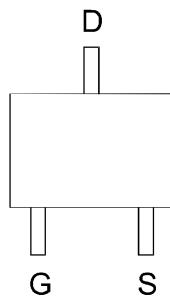


N-Channel 60V Power MOSFET


GENERAL DESCRIPTION

The LT2N7002 is the N-Channel enhancement mode field effect transistors are produced using high cell density DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 300mA DC and can deliver pulsed currents up to 1.2A. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

PIN CONFIGURATION

(SOT-23)

Top View

FEATURES

- 60V / 0.50A , $R_{DS(ON)}= 5.0\Omega$ @ $VGS=10V$
- 60V / 0.30A , $R_{DS(ON)}= 5.5\Omega$ @ $VGS=4.5V$
- Super high density cell design for extremely low $R_{DS(ON)}$
- Exceptional on-resistance and maximum DC current capability
- SOT-23 package design

APPLICATIONS

- High density cell design for low $R_{DS(ON)}$
- Voltage controlled small signal switch
- Rugged and reliable
- High saturation current capability.
- The soldering temperature and time shall not exceed 260°C for more than 10 seconds.

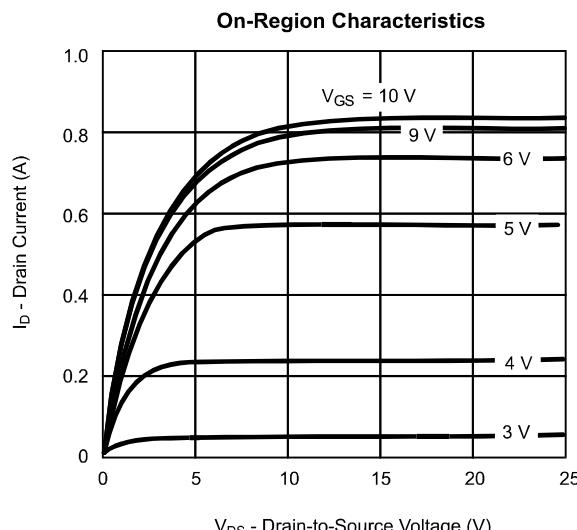
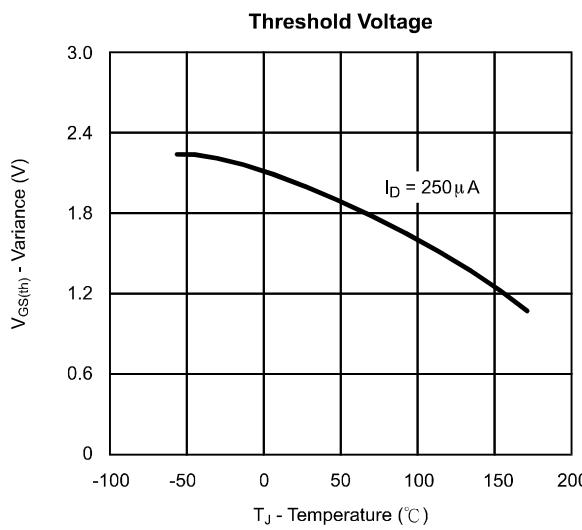
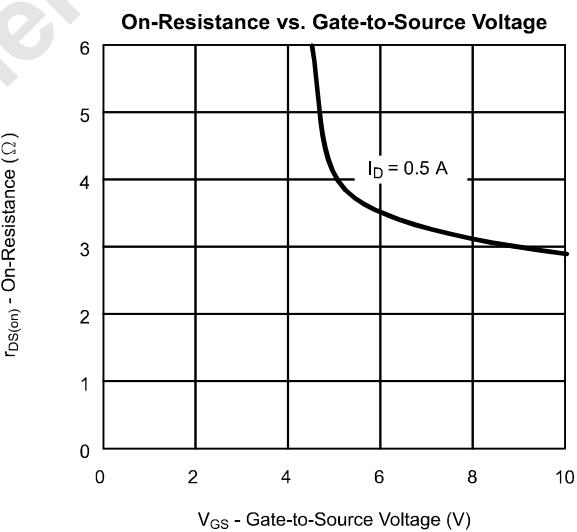
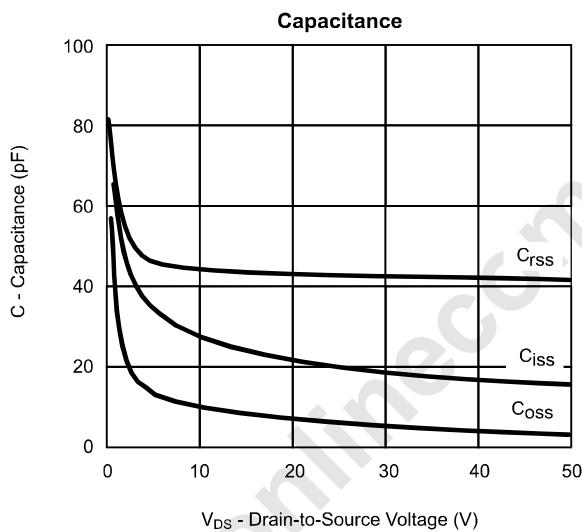
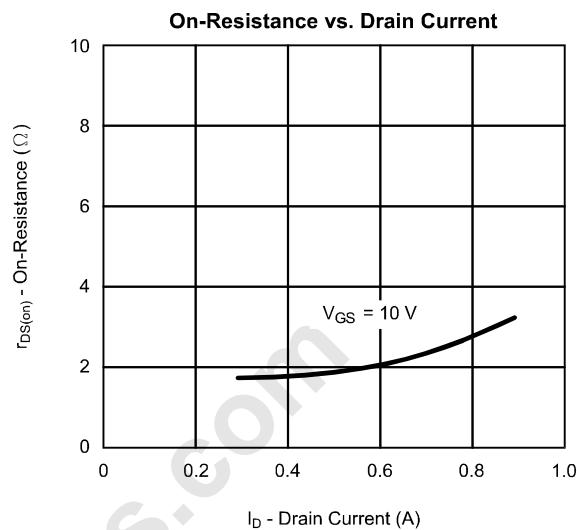
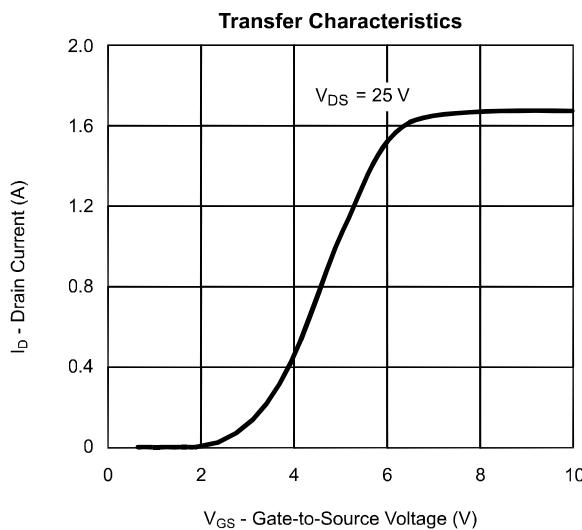
Absolute Maximum Ratings ($T_A=25^\circ C$ Unless Otherwise Noted)

