STM32L562xx

Ultra-low-power Arm[®] Cortex[®]-M33 32-bit MCU+TrustZone[®]+FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AES+PKA

Datasheet - production data

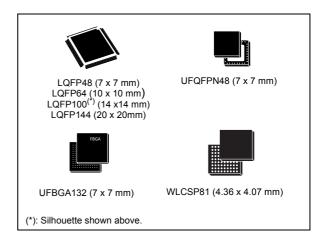
Features

Includes ST state-of-the-art patented technology

Ultra-low-power with FlexPowerControl

- 1.71 V to 3.6 V power supply
- -40°C to 85/125°C temperature range
- · Batch acquisition mode (BAM)
- 187 nA in VBAT mode: supply for RTC and 32x32-bit backup registers
- 17 nA Shutdown mode (5 wakeup pins)
- 108 nA Standby mode (5 wakeup pins)
- 222 nA Standby mode with RTC
- 3.16 µA Stop 2 with RTC
- 106 µA/MHz Run mode (LDO mode)
- 62 μA/MHz Run mode @ 3 V (SMPS step-down converter mode)
- 5 μs wakeup from Stop mode
- Brownout reset (BOR) in all modes except Shutdown

Core


 Arm[®] 32-bit Cortex[®]-M33 CPU with TrustZone[®] and FPU

ART Accelerator

 8-Kbyte instruction cache allowing 0-wait-state execution from Flash memory and external memories; frequency up to 110 MHz, MPU, 165 DMIPS and DSP instructions

Performance benckmark

- 1.5 DMIPS/MHz (Drystone 2.1)
- 442 CoreMark[®] (4.02 CoreMark[®]/MHz)

Energy benchmark

- 370 ULPMark-CP® score
- 54 ULPMark-PP® score
- 27400 SecureMark-TLS® score

Memories

- Up to 512-Kbyte Flash, two banks read-whilewrite
- 256 Kbytes of SRAM including 64 Kbytes with hardware parity check
- External memory interface supporting SRAM, PSRAM, NOR, NAND and FRAM memories
- OCTOSPI memory interface

Security

- Arm[®] TrustZone[®] and securable I/Os, memories and peripherals
- Flexible life cycle scheme with RDP (readout protection)

- Root of trust thanks to unique boot entry and hide protection area (HDP)
- SFI (secure firmware installation) thanks to embedded RSS (root secure services)
- Secure firmware upgrade support with TF-M
- AES coprocessor
- Public key accelerator
- On-the-fly decryption of Octo-SPI external memories
- HASH hardware accelerator
- Active tamper and protection against temperature, voltage and frequency attacks
- True random number generator NIST SP800-90B compliant
- 96-bit unique ID
- 512-byte OTP (one-time programmable) for user data

General-purpose input/outputs

 Up to 114 fast I/Os with interrupt capability most 5 V-tolerant and up to 14 I/Os with independent supply down to 1.08 V

Power management

- Embedded regulator (LDO) with three configurable range output to supply the digital circuitry
- Embedded SMPS step-down converter
- External SMPS support

Clock management

- 4 to 48 MHz crystal oscillator
- 32 kHz crystal oscillator for RTC (LSE)
- Internal 16 MHz factory-trimmed RC (±1%)
- Internal low-power 32 kHz RC (±5%)
- Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25% accuracy)
- Internal 48 MHz with clock recovery
- 3 PLLs for system clock, USB, audio, ADC

Up to 16 timers and 2 watchdogs

16x timers: 2 x 16-bit advanced motor-control,
 2 x 32-bit and 5 x 16-bit general purpose, 2x

- 16-bit basic, 3x low-power 16-bit timers (available in Stop mode), 2x watchdogs, 2x SysTick timer
- RTC with hardware calendar, alarms and calibration

Up to 19 communication peripherals

- 1x USB Type-C™/ USB power delivery controller
- 1x USB 2.0 full-speed crystal less solution, LPM and BCD
- 2x SAIs (serial audio interface)
- 4x I2C FM+(1 Mbit/s), SMBus/PMBus™
- 6 USART/UART/LPUART (SPI, ISO 7816, LIN, IrDA, modem)
- 3 SPIs (+ 3 with USART + 1 with OCTOSPI)
- 1x FDCAN controller
- 1x SDMMC interface

2 DMA controllers

• 14 DMA channels

Up to 22 capacitive sensing channels

Support touch key, linear and rotary touch sensors

Rich analog peripherals (independent supply)

- 2x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 μA/Msps
- 2x 12-bit DAC outputs, low-power sample and hold
- 2x operational amplifiers with built-in PGA
- 2x ultra-low-power comparators
- 4x digital filters for sigma delta modulator

CRC calculation unit

Debug

 Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™ (ETM)

All packages are ECOPACK2 compliant

STM32L562xx

Table 1. Device summary

Reference	Part numbers
STM32L562xx	STM32L562CE, STM32L562ME, STM32L562QE, STM32L562RE, STM32L562VE, STM32L562ZE

Contents STM32L562xx

Contents

1	Intro	duction
2	Desc	ription
3	Func	tional overview
	3.1	Arm® Cortex®-M33 core with TrustZone® and FPU
	3.2	Art Accelerator – instruction cache (ICACHE)
	3.3	Memory protection unit
	3.4	Embedded Flash memory
	3.5	Embedded SRAM
	3.6	Boot modes
	3.7	Global TrustZone controller (GTZC)
	3.8	TrustZone security architecture
		3.8.1 TrustZone peripheral classification
	3.9	Power supply management
		3.9.1 Power supply schemes
		3.9.2 Power supply supervisor
		3.9.3 Voltage regulator
		3.9.4 SMPS step down converter
		3.9.5 Low-power modes
		3.9.6 Reset mode
		3.9.7 VBAT operation
		3.9.8 PWR TrustZone security
	3.10	Peripheral interconnect matrix 50
	3.11	Reset and clock controller (RCC)
	3.12	Clock recovery system (CRS) 55
	3.13	General-purpose inputs/outputs (GPIOs)
	3.14	Multi-AHB bus matrix 57
	3.15	Direct memory access controller (DMA)
	3.16	DMA request router (DMAMUX)
	3.17	Interrupts and events
		3.17.1 Nested vectored interrupt controller (NVIC)

	3.17.2	Extended interrupt/event controller (EXTI)	. 60		
3.18	Cyclic r	edundancy check calculation unit (CRC)	. 61		
3.19	Flexible static memory controller (FSMC)				
3.20	Octo-SI	PI interface (OCTOSPI)	. 62		
3.21	Analog-	-to-digital converter (ADC)	. 64		
	3.21.1	Temperature sensor	. 64		
	3.21.2	Internal voltage reference (VREFINT)	. 65		
	3.21.3	VBAT battery voltage monitoring	. 65		
3.22	Digital t	to analog converter (DAC)	. 66		
3.23	Voltage	reference buffer (VREFBUF)	. 66		
3.24	Compa	rators (COMP)	. 67		
3.25	Operati	onal amplifier (OPAMP)	. 67		
3.26	Digital f	filter for sigma-delta modulators (DFSDM)	. 67		
3.27	Touch s	sensing controller (TSC)	. 69		
3.28	True ra	ndom number generator (RNG)	. 70		
3.29	Advanc	ed encryption standard hardware accelerator (AES)	. 70		
3.30	HASH I	nardware accelerator (HASH)	. 71		
3.31	Public k	key accelerator PKA	. 71		
3.32	On-the-	fly decryption engine (OTFDEC)	. 71		
3.33	Timers	and watchdogs	. 72		
	3.33.1	Advanced-control timer (TIM1, TIM8)	. 73		
	3.33.2	General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)	. 74		
	3.33.3	Basic timers (TIM6 and TIM7)	. 74		
	3.33.4	Low-power timers (LPTIM1, LPTIM2 and LPTIM3)	. 74		
	3.33.5	Independent watchdog (IWDG)			
	3.33.6	Window watchdog (WWDG)			
	3.33.7	SysTick timer	. 75		
3.34	Real-tin	ne clock (RTC)	. 76		
3.35	-	and backup registers (TAMP)			
3.36	Inter-int	tegrated circuit interface (I ² C)	. 78		
3.37	Univers	al synchronous/asynchronous receiver transmitter (USART)	. 79		
3.38	Low-po	wer universal asynchronous receiver transmitter (LPUART)	. 80		
3.39	Serial p	peripheral interface (SPI)	. 80		
3.40	Serial a	audio interfaces (SAI)	. 80		

