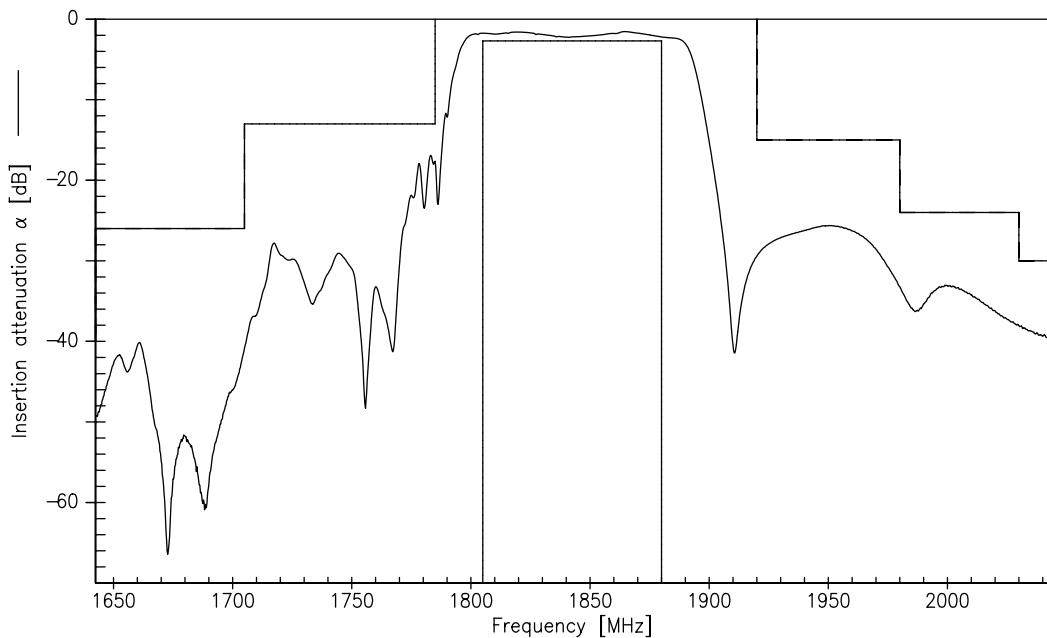
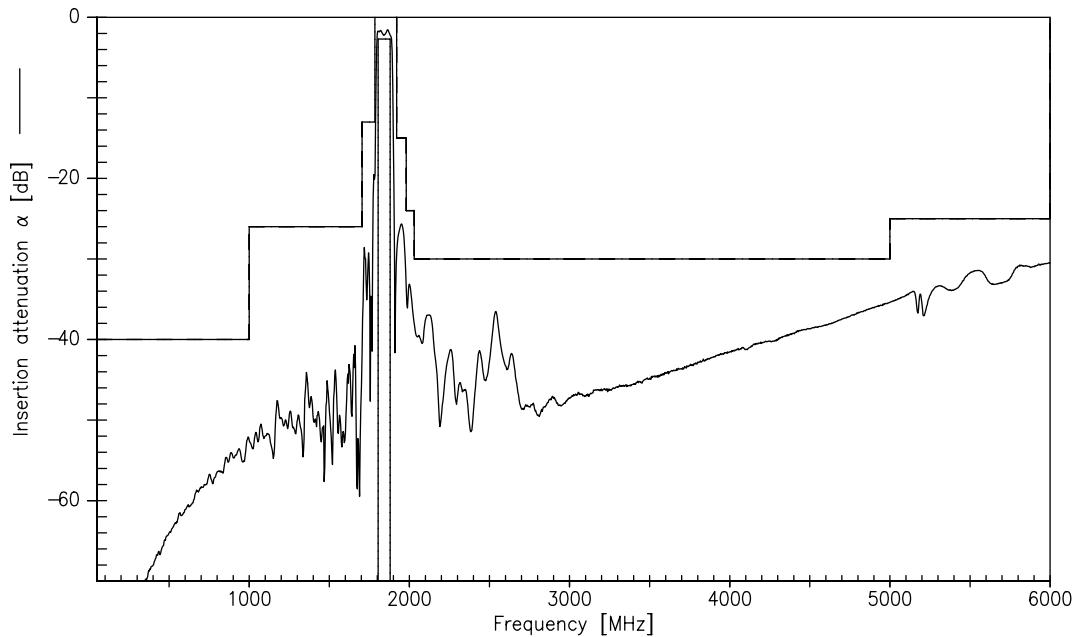
942,5/1842,5 MHz

Data Sheet

Characteristics Filter 2 (GSM1800)

Operating temperature range:

 $T = -20$ to $+75^\circ\text{C}$



Terminating source impedance:

 $Z_S = 50 \Omega$ (unbalanced)

Terminating load impedance:

 $Z_L = 150 \Omega$ (balanced) || 12.0 nH

			min.	typ.	max.	
Center frequency		f_c	—	1842,5	—	MHz
Maximum insertion attenuation		α_{\max}	—	2,4	2,7	dB
	1805,0 ... 1880,0	MHz				
Amplitude ripple (p-p)		$\Delta\alpha$	—	1,5	1,8	dB
	1805,0 ... 1880,0	MHz				
Input VSWR			—	2,4	2,6	
	1805,0 ... 1880,0	MHz				
Output VSWR			—	2,2	2,4	
	1805,0 ... 1880,0	MHz				
Output amplitude balance (S_{31}/S_{21})			-1,5	—	1,5	dB
	1805,0 ... 1880,0	MHz				
Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^\circ$)			-10,0	—	10,0	degree
	1805,0 ... 1880,0	MHz				
Absolute attenuation		α_{abs}				
	10,0 ... 1000,0	MHz	40,0	50,0	—	dB
	1000,0 ... 1705,0	MHz	26,0	28,0	—	dB
	1705,0 ... 1785,0	MHz	10,0	17,0	—	dB
	1920,0 ... 1980,0	MHz	15,0	24,0	—	dB
	1980,0 ... 2030,0	MHz	24,0	28,0	—	dB
	2030,0 ... 5000,0	MHz	30,0	34,0	—	dB
	5000,0 ... 6000,0	MHz	25,0	30,0	—	dB

Transfer function of filter 2 (Narrow Band)

Transfer function of filter 2 (Wide Band)

SAW Components

B4235

Low-Loss Dual Band Filter for Mobile Communication

942,5/1842,5 MHz

Data Sheet

Published by EPCOS AG

**Surface Acoustic Wave Components Division, SAW COM WT PD
P.O. Box 80 17 09, 81617 Munich, GERMANY**

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.