INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4069UB gates Hex inverter

Product specification
File under Integrated Circuits, IC04

January 1995

Hex inverter

HEF4069UB gates

DESCRIPTION

The HEF4069UB is a general purpose hex inverter. Each of the six inverters is a single stage.

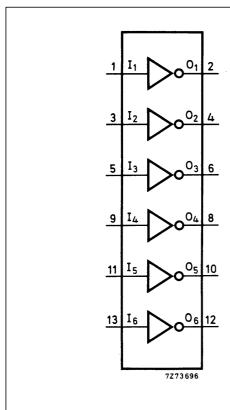
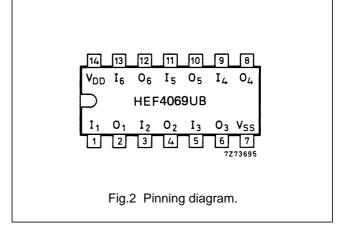
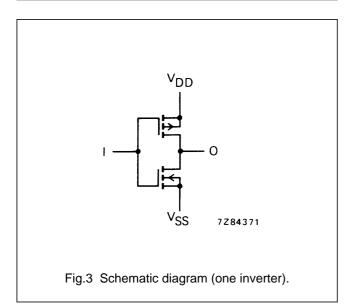



Fig.1 Functional diagram.

HEF4069UBP(N): 14-lead DIL; plastic

(SOT27-1)


HEF4069UBD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4069UBT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

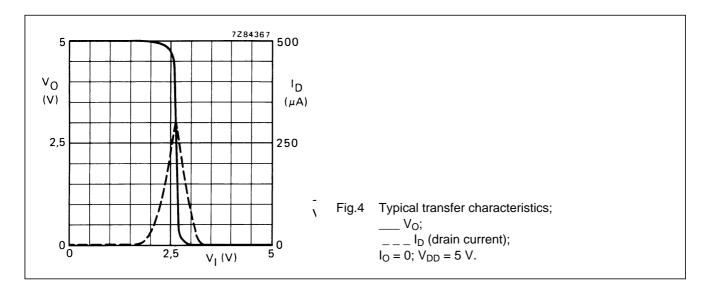
FAMILY DATA, I_{DD} LIMITS category GATES

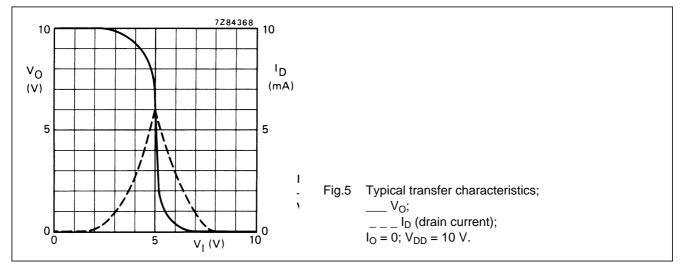
See Family Specifications for $V_{\text{IH}}/V_{\text{IL}}$ unbuffered stages

Hex inverter

HEF4069UB gates

AC CHARACTERISTICS


 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns


	V _{DD}	SYMBOL	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays	5		45	90 ns	18 ns + (0,55 ns/pF) C _L
$I_n \rightarrow O_n$	10	t _{PHL}	20	40 ns	9 ns + (0,23 ns/pF) C _L
HIGH to LOW	15		15	25 ns	7 ns + (0,16 ns/pF) C _L
	5		40	80 ns	13 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40 ns	9 ns + (0,23 ns/pF) C _L
	15		15	30 ns	7 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L
	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$600 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	22 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Hex inverter

HEF4069UB gates

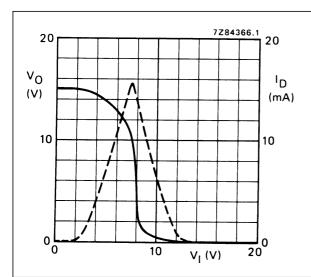
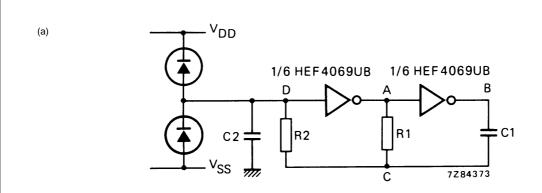
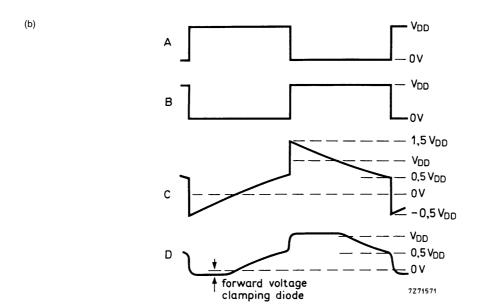


Fig.6 Typical transfer characteristics; V_0 ; U_0 ; $U_0 = 0$; $V_{DD} = 15 \text{ V}$.