Contents STM32L562xx

	3.41	Secure	digital input/output and MultiMediaCards Interface (SDMMC) .	81
	3.42	Control	ller area network (FDCAN)	82
	3.43	Univers	sal serial bus (USB FS)	82
	3.44	USB Ty	/pe-C™ / USB Power Delivery controller (UCPD)	82
	3.45	Develo	pment support	83
		3.45.1	Serial wire JTAG debug port (SWJ-DP)	
		3.45.2	Embedded Trace Macrocell™	
4	Pino	uts and	pin description	84
5	Elect	rical ch	aracteristics	. 143
	5.1	Parame	eter conditions	143
		5.1.1	Minimum and maximum values	143
		5.1.2	Typical values	143
		5.1.3	Typical curves	143
		5.1.4	Loading capacitor	143
		5.1.5	Pin input voltage	143
		5.1.6	Power supply scheme	144
		5.1.7	Current consumption measurement	147
	5.2	Absolu	te maximum ratings	147
	5.3	Operat	ing conditions	149
		5.3.1	General operating conditions	149
		5.3.2	SMPS step-down converter	151
		5.3.3	Operating conditions at power-up / power-down	153
		5.3.4	Embedded reset and power control block characteristics	153
		5.3.5	Embedded voltage reference	155
		5.3.6	Supply current characteristics	157
		5.3.7	Wakeup time from low-power modes and voltage scaling transition times	216
		5.3.8	External clock source characteristics	218
		5.3.9	Internal clock source characteristics	223
		5.3.10	PLL characteristics	230
		5.3.11	Flash memory characteristics	231
		5.3.12	EMC characteristics	232
		5.3.13	Electrical sensitivity characteristics	233
		5.3.14	I/O current injection characteristics	234
		5.3.15	I/O port characteristics	235

		5.3.16	NRST pin characteristics	. 241
		5.3.17	Extended interrupt and event controller input (EXTI) characteristics .	. 242
		5.3.18	Analog switches booster	. 243
		5.3.19	Analog-to-digital converter characteristics	. 244
		5.3.20	Digital-to-Analog converter characteristics	. 257
		5.3.21	Voltage reference buffer characteristics	. 262
		5.3.22	Comparator characteristics	. 265
		5.3.23	Operational amplifiers characteristics	. 266
		5.3.24	Temperature sensor characteristics	. 270
		5.3.25	V _{BAT} monitoring characteristics	. 270
		5.3.26	Temperature and VDD thresholds monitoring	. 271
		5.3.27	DFSDM characteristics	. 271
		5.3.28	Timer characteristics	. 273
		5.3.29	Communication interfaces characteristics	. 275
		5.3.30	FSMC characteristics	. 284
		5.3.31	OCTOSPI characteristics	. 303
		5.3.32	SD/SDIO/MMC card host interfaces (SDMMC)	
		5.3.33	UCPD characteristics	. 312
		5.3.34	USB_FS characteristics	. 312
6	Pack	age info	ormation	313
	6.1	Device	marking	313
	6.2	LQFP4	8 package information	313
	6.3	UFQFF	N48 package information	316
	6.4		4 package information	
	6.5	WLCSF	P81 package information	320
	6.6	LQFP1	00 package information	323
	6.7	UFBGA	A132 package information	325
	6.8	LQFP1	44 package information	327
	6.9	Therma	al characteristics	330
		6.9.1	Reference document	. 331
		6.9.2	Selecting the product temperature range	. 331
7	Orde	ering inf	ormation	334
		J		
8	Impo	rtant se	curity notice	335

Contents		STM32L562xx
۵	Pavision history	236

T

DS12736 Rev 5

STM32L562xx List of tables

List of tables

Table 1.	Device summary	
Table 2.	STM32L562xx features and peripheral counts	
Table 3.	Boot modes when TrustZone is disabled (TZEN=0)	
Table 4.	Boot modes when TrustZone is enabled (TZEN=1)	
Table 5.	Boot space versus RDP protection	
Table 6.	Example of memory map security attribution vs SAU configuration regions	
Table 7.	Securable peripherals by TZSC	
Table 8.	TrustZone-aware peripherals	32
Table 9.	SMPS external components	41
Table 10.	STM32L562xx modes overview	
Table 11.	Functionalities depending on the working mode	
Table 12.	STM32L562xx peripherals interconnect matrix	51
Table 13.	DMA1 and DMA2 implementation	58
Table 14.	Temperature sensor calibration values	65
Table 15.	Internal voltage reference calibration values	65
Table 16.	Timer feature comparison	72
Table 17.	I2C implementation	
Table 18.	USART/UART/LPUART features	79
Table 19.	SAI implementation	
Table 20.	Legend/abbreviations used in the pinout table	93
Table 21.	STM32L562xx pin definitions	94
Table 22.	Alternate function AF0 to AF7	127
Table 23.	Alternate function AF8 to AF15	135
Table 24.	Voltage characteristics	147
Table 25.	Current characteristics	148
Table 26.	Thermal characteristics	149
Table 27.	General operating conditions	149
Table 28.	SMPS modes summary	152
Table 29.	SMPS characteristics	152
Table 30.	Operating conditions at power-up / power-down	153
Table 31.	Embedded reset and power control block characteristics	153
Table 32.	Embedded internal voltage reference	155
Table 33.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash in single Bank, ICACHE ON in 2-way	158
Table 34.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash in single Bank, ICACHE ON in 1-way	159
Table 35.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash in single Bank, ICACHE disabled	160
Table 36.	Current consumption in Run mode, code with data processing	
	running from Flash in single bank, ICACHE ON in 2-way and power	
	supplied by internal SMPS step down converter	161
Table 37.	Current consumption in Run mode, code with data processing	
	running from Flash in single bank, ICACHE ON in 1-way and power	
	supplied by internal SMPS step down converter	162
Table 38.	Current consumption in Run mode, code with data processing	
	running from Flash in single bank, ICACHE disabled and power	
	supplied by internal SMPS step down converter	163
Table 39.	Current consumption in Run and Low-power run modes, code with data processing	
	· · · · · · · · · · · · · · · · · · ·	

List of tables STM32L562xx

	running from Flash in dual bank, ICACHE ON in 2-way	. 164
Table 40.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash in dual bank, ICACHE ON in 1-way	. 165
Table 41.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash in dual bank, ICACHE disabled	. 166
Table 42.	Current consumption in Run mode, code with data processing	
	running from Flash in dual bank, ICACHE ON in 2-way and power	4.0=
T 11 40	supplied by internal SMPS step down converter	. 167
Table 43.	Current consumption in Run mode, code with data processing	
	running from Flash in dual bank, ICACHE ON in 1-way and power	400
Table 44	supplied by internal SMPS step down converter	. 168
Table 44.	Current consumption in Run mode, code with data processing	
	running from Flash in dual bank, ICACHE disabled and power	460
Toblo 15	supplied by internal SMPS step down converter	. 109
Table 45.	Current consumption in Run and Low-power run modes,	170
Table 16	code with data processing running from SRAM1	. 170
Table 46.	Current consumption in Run mode, code with data processing running from SRAM1 and power supplied by internal SMPS step down converter	171
Table 47.	Current consumption in Run and Low-power run modes, code with data processing	. 1/1
Table 47.	running from SRAM2	172
Table 48.	Current consumption in Run mode, code with data processing	. 112
Table 40.	running from SRAM2 and power supplied by internal SMPS step down converter	173
Table 49.	Typical current consumption in Run and Low-power run modes,	. 175
Table 43.	with different codes running from Flash, ICACHE ON (2-way)	174
Table 50.	Typical current consumption in Run mode with SMPS,	. 1/7
Table 50.	with different codes running from Flash, ICACHE ON (2-way)	175
Table 51.	Typical current consumption in Run and Low-power run modes,	. 170
14510 01.	with different codes running from Flash, ICACHE ON (1-way)	176
Table 52.	Typical current consumption in Run mode with SMPS,	
	with different codes running from Flash, ICACHE ON (1-way)	. 177
Table 53.	Typical current consumption in Run and Low-power run modes,	
	with different codes running from Flash, ICACHE disabled	. 178
Table 54.	Typical current consumption in Run mode with internal SMPS.	
	with different codes running from Flash, ICACHE disabled	. 179
Table 55.	Typical current consumption in Run and Low-power run modes,	
	with different codes running from SRAM1	. 180
Table 56.	Typical current consumption in Run mode with internal SMPS,	
	with different codes running from SRAM1	. 181
Table 57.	Typical current consumption in Run and Low-power run modes,	
	with different codes running from SRAM2	. 182
Table 58.	Typical current consumption in Run mode with internal SMPS,	
	with different codes running from SRAM2	
Table 59.	Current consumption in Sleep and Low-power sleep mode, Flash ON	
Table 60.	Current consumption in Low-power sleep mode, Flash in power-down	. 185
Table 61.	Current consumption in Sleep mode,	
	Flash ON and power supplied by internal SMPS step down converter	. 186
Table 62.	Current consumption in Run mode, code with data processing running from Flash	
	in single bank, ICACHE ON in 2-way and power supplied by external SMPS	. 187
Table 63.	Current consumption in Run mode, code with data processing running from Flash	
- 11 6.	in single bank, ICACHE ON in 1-way and power supplied by external SMPS	. 188
Table 64.	Current consumption in Run mode, code with data processing running from Flash	
	in single bank, ICACHE disabled and power supplied by external SMPS	. 189