Symbol	PARAMETER		Typical	Units
V_{DSS}	Drain-Source Voltage		60	V
V_{GSS}	Gate-Source Voltage - Continuous		± 20	V
V_{GSS}	Gate-Source Voltage - Non Repetitive ($t_p < 50\mu s$)		± 40	V
I_D	Drain Current - Continuous ($T_J=150^\circ C$)	$T_A=25^\circ C$	300	mA
	- Pulsed (Note 1)		1200	
P_D	Power Dissipation	$T_A=25^\circ C$	350	mW
T_J, T_{STG}	Operating and Storage Temperature Range		-55 ~ +150	°C
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		375	°C/W

Note: 1. Pulse width limited by safe operating area

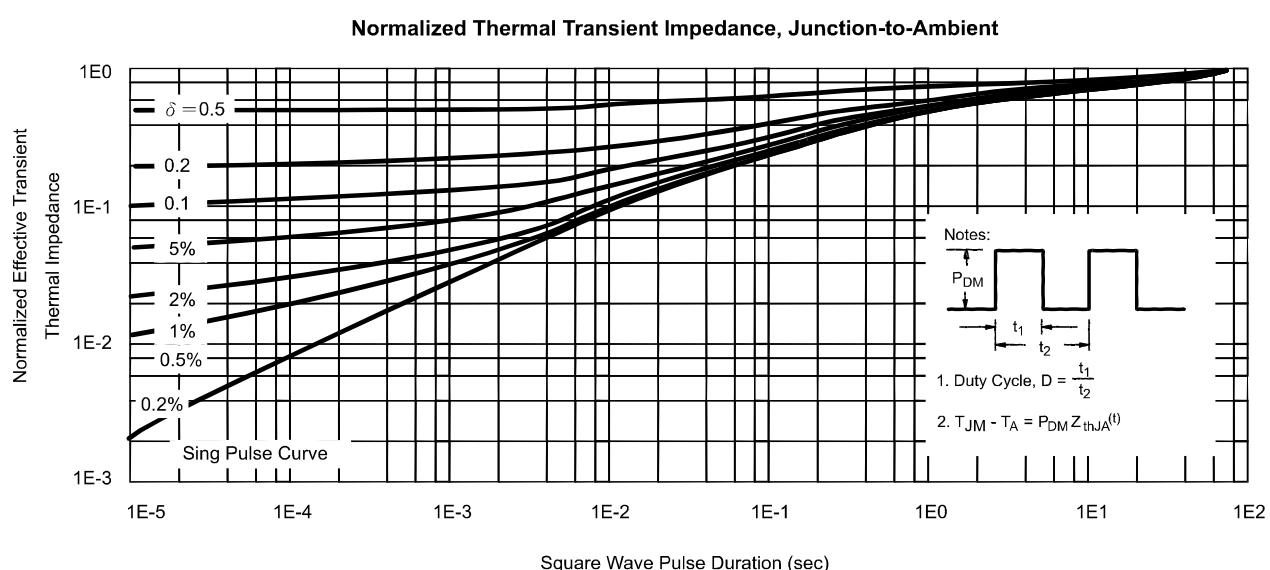
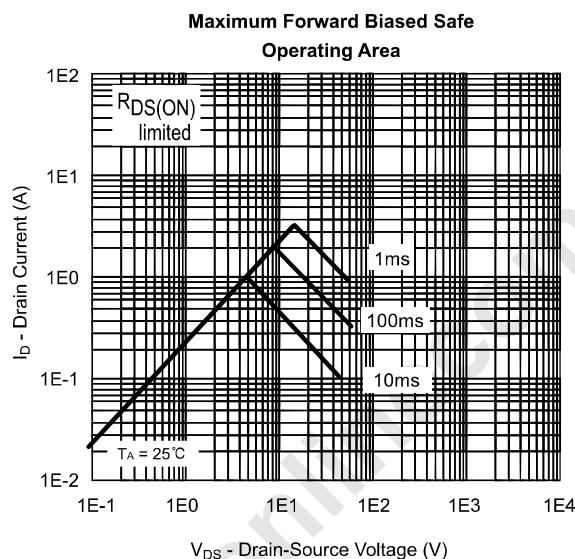
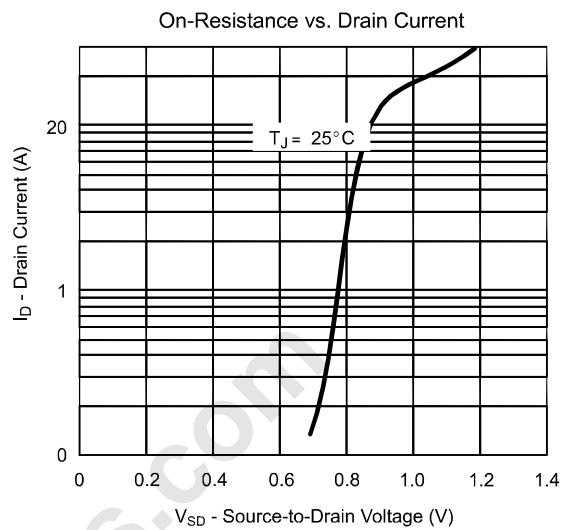
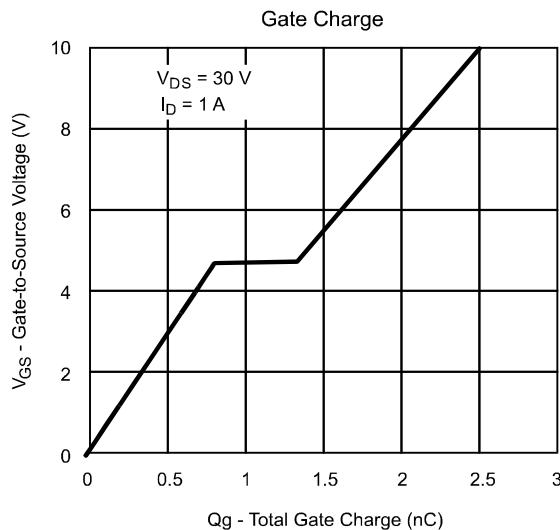
N-Channel 60V Power MOSFET