Hex inverter

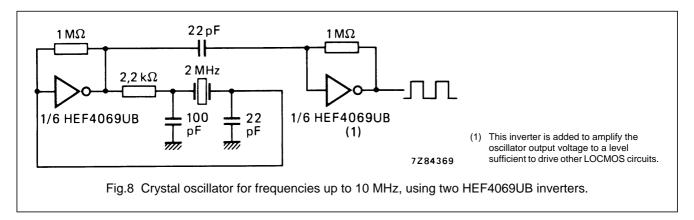

HEF4069UB gates

APPLICATION INFORMATION

Some examples of applications for the HEF4069UB are shown below.

In Fig.7 an astable relaxation oscillator is given. The oscillation frequency is mainly determined by R1C1, provided R1 << R2 and R2C2 << R1C1.

The function of R2 is to minimize the influence of the forward voltage across the protection diodes on the frequency; C2 is a stray (parasitic) capacitance. The period T_p is given by $T_p = T_1 + T_2$, in which


$$T_1 = R1C1 In \frac{V_{DD} + V_{ST}}{V_{ST}} \text{ and } T_2 = R1C1 In \frac{2 V_{DD} - V_{ST}}{V_{DD} - V_{ST}} \text{ where}$$

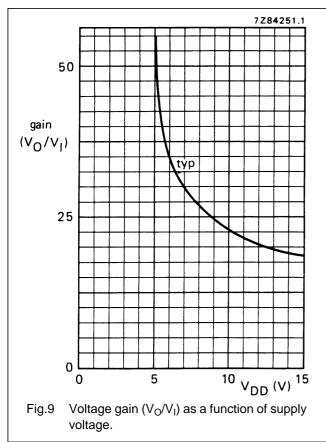

 V_{ST} is the signal threshold level of the inverter. The period is fairly independent of V_{DD} , V_{ST} and temperature. The duty factor, however, is influenced by V_{ST} .

Fig.7 (a) Astable relaxation oscillator using two HEF4069UB inverters; the diodes may be BAW62; C2 is a parasitic capacitance. (b) Waveforms at the points marked A, B, C and D in the circuit diagram.

Hex inverter

HEF4069UB gates

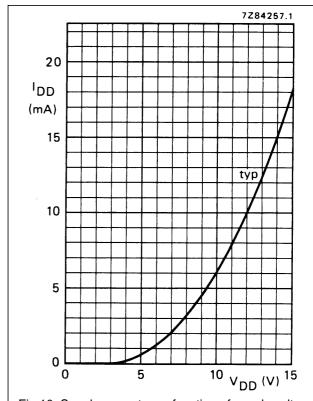
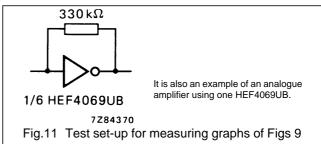



Fig.10 Supply current as a function of supply voltage.

and 10.

Hex inverter

HEF4069UB gates

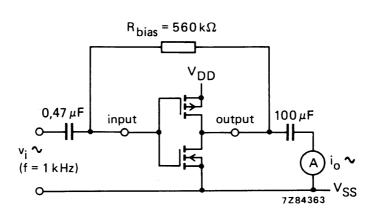


Fig.12 Test set-up for measuring forward transconductance $g_{fs} = di_o/dv_i$ at v_o is constant (see also graph Fig.13).

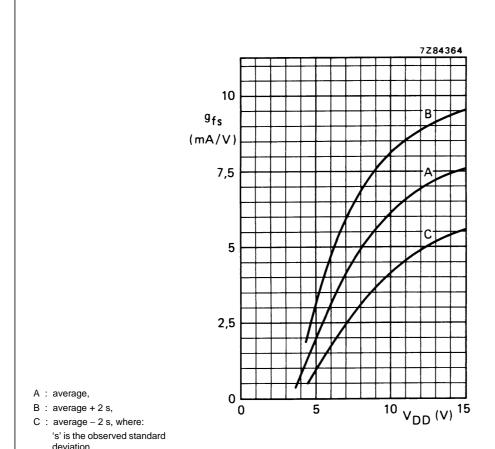


Fig.13 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.