STM32L562xx List of tables

Table 65.	Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 2-way and power supplied by external SMPS	190
Table 66.	Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 1-way and power supplied by external SMPS	
Table 67.	Current consumption in Run mode, code with data processing running from Flash	191
	in dual bank, ICACHE disabled and power supplied by external SMPS	192
Table 68.	Current consumption in Run mode, code with data processing running from SRAM1, and power supplied by external SMPS	102
Table 69.	Current consumption in Run mode, code with data processing running from SRAM2,	190
	and power supplied by external SMPS	194
Table 70.	Current consumption in Sleep mode, Flash ON and power supplied by external SMPS .	195
Table 71.	Current consumption in Run mode, code with data processing running from Flash, ICACHE on (2-way) and power supplied by external SMPS	196
Table 72.	Current consumption in Run mode, code with data processing running from Flash,	
	ICACHE on (1-way) and power supplied by external SMPS	197
Table 73.	Current consumption in Run mode, code with data processing running from Flash,	
	ICACHE disabled and power supplied by external SMPS	198
Table 74.	Current consumption in Run mode, code with data processing running from SRAM1,	
- 	and power supplied by external SMPS	199
Table 75.	Current consumption in Run mode, code with data processing running from SRAM2,	
T-1-1- 70	and power supplied by external SMPS	
Table 76.	Current consumption in Stop 2 mode	
Table 77.	Current consumption in Stop 1 mode	
Table 78.	Current consumption in Stop 0 mode	
Table 79.	Current consumption in Standby mode	
Table 80.	Current consumption in Shutdown mode	
Table 81.	Current consumption in VBAT mode	
Table 82.	Peripheral current consumption	
Table 83.	Low-power mode wakeup timings	
Table 84.	Regulator modes transition times	
Table 85. Table 86.	Wakeup time using USART/LPUART	
Table 87.	High-speed external user clock characteristics	
Table 88.	HSE oscillator characteristics	
Table 89.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 90.	HSI16 oscillator characteristics	
Table 91.	MSI oscillator characteristics	
Table 92.	HSI48 oscillator characteristics.	
Table 93.	LSI oscillator characteristics	_
Table 94.	PLL, PLLSAI1, PLLSAI2 characteristics	
Table 95.	Flash memory characteristics	
Table 96.	Flash memory endurance and data retention	
Table 97.	EMS characteristics	
Table 98.	EMI characteristics for fHSE = 8 MHz and fHCLK = 110 MHz	
Table 99.	ESD absolute maximum ratings	233
Table 100.	Electrical sensitivities	
Table 101.	I/O current injection susceptibility	234
Table 102.	I/O static characteristics	
Table 103.	Output voltage characteristics	
Table 104.	I/O AC characteristics (All I/Os except FT_c)	239
Table 105.	FT_c I/O AC characteristics	
Table 106.	NRST pin characteristics	242

11/341

List of tables STM32L562xx

Table 107.	EXTI input characteristics	
Table 108.	Analog switches booster characteristics	
Table 109.	ADC characteristics	
Table 110.	Maximum ADC RAIN	
Table 111.	ADC accuracy - limited test conditions 1	
Table 112.	ADC accuracy - limited test conditions 2	
Table 113.	ADC accuracy - limited test conditions 3	
Table 114.	ADC accuracy - limited test conditions 4	
Table 115.	DAC characteristics	
Table 116.	DAC accuracy ranges 0/1	
Table 117.	VREFBUF characteristics	262
Table 118.	COMP characteristics	265
Table 119.	OPAMP characteristics	
Table 120.	TS characteristics	270
Table 121.	V _{BAT} monitoring characteristics	270
Table 122.	V _{BAT} charging characteristics	270
Table 123.	Temp and VDD monitoring characteristics	
Table 124.	DFSDM measured timing 1.71 to 3.6 V	272
Table 125.	TIMx characteristics	274
Table 126.	IWDG min/max timeout period at 32 kHz (LSI)	274
Table 127.	WWDG min/max timeout value at 110 MHz (PCLK)	274
Table 128.	I2C analog filter characteristics	275
Table 129.	SPI characteristics	276
Table 130.	SAI characteristics	280
Table 131.	USART (SPI mode) characteristics	282
Table 132.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	286
Table 133.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings	286
Table 134.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	287
Table 135.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings	288
Table 136.	Asynchronous multiplexed PSRAM/NOR read timings	289
Table 137.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	289
Table 138.	Asynchronous multiplexed PSRAM/NOR write timings	291
Table 139.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings	
Table 140.	Synchronous multiplexed NOR/PSRAM read timings	293
Table 141.	Synchronous multiplexed PSRAM write timings	295
Table 142.	Synchronous non-multiplexed NOR/PSRAM read timings	297
Table 143.	Synchronous non-multiplexed PSRAM write timings	299
Table 144.	Switching characteristics for NAND Flash read cycles	301
Table 145.	Switching characteristics for NAND Flash write cycles	302
Table 146.	OCTOSPI characteristics in SDR mode	
Table 147.	OCTOSPI characteristics in DTR mode (no DQS)	304
Table 148.	OCTOSPI characteristics in DTR mode (with DQS)/Octal and HyperBus	305
Table 149.	Dynamics characteristics: delay block characteristics	
Table 150.	Dynamics characteristics: SD / eMMC characteristics,	
	VDD=2.7V to 3.6 V	309
Table 151.	Dynamics characteristics: eMMC characteristics VDD=1.71 V to 1.9 V	310
Table 152.	UCPD characteristics	
Table 153.	USB startup time	312
Table 154.	LQFP48 mechanical data	
Table 155.	UFQFPN48 mechanical data	316
Table 156.	LQFP64 mechanical data	318
Table 157.	WLCSP81 mechanical data	320

STM32L562xx List of tables

WLCSP81 recommended PCB design rules	322
<u> </u>	
UFBGA132 recommended PCB design rules (0.5 mm pitch BGA)	326
LQFP144 mechanical data	328
Package thermal characteristics	330
STM32L562xx ordering information scheme	. 334
Document revision history	336
	WLCSP81 recommended PCB design rules LQPF100 mechanical data UFBGA132 mechanical data UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) LQFP144 mechanical data Package thermal characteristics STM32L562xx ordering information scheme Document revision history