Electrical Characteristics (TA = 25°C Unless Otherwise Specified)

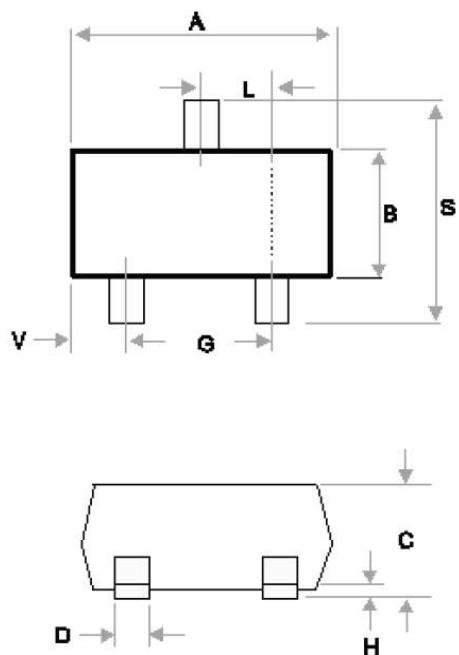






Symbol	Ratings	Test Conditions	Min	Typ	Max	Units	
STATIC							
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	60	-	-	V	
I_{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 60V, V_{GS} = 0V$ $V_{DS} = 60V, V_{GS} = 0V$ $T_J = 125^\circ C$	-	-	10	μA	
I_{GSSF}	Gate-Body Leakage, Forward	$V_{DS} = 0V, V_{GS} = 20V$	-	-	100	nA	
I_{GSSR}	Gate-Body Leakage, Reverse	$V_{DS} = 0V, V_{GS} = -20V$	-	-	-100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250\mu A$	1	1.7	2.5	V	
$R_{DS(ON)}$	Static Drain-Source On-Resistance	$V_{GS} = 10V, I_D = 500mA$ $V_{GS} = 4.5V, I_D = 300mA$	-	2.5 3.3	5 5.5	Ω	
I_{SD}	Source-drain Current		-	-	0.35	A	
$I_{SDM}(2)$	Source-drain Current (pulsed)		-	-	1.4	A	
$G_{FS}(1)$	Forward Trans-conductance	$V_{DS} = 10V, I_D = 500mA$	-	0.6	-	S	
$V_{SD}(1)$	Diode Forward Voltage	$V_{GS} = 0V, I_S = 0.12mA$	-	0.85	1.5	V	
DYNAMIC							
C_{ISS}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V, F = 1.0MHz$	-	43	-	pF	
C_{OSS}	Output Capacitance		-	20	-		
C_{RSS}	Reverse Transfer Capacitance		-	6	-		
Q_G	Total Gate Charge	$V_{DD} = 30V, I_D = 1A, V_{GS} = 5V$	-	1.4	2.0	nC	
Q_{GS}	Gate-Source Charge		-	0.8	-		
Q_{GD}	Gate-Drain Charge		-	0.5	-		
$TD_{(ON)}$	Turn-On Time	$V_{DD} = 30V, R_G = 4.7\Omega, I_D = 500mA, V_{GS} = 4.5V$	-	6	-	nS	
T_R			-	5	-		
$TD_{(OFF)}$	Turn-Off Time		-	15	-		
T_R			-	6	-		

(1) Pulsed: Pulse duration = 300 μs , duty cycle 1.5 %.

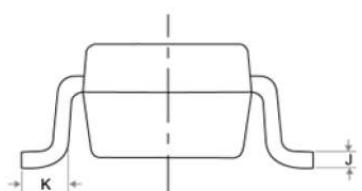
(2) Pulse width limited by safe operating area.





N-Channel 60V Power MOSFET

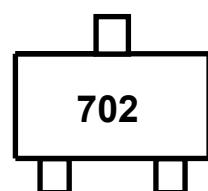
Typical Characteristics (T_J = 25°C Noted)


N-Channel 60V Power MOSFET

Typical Characteristics (T_J = 25°C Noted)



N-Channel 60V Power MOSFET


SOT-23 Package Outline

DIM	MILLIMETERS (mm)	
	MIN	MAX
A	2.80	3.00
B	1.20	1.70
C	0.90	1.30
D	0.35	0.50
G	1.78	2.04
H	0.010	0.15
J	0.085	0.20
K	0.30	0.65
L	0.89	1.02
S	2.10	3.00
V	0.45	0.60

Body Marking Code:

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.