List of figures STM32L562xx

List of figures

Figure 1.	STM32L562xx block diagram	21
Figure 2.	STM32L562xx power supply overview	
Figure 3.	STM32L562xxxxP power supply overview	37
Figure 4.	STM32L562xxxxQ power supply overview	
Figure 5.	Power-up/down sequence	
Figure 6.	SMPS step down converter power supply scheme	
Figure 7.	STM32L562xx clock tree	
Figure 8.	Multi-AHB bus matrix	
Figure 9.	Voltage reference buffer	66
Figure 10.	STM32L562xx LQFP48 pinout	
Figure 11.	STM32L562xxxxP LQFP48 external SMPS pinout	
Figure 12.	STM32L562xx UFQFPN48 pinout	
Figure 13.	STM32L562xxxxP UFQFPN48 external SMPS pinout	
Figure 14.	STM32L562xx LQFP64 pinout	
Figure 15.	STM32L562xxxxQ LQFP64 SMPS step down converter pinout	
Figure 16.	STM32L562xxxxP LQFP64 external SMPS pinout	
Figure 17.	STM32L562xxxxQ WLCSP81 SMPS step down converter ballout	
Figure 18.	STM32L562xxxxP WLCSP81 external SMPS ballout	
Figure 19.	STM32L562xx LQFP100 pinout	
Figure 20.	STM32L562xxxxQ LQFP100 SMPS step down converter pinout	
Figure 21.	STM32L562xx UFBGA132 ballout	
Figure 22.	STM32L562xxxxQ UFBGA132 SMPS step down converter ballout	
Figure 23.	STM32L562xx LQFP144 pinout	
Figure 24.	STM32L562xxxxQ LQFP144 SMPS step down converter pinout	
Figure 25.	Pin loading conditions	
Figure 26.	Pin input voltage	
Figure 27.	STM32L552xx and STM32L562xx power supply overview	
Figure 28.	STM32L552xxxP and STM32L562xxxP power supply overview	
Figure 29.	STM32L552xxxQ and STM32L562xxxQ power supply overview	
Figure 30.	Current consumption measurement	
Figure 31.	External components for SMPS step down converter	
Figure 32.	VREFINT versus temperature	
Figure 33.	High-speed external clock source AC timing diagram	
Figure 34.	Low-speed external clock source AC timing diagram	
Figure 35.	Typical application with an 8 MHz crystal	
Figure 36.	Typical application with a 32.768 kHz crystal	
Figure 37.	HSI16 frequency versus temperature	
Figure 38.	Typical current consumption versus MSI frequency	
Figure 39.	HSI48 frequency versus temperature	
Figure 40.	I/O input characteristics	237
Figure 41.	I/O AC characteristics definition ⁽¹⁾	241
Figure 42.	Recommended NRST pin protection	
Figure 43.	ADC accuracy characteristics	
Figure 44.	Typical connection diagram when using the ADC with FT/TT pins featuring a	
function	256	J
Figure 45.	12-bit buffered / non-buffered DAC	259
Figure 46.	VREFBUF in case VRS = 0	
Figure 47	VREFBUE in case VRS = 1	264

STM32L562xx List of figures

Figure 48.	SPI timing diagram - slave mode and CPHA = 0	278
Figure 49.	SPI timing diagram - slave mode and CPHA = 1	278
Figure 50.	SPI timing diagram - master mode	
Figure 51.	SAI master timing waveforms	281
Figure 52.	SAI slave timing waveforms	282
Figure 53.	USART timing diagram in SPI master mode	283
Figure 54.	USART timing diagram in SPI slave mode	
Figure 55.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	285
Figure 56.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	287
Figure 57.	Asynchronous multiplexed PSRAM/NOR read waveforms	288
Figure 58.	Asynchronous multiplexed PSRAM/NOR write waveforms	290
Figure 59.	Synchronous multiplexed NOR/PSRAM read timings	292
Figure 60.	Synchronous multiplexed PSRAM write timings	294
Figure 61.	Synchronous non-multiplexed NOR/PSRAM read timings	296
Figure 62.	Synchronous non-multiplexed PSRAM write timings	298
Figure 63.	NAND controller waveforms for read access	300
Figure 64.	NAND controller waveforms for write access	300
Figure 65.	NAND controller waveforms for common memory read access	301
Figure 66.	NAND controller waveforms for common memory write access	
Figure 67.	OCTOSPI timing diagram - SDR mode	307
Figure 68.	OCTOSPI timing diagram - DDR mode	307
Figure 69.	OCTOSPI HyperBus clock	307
Figure 70.	OCTOSPI HyperBus read	308
Figure 71.	OCTOSPI HyperBus read with double latency	
Figure 72.	OCTOSPI HyperBus write	308
Figure 73.	SDIO high-speed mode	
Figure 74.	SD default mode	311
Figure 75.	DDR mode	
Figure 76.	LQFP48 outline	
Figure 77.	LQFP48 recommended footprint	315
Figure 78.	UFQFPN48 outline	
Figure 79.	UFQFPN48 recommended footprint	
Figure 80.	LQFP64 outline	318
Figure 81.	LQFP64 recommended footprint	
Figure 82.	WLCSP81 outline	320
Figure 83.	WLCSP 81 recommended footprint	
Figure 84.	Example of WLCSP81 package marking (package top view	
Figure 85.	LQFP100 outline	
Figure 86.	LQFP100 recommended footprint	
Figure 87.	UFBGA132 outline	
Figure 88.	UFBGA132 recommended footprint	
Figure 89.	LQFP144 outline	327
Figure 90	LOFP144 recommended footprint	329

DS12736 Rev 5 15/341

Introduction STM32L562xx

1 Introduction

This document provides the ordering information and mechanical device characteristics of the STM32L562xx microcontrollers.

This document should be read in conjunction with the STM32L552xx and STM32L562xx reference manual (RM0438).

For information on the Arm^{®(a)} Cortex[®]-M33 core, refer to the Cortex[®]-M33 Technical Reference Manual, available from the www.arm.com website.

For information on the device errata with respect to the datasheet and reference manual, refer to the STM32L562xx errata sheet (ES0448), available on the STMicroelectronics website www.st.com.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

STM32L562xx Description

2 Description

The STM32L562xx devices are an ultra-low-power microcontrollers family (STM32L5 Series) based on the high-performance Arm[®] Cortex[®]-M33 32-bit RISC core. They operate at a frequency of up to 110 MHz.

The Cortex[®]-M33 core features a single-precision floating-point unit (FPU), which supports all the Arm[®] single-precision data-processing instructions and all the data types. The Cortex[®]-M33 core also implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) which enhances the application's security.

These devices embed high-speed memories (512 Kbytes of Flash memory and 256 Kbytes of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), an Octo-SPI Flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The STM32L5 Series devices offer security foundation compliant with the trusted based security architecture (TBSA) requirements from Arm. They embed the necessary security features to implement a secure boot, secure data storage, secure firmware installation and secure firmware upgrade. Flexible life cycle is managed thanks to multiple levels of readout protection. Firmware hardware isolation is supported thanks to securable peripherals, memories and I/Os, and also to the possibility to configure the peripherals and memories as "privilege".

The STM32L562xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, secure and hidden protection areas.

The STM32L562xx devices embed several peripherals reinforcing security:

- One AES coprocessor
- One public key accelerator (PKA)
- One on-the-fly decryption engine for Octo-SPI external memories
- One HASH hardware accelerator
- One true random number generator

The STM32L5 Series devices offer active tamper detection and protection against transient and environmental perturbation attacks thanks to several internal monitoring which generate secret data erase in case of attack. This helps to fit the PCI requirements for point of sales applications. These devices offer two fast 12-bit ADC (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM). In addition, up to 22 capacitive sensing channels are available.

STM32L5 Series also feature standard and advanced communication interfaces such as:

- Four I2Cs
- Three SPIs
- Three USARTs, two UARTs and one low-power UART

DS12736 Rev 5 17/341

Description STM32L562xx

- Two SAIs
- One SDMMC
- One FDCAN
- USB device FS
- USB Type-C / USB power delivery controller

The STM32L562xx devices embed an AES, PKA and OTFDEC hardware accelerator.

The devices operate in the -40 to +85°C (+105°C junction) and -40 to +125°C (+130°C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

Some independent power supplies are supported like an analog independent supply input for ADC, DAC, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to 14 I/Os, which can be supplied independently down to 1.08 V. A VBAT input allows the backup of the RTC and the backup of the registers.

The STM32L562xx devices offer seven packages from 48-pin to 144-pin.

Table 2. STM32L562xx features and peripheral counts

Peripherals		STM32L562CE/ STM32L562CExxP STM32L562RExxP/ STM32L562RExxQ STM32L562RExxQ STM32L562NExxQ STM32L562VE/ STM32L562QE/ STM32L562QE/ STM32L562QE/ STM32L562QE/ STM32L562QE/ STM32L562QE/ STM32L562QE/ STM32L562QE/ STM32L562QE/				STM32L562ZE/ STM32L562ZExxQ	
Flash memory (K	(byte)			51	12		
SRAM	System (Kbyte)			256 (19	92+64)		
SKAW	Backup (byte)			12	28		
External memory controller for static memories (FSMC)		No Yes					
OCTOSPI		1					
	Advanced control	2 (16-bit)					
	General purpose	5 (16-bit) 2 (32-bit)					
	Basic	2 (16-bit)					
Timers	Low power	3 (16-bit)					
	SysTick timer	1					
	Watchdog timers (independent, window)	2					

STM32L562xx Description

Table 2. STM32L562xx features and peripheral counts (continued)

	Table 2. 3 I M32L302XX leatures and peripheral counts (continued)							
Peripherals		STM32L562CE/ STM32L562CExxP	STM32L562RE/ STM32L562RExxP/ STM32L562RExxQ	STM32L562MExxP/ STM32L562MExxQ	STM32L562VE/ STM32L562VExxQ	STM32L562QE/ STM32L562QExxP/ STM32L562QExxQ	STM32L562ZE/ STM32L562ZExxQ	
	SPI			3	3			
	I2C				1			
Communication	USART ⁽¹⁾ /UART UART LPUART	3/2 (2) 2 1						
interfaces	SAI			2	2			
	FDCAN			1	1			
	USB FS	Yes						
	SDMMC	No	Yes/No/Yes		Y	es es		
Digital filters for sigma- delta modulators		Yes (4 filters)						
Number of chann	iels	8						
Real time clock (RTC)	Yes						
Tamper pins		3	4/3	3	5/4	5	8/7	
True random nun	nber generator	Yes						
AES		Yes						
PKA		Yes						
HASH (SHA-256)	Yes						
On-the-fly decryp	tion for OCTOSPI	1						
OCTOSPI memo	ry encryption			1	 			
GPIOs Wakeup pins Nb of I/Os down to 1.08 V		38/36 3 0	52/50/47 4/3/3 0	54/51 3 6	83/79 5/4 0	110/108/105 5 13/13/10	115 /111 5/4 14/13	
Capacitive sensing Number of channels		5	10/10/9	10	19/18	22	22/21	
	12-bit ADC			2	2	•		
ADC	Number of channels	9	16/16/15	16/15	16/14	16	16/14	
	12-bit DAC			1	I			
DAC	Number of channels	2						

Description STM32L562xx

Table 2. STM32L562xx features and peripheral counts (continued)

Peripherals	STM32L562CE/ STM32L562CExxP	STM32L562RE/ STM32L562RExxP/ STM32L562RExxQ	STM32L562MExxP/ STM32L562MExxQ	STM32L562VE/ STM32L562VExxQ	STM32L562QE/ STM32L562QExxP/ STM32L562QExxQ	STM32L562ZE/ STM32L562ZExxQ
Internal voltage reference buffer			Ye	es		
Analog comparator			2	2		
Operational amplifiers			2	2		
Max. CPU frequency			110	MHz		
Operating voltage			1.71 to	3.6 V		
Operating temperature	Am	•	•		C / -40 to 125 40 to 130°C	5°C
Package	Junction temperature: -40 to 105°C / -40 to 130°C LQFP48, UFQFPN48 LQFP64 WLCSP81 LQFP100 ⁽²⁾ UFBGA132 LQFP			LQFP144		

^{1.} USART3 is not available on STM32L562CExxP devices.

^{2.} For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.

STM32L562xx Description

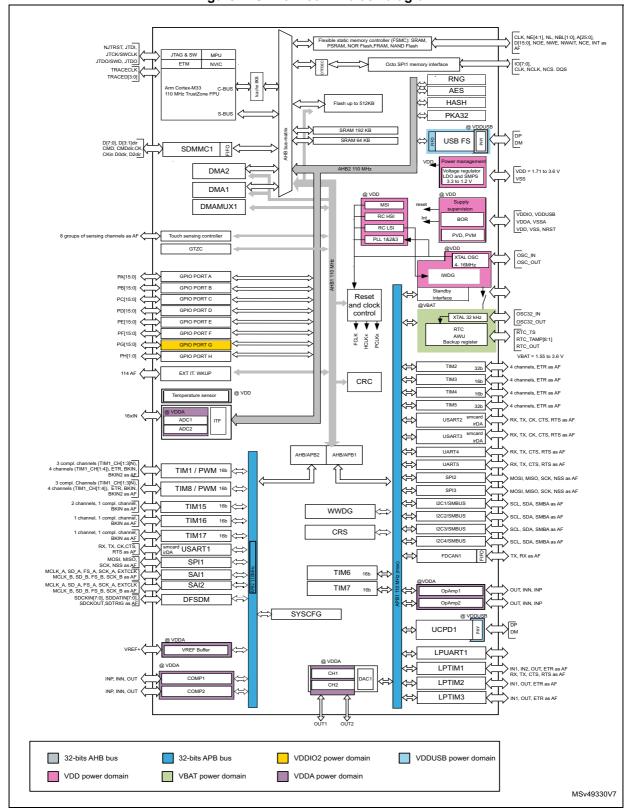


Figure 1. STM32L562xx block diagram

AF: alternate function on I/O pins.

DS12736 Rev 5 21/341

3 Functional overview

3.1 Arm[®] Cortex[®]-M33 core with TrustZone[®] and FPU

The Cortex[®]-M33 with TrustZone and FPU is a highly energy efficient processor designed for microcontrollers and deeply embedded applications, especially those requiring efficient security.

The Cortex®-M33 processor delivers a high computational performance with low-power consumption and an advanced response to interrupts. it features:

- Arm[®] TrustZone[®] technology, using the Armv8-M main extension supporting secure and non-secure states
- Memory protection units (MPUs), 8 regions for secure and 8 regions for non secure
- Configurable secure attribute unit (SAU) supporting up to 8 memory regions
- Floating-point arithmetic functionality with support for single precision arithmetic

The processor supports a set of DSP instructions that allows an efficient signal processing and a complex algorithm execution.

The Cortex[®]-M33 processor supports the following bus interfaces:

- System AHB bus:
 The System AHB (S-AHB) bus interface is used for any instruction fetch and data access to the memory-mapped SRAM, peripheral, external RAM and external device, or Vendor SYS regions of the Armv8-M memory map.
- Code AHB bus
 The Code AHB (C-AHB) bus interface is used for any instruction fetch and data access
 to the code region of the Armv8-M memory map.

Figure 1 shows the general block diagram of the STM32L562xx family devices.

3.2 Art Accelerator – instruction cache (ICACHE)

The instruction cache (ICACHE) is introduced on C-AHB code bus of Cortex[®]-M33 processor to improve performance when fetching instruction (or data) from both internal and external memories.

ICACHE offers the following features:

- Multi-bus interface:
 - slave port receiving the memory requests from the Cortex[®]-M33 C-AHB code execution port
 - master1 port performing refill requests to internal memories (FLASH and SRAMs)
 - master2 port performing refill requests to external memories (external FLASH/RAMs through Octo-SPI/FMC interfaces)
 - a second slave port dedicated to ICACHE registers access.
- Close to zero wait states instructions/data access performance:
 - 0 wait-state on cache hit
 - hit-under-miss capability, allowing to serve new processor requests while a line refill (due to a previous cache miss) is still ongoing
 - critical-word-first refill policy, minimizing processor stalls on cache miss
 - hit ratio improved by 2-ways set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance
 - dual master ports allowing to decouple internal and external memory traffics, on Fast and Slow buses, respectively; also minimizing impact on interrupt latency
 - optimal cache line refill thanks to AHB burst transactions (of the cache line size).
 - performance monitoring by means of a hit counter and a miss counter.
- Extension of cacheable region beyond Code memory space, by means of address remapping logic that allows to define up to 4 cacheable external regions
- Power consumption reduced intrinsically (most accesses to cache memory rather to bigger main memories); even improved by configuring ICACHE as direct mapped (rather than the default 2-ways set-associative mode)
- TrustZone[®] security support
- Maintenance operation for software management of cache coherency
- Error management: detection of unexpected cacheable write access, with optional interrupt raising.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 8 regions for secure and 8 regions for non secure state.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

DS12736 Rev 5 23/341

3.4 Embedded Flash memory

The devices feature 512 Kbytes of embedded Flash memory which is available for storing programs and data.

The Flash interface features:

- Single or dual bank operating modes
- Read-while-write (RWW) in dual bank mode

This feature allows a read operation to be performed from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 128 pages of 2 or 4 Kbytes (depending on the read access width). The Flash memory also embeds 512 bytes OTP (one-time programmable) for user data.

Flexible protections can be configured thanks to the option bytes:

- Readout protection (RDP) to protect the whole memory. Four levels of protection are available:
 - Level 0: no readout protection
 - Level 0.5: available only when TrustZone is enabled
 All read/write operations (if no write protection is set) from/to the non-secure Flash memory are possible. The Debug access to secure area is prohibited. Debug access to non-secure area remains possible.
 - Level 1: memory readout protection; the Flash memory cannot be read from or written
 to if either the debug features are connected or the boot in RAM or bootloader are
 selected. If TrustZone is enabled, the non-secure debug is possible and the boot in
 SRAM is not possible.
 - Level 2: chip readout protection; the debug features (Cortex[®]-M33 JTAG and serial wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This selection is irreversible.
- Write protection (WRP): the protected area is protected against erasing and programming:
 - In single bank mode, four areas can be selected with 4-Kbyte granularity.
 - In dual bank mode, two areas per bank can be selected with 2-Kbyte granularity.

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

- Single error detection and correction
- Double error detection
- The address of the ECC fail can be read in the ECC register.

TrustZone security

When the TrustZone security is enabled, the whole Flash is secure after reset and the following protections are available:

- Non-volatile watermark-based secure Flash area: the secure area can be accessed only in secure mode.
 - In single bank mode, four areas can be selected with a page granularity.
 - In dual bank mode, one area per bank can be selected with a page granularity.
- Secure hidden protection area: it is part of the Flash secure area and it can be protected to deny an access to this area by any data read, write and instruction fetch.

For example, a software code in the secure Flash memory hidden protection area can be executed only once and deny any further access to this area until next system reset.

 Volatile block-based secure Flash area. In a block-based secure area, each page can be programmed on-the-fly as secure or non-secure.

3.5 Embedded SRAM

The devices feature 256 Kbytes of embedded SRAM. This SRAM is split into three blocks:

- 192 Kbytes mapped at address 0x2000 0000 (SRAM1).
- 64 Kbytes located at address 0x0A03 0000 with hardware parity check (SRAM2). This memory is also mapped at address 0x2003 0000 offering a contiguous address space with the SRAM1.

This block is accessed through the C-bus for maximum performance. Either 64 Kbytes or upper 4 Kbytes of SRAM2 can be retained in Standby mode.

The SRAM2 can be write-protected with 1 Kbyte granularity.

The memory can be accessed in read/write at CPU clock speed with 0 wait states.

TrustZone security

When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM can be programmed as non-secure by block based using the MPCBB (memory protection controller block based) in GTZC controller. The granularity of SRAM secure block based is a page of 256 bytes.

3.6 Boot modes

At startup, a BOOT0 pin, nBOOT0 and NSBOOTADDx[24:0] / SECBOOTADD0[24:0] option bytes are used to select the boot memory address which includes:

- Boot from any address in user Flash
- Boot from system memory bootloader
- Boot from any address in embedded SRAM
- Boot from Root Security service (RSS)

The BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.

The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, FDCAN or USB FS in device mode through the DFU (device firmware upgrade).

The bootloader is available on all devices. Refer to the application note *STM32* microcontroller system memory boot mode (AN2606) for more details.

The root secure services (RSS) are embedded in a Flash memory area named secure information block, programmed during ST production.

The RSS enables for example the secure firmware installation (SFI) thanks to the RSS extension firmware (RSSe SFI).

This feature allows the customers to protect the confidentiality of the firmware to be provisioned into the STM32 device when the production is subcontracted to a third party.

DS12736 Rev 5 25/341

The RSS is available on all devices, after enabling the TrustZone through the TZEN option bit.

Refer to the application note *Overview secure firmware install (SFI)* (AN4992) for more details.

Refer to *Table 3* and *Table 4* for boot modes when TrustZone is disabled and enabled respectively.

Table 3. Boot modes when TrustZone is disabled (TZEN=0)

nBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	nSWBOOT0 FLASH_ OPTR[26]	Boot address option- bytes selection	Boot area	ST programmed default value
-	0	1	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000
-	1	1	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	System bootloader: 0x0BF9 0000
1	-	0	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000
0	-	0	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	System bootloader: 0x0BF9 0000

When TrustZone is enabled by setting the TZEN option bit, the boot space must be in secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure memory address.

A unique boot entry option can be selected by setting the BOOT_LOCK option bit, allowing to boot always at the address selected by SECBOOTADD0[24:0] option bytes. All other boot options are ignored.

Table 4. Boot modes when TrustZone is enabled (TZEN=1)

BOOT_ LOCK	nBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	nSWBOOT0 FLASH_ OPTR[26]	RSS command	Boot address option-bytes selection	Boot area	ST programmed default value
	-	0	1	0	SECBOOTAD D0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000
	-	1	1	0	N/A	RSS: 0x0FF8 0000	RSS: 0x0FF8 0000
0	1	-	0	0	SECBOOTAD D0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000
	0	-	0	0	N/A	RSS: RSS: 0x0FF8 0000	RSS: 0x0FF8 0000
	-	-	-	≠ 0	N/A	RSS: RSS: 0x0FF8 0000	RSS: 0x0FF8 0000
1	-	-	-	-	SECBOOTAD D0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000

The boot address option bytes enables the possibility to program any boot memory address. However, the allowed address space depends on Flash read protection RDP level.

If the programmed boot memory address is out of the allowed memory mapped area when RDP level is 0.5 or more, the default boot fetch address is forced to:

- 0x0800 0000 (when TZEN = 0)
- RSS (when TZEN = 1)

Refer to Table 5.

Table 5. Boot space versus RDP protection

RDP	TZEN = 1	TZEN = 0
0	Any boot address	Any boot address

RDP TZEN = 1 TZEN = 00.5 N/A 1 Any boot address If boot is configured for NSBOOTADD0 and Boot address only in: NSBOOTADD0 in the range 0x0800 0000 -- RSS 0x0807 FFFF: boot at the address stored in - or secure Flash: 0x0C00 0000 -NSBOOTADD0 0x0C07 FFFF If boot is configured for NSBOOTADD1 and 2 NSBOOTADD1 in the range 0x0800 0000 -Otherwise boot address forced to RSS 0x0807 FFFF: boot at the address stored in NSBOOTADD1 Otherwise boot address is forced at 0x0800 0000

Table 5. Boot space versus RDP protection (continued)

3.7 Global TrustZone controller (GTZC)

The GTZC includes three different sub-blocks:

- TZSC: TrustZone[®] security controller
 This sub-block defines the secure/privilege state of slave/master peripherals. It also controls the non-secure area size for the watermark memory peripheral controller (MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic.
- MPCBB: block-based memory protection controller
 This sub-block controls secure states of all blocks (256-byte pages) of the associated SRAM.
- TZIC: TrustZone illegal access controller
 This sub-block gathers all illegal access events in the system and generates a secure interrupt towards NVIC.

These sub-blocks are used to configure TrustZone and privileged attributes within the full system.

The GTZC main features are:

- 3 independent 32-bit AHB interface for TZSC, MPCBB and TZIC
- MPCBB and TZIC accessible only with secure transactions
- Secure and non-secure access supported for priv/non-priv part of TZSC
- Register set to define security settings:
 - Secure blocks for internal SRAM
 - Non-secure regions for external memories
 - Secure/privilege access mode for securable and TZ-aware peripherals
- Secure/privilege access mode for securable legacy masters.

3.8 TrustZone security architecture

The security architecture is based on Arm[®] TrustZone[®] with the Armv8-M Main Extension.

The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register.

When the TrustZone is enabled, the SAU (security attribution unit) and IDAU (implementation defined attribution unit) defines the access permissions based on secure and non-secure state.

- SAU: Up to 8 SAU configurable regions are available for security attribution.
- IDAU: It provides a first memory partition as non-secure or non-secure callable attributes. It is then combined with the results from the SAU security attribution and the higher security state is selected.

Based on IDAU security attribution, the Flash, system SRAMs and peripherals memory space is aliased twice for secure and non-secure state. However, the external memories space is not aliased.

Table 6 shows an example of typical SAU regions configuration based on IDAU regions. The user can split and choose the secure, non-secure or NSC regions for external memories as needed.

Table 6. Example of memory map security attribution vs SAU configuration regions⁽¹⁾ (2)

Region description	Address range	IDAU security attribution	SAU security attribution typical configuration	Final security attribution	
Code - external memories	0x0000_0000 0x07FF_FFFF	Non-secure	Secure or non- secure or NSC	Secure or non- secure or NSC	
Code - Flash and	0x0800_0000 0x0BFF_FFFF	Non-secure	Non-secure	Non-secure	
SRAM	0x0C00_0000 0x0FFF_FFFF	NSC	Secure or NSC	Secure or NSC	
Code - external	0x1000_0000 0x17FF_FFFF	Non-secure			
memories	0x1800_0000 0x1FFF_FFFF	Non-secure	Non-secure		
SRAM	0x2000_0000 0x2FFF_FFFF	Non-secure			
SKAIVI	0x3000_0000 0x3FFF_FFFF	NSC	Secure or NSC	Secure or NSC	
Derinherale	0x4000_0000 0x4FFF_FFFF	Non-secure	Non-secure	Non-secure	
Peripherals	0x5000_0000 0x5FFF_FFFF	NSC	Secure or NSC	Secure or NSC	
External memories	0x6000_0000 0xDFFF_FFFF	Non-secure	Secure or non- secure or NSC	Secure or non- secure or NSC	

^{1.} NSC = non-secure callable.

2. Different colors highlights the different configurations

Pink: Non-secure

Green: NSC (non-secure callable)
Lighter green: Secure or non-secure or NSC

3.8.1 TrustZone peripheral classification

When the TrustZone security is active, a peripheral can be either Securable or TrustZoneaware type as follows:

- Securable: a peripheral is protected by an AHB/APB firewall gate that is controlled from TZSC controller to define security properties.
- TrustZone-aware: a peripheral connected directly to AHB or APB bus and is implementing a specific TrustZone behavior such as a subset of registers being secure.

The tables below summarize the list of Securable and TrustZone aware peripherals within the system.

Table 7. Securable peripherals by TZSC

Bus	Peripheral
AHB3	OCTOSPI1 registers
ALIBS	FMC registers
	SDMMC1
	RNG
AHB 2	HASH
	AES
	ADC
	ICACHE registers
AHB1	TSC
	CRC
	DFSDM1
	SAI2
	SAI1
	TIM17
	TIM16
APB2	TIM15
711 52	USART1
	TIM8
	SPI1
	TIM1
	COMP
	VREFBUF

Table 7. Securable peripherals by TZSC (continued)

Bus	Peripheral
	UCPD1
	USB FS
	FDCAN1
	LPTIM3
	LPTIM2
	I2C4
	LPUART1
	LPTIM1
	OPAMP
	DAC1
	CRS
	I2C3
	I2C2
APB1	I2C1
AFDI	UART5
	UART4
	USART3
	USART2
	SPI3
	SPI2
	IWDG
	WWDG
	TIM7
	TIM6
	TIM5
	TIM4
	TIM3
	TIM2

Table 8. TrustZone-aware peripherals

Bus	Peripheral
	GPIOH
	GPIOG
	GPIOF
AHB2	GPIOE
Andz	GPIOD
	GPIOC
	GPIOB
	GPIOA
AHB2	OTFDEC1
	MPCBB2
	MPCBB1
	MPCWM2
	MPCWM1
	TZIC
AHB1	TZSC
Alibi	EXTI
	Flash memory
	RCC
	DMAMUX1
	DMA2
	DMA1
APB2	SYSCFG
APB1	PWR
AFDI	RTC

Default TrustZone security state

The default system security state is:

- CPU:
 - Cortex[®]-M33 is in secure state after reset. The boot address must be in secure address.
- Memory map:
 - SAU: is fully secure after reset. Consequently, all memory map is fully secure. Up to 8 SAU configurable regions are available for security attribution.
- Flash:
 - Flash security area is defined by watermark user options.
 - Flash block based area is non-secure after reset.
- SRAMs:
 - All SRAMs are secure after reset. MPCBB (memory protection block based controller) is secure.
- External memories:
 - FSMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection watermark based controller) are secure
- Peripherals
 - Securable peripherals are non-secure after reset.
 - TrustZone-aware peripherals (except the GPIO) are non-secure after reset. Their secure configuration registers are secure.

Note: Refer to Table 7 and Table 8 for a list of Securable and TrustZone-aware peripherals.

- All GPIO are secure after reset.
- Interrupts:
 - NVIC: All interrupts are secure after reset. NVIC is banked for secure and nonsecure state.
 - TZIC: All illegal access interrupts are disabled after reset.

33/341

3.9 Power supply management

The power controller (PWR) main features are:

- Power supplies and supply domains
 - Core domains (VCORE)
 - VDD domain
 - Backup domain (VBAT)
 - Analog domain (VDDA)
 - VDDIO2 domain
 - VDDUSB for USB transceiver
- System supply voltage regulation
 - SMPS step down converter
 - Voltage regulator (LDO)
- Power supply supervision
 - POR/PDR monitor
 - BOR monitor
 - PVD monitor
 - PVM monitor (VDDA, VDDUSB, VDDIO2)
 - Temperature thresholds monitor
 - Upper VDD voltage threshold monitor
- Power management
 - Operating modes
 - Voltage scaling control
 - Low-power modes
- VBAT battery charging
- TrustZone security

3.9.1 Power supply schemes

The devices require a 1.71 V to 3.6 V V_{DD} operating voltage supply. Several independent supplies can be provided for specific peripherals:

- V_{DD} = 1.71 V to 3.6 V
 - V_{DD} is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.
- V_{DDA} = 1.62 V (ADCs/COMPs) / 1.8 V (DACs/OPAMPs) to 2.4 V (VREFBUF) to 3.6 V V_{DDA} is the external analog power supply for A/D converters, D/A converters, voltage reference buffer, operational amplifiers and comparators. The V_{DDA} voltage level is independent from the V_{DD} voltage and should preferably be connected to V_{DD} when these peripherals are not used.

VDDSMPS = 1.71 V to 3.6 V
 VDDSMPS is the external power supply for the SMPS step down converter. It is provided externally through VDDSMPS supply pin, and shall be connected to the same

- VLXSMPS is the switched SMPS step down converter output.
- V15SMPS are the power supply for the system regulator. It is provided externally through the SMPS step down converter VLXSMPS output.

Note: The SMPS power supply pins are available only on a specific package with SMPS step down converter option.

VDD12 = 1.05 to 1.32 V

supply as VDD.

VDD12 is the external power supply bypassing the internal regulator when connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.

- VDDUSB = 3.0 V to 3.6 V
 VDDUSB is the external independent power supply for USB transceivers. The
 VDDUSB voltage level is independent from the VDD voltage and should preferably be connected to VDD when the USB is not used.
- VDDIO2 = 1.08 V to 3.6 V
- VDDIO2 is the external power supply for 14 I/Os (port G[15:2]). The VDDIO2 voltage level is independent from the VDD voltage and should preferably be connected to VDD when PG[15:2] are not used.
- V_{BAT} = 1.55 V to 3.6 V

 V_{BAT} is the power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

VREF-, VREF+

V_{REF+} is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled.

When V_{DDA} < 2 V V_{REF+} must be equal to V_{DDA} .

When $V_{DDA} \ge 2 \text{ V } V_{REF+}$ must be between 2 V and V_{DDA} .

V_{REF+} can be grounded when ADC and DAC are not active.

The internal voltage reference buffer supports two output voltages, which are configured with VRS bit in the VREFBUF_CSR register:

- V_{REF+} around 2.048 V. This requires V_{DDA} equal to or higher than 2.4 V.
- V_{REF+} around 2.5 V. This requires V_{DDA} equal to or higher than 2.8 V.

VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively.

When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disabled (refer to datasheet for packages pinout description).

V_{REF-} must always be equal to V_{SSA}.

An embedded linear voltage-regulator is used to supply the internal digital power V_{CORE} . V_{CORE} is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash is supplied by V_{CORE} and V_{DD} .

57

DS12736 Rev 5 35/341

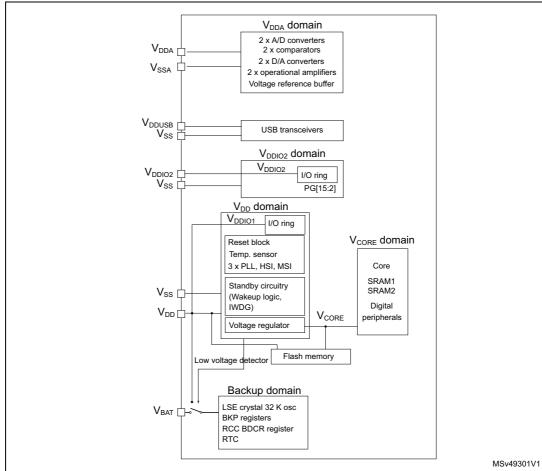


Figure 2. STM32L562xx power supply overview

4

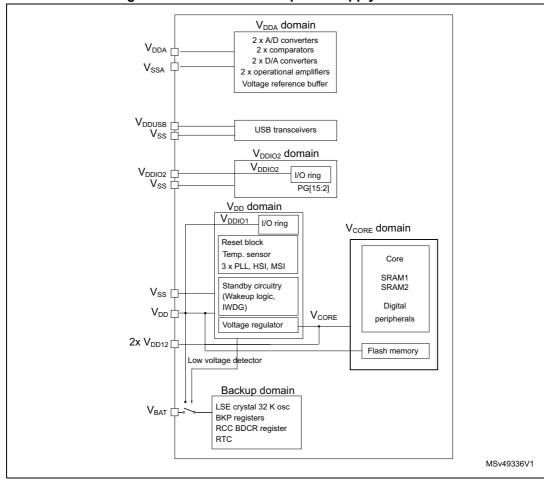


Figure 3. STM32L562xxxxP power supply overview

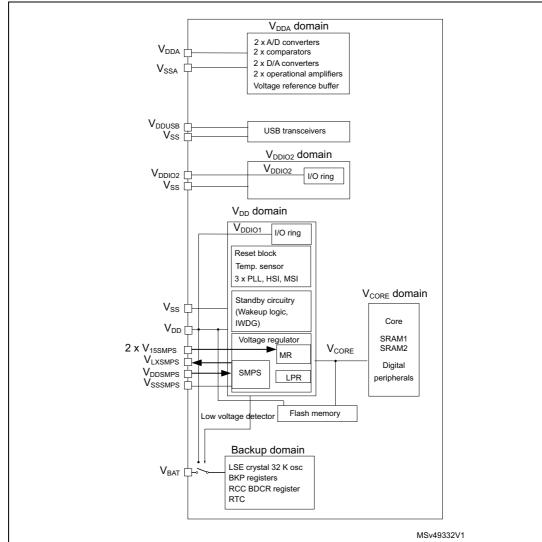


Figure 4. STM32L562xxxxQ power supply overview

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V_{DD} is below 1 V, other power supplies (V_{DDA}, V_{DDIO2} and V_{DDUSB}) must remain below VDD +300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.
- During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the powerdown transient phase.

4

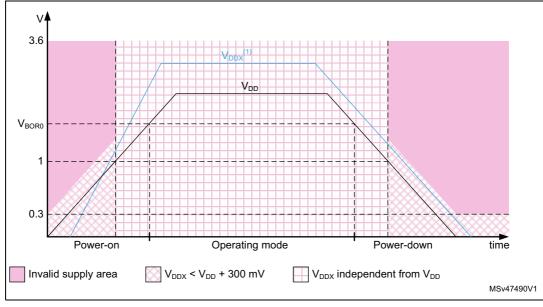


Figure 5. Power-up/down sequence

1. V_{DDX} refers to any power supply among V_{DDA} , V_{DDIO2} and V_{DDUSB} .

3.9.2 Power supply supervisor

The devices have an integrated ultra-low-power Brownout reset (BOR) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the devices after power-on and during power down. The devices remain in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes. The devices feature an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold.

An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the devices embed a peripheral voltage monitor which compares the independent supply voltages V_{DDA} , V_{DDUSB} , V_{DDIO2} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-power run, Low-power sleep, Stop 1 and Stop 2 modes. It is also used to supply the 64 Kbytes or only 4 Kbytes of SRAM2 in standby with SRAM2 retention.
- Both regulators are in power-down while they are in standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

> The ultra-low-power STM32L562xx devices support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system's maximum operating frequency.

The main regulator operates in the following ranges:

- Range 0 with the CPU running at up to 110 MHz.
- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by the HSI16.

3.9.4 SMPS step down converter

The built-in SMPS step down converter is a highly power-efficient DC/DC non-linear switching regulator that improves low-power performance when the VDD voltage is high enough. This SMPS step down converter automatically enters in bypass mode when the VDD voltage falls below 2 V in Range 0 and Range 1.

Note: There is no automatic SMPS bypass in Range 2.

The SMPS step down converter can be configured in:

- High-power mode (HPM): achieving a high efficiency at high current load. It is the default selected mode after POR reset.
- Low power mode achieving very high efficiency at low load
- Bypass mode

The SMPS step down converter can be switched in bypass mode at any time by the application software.

Note: The SMPS step down converter is available only on specific package.

SMPS step down converter power supply scheme

The SMPS step down converter requires an external coil with typical value of 4.7 µH to be connected between the VLXSMPS and the V15SMPS pins and a 4.7 µF capacitor to be connected between the V15SMPS to VSSSMPS pins. It can be switched OFF by selecting the Bypass mode by software. Thus, only main regulator is used by the application.

VDDSMPS
SMPS
Step Down
Converter

V15SMPS
V15SMPS
VDD
Wain
regulator
VSSSMPS
V

Figure 6. SMPS step down converter power supply scheme

If the selected package is with the SMPS step down converter option but it is never used by the application, it is recommend to set the SMPS power supply pins as follows:

- V_{DDSMPS} and V_{LXSMPS} connected to VSS
- V_{15SMPS} connected to VDD

Table 9. SMPS external components

Component	Description	Value
С	SMPS output capacitor ⁽¹⁾	4.7 μF
L	SMPS inductance ⁽²⁾	4.7 µH

- 1. For example GRM155R60J475ME87J and GRM21BR71E475KA73L.
- 2. For example TDK MLP2016H4R7MT.

SMPS step down converter fast startup

After POR reset, the SMPS step down converter starts in High-power mode and in Low startup mode. The low-startup feature is selected to limit the inrush current after power-on reset.

However, it is possible to configure a faster startup on the fly and it is applied for next startup either after a system reset or wakeup from low-power mode except Shutdown and VBAT modes. The fast startup is selected by setting the SMPSFSTEN bit in the PWR_CR4 register.

3.9.5 Low-power modes

The ultra-low-power STM32L562xx devices support seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wake-up sources. *Table 11* shows the related STM32L562xx modes overview.

Table 10. STM32L562xx modes overview

Mode	Regulator and SMPS mode ⁽¹⁾	CPU	Flash	SRAM	Clocks	DMA and Peripherals ⁽²⁾	Wakeup source
Run	Ranges 0/1 SMPS HP mode	Yes	ON ⁽³⁾	ON	Any	All	N/A
Ruii	Range 2 SMPS LP or HP mode	163	ON	ON	Ally	All except USB_FS, RNG	IV/A
LPRun	LPR	Yes	ON ⁽³⁾	ON	Any except PLL	All except USB_FS, RNG	N/A
Sleep	Ranges 0/1 SMPS HP mode	No	ON ⁽³⁾	ON ⁽⁴⁾	Any	All	Any interrupt or event
Оісер	Range 2 SMPS LP or HP mode	140	OIV.	014	7 (1)	All except USB_FS, RNG	7 try interrupt of event
LPSleep	LPR	No	ON ⁽³⁾	ON ⁽⁴⁾	Any except PLL	All except USB_FS, RNG	Any interrupt or event
Stop 0 ⁽⁵⁾	Ranges 0/1/2	No	Off	ON	LSE LSI	BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1,2) USARTx (x=15) ⁽⁶⁾ LPUART1 ⁽⁶⁾ 12Cx (x=14) ⁽⁷⁾ LPTIMx (x=1,2) *** All other peripherals are frozen	Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=12) USARTx (x=15) ⁽⁶⁾ LPUART1 ⁽⁶⁾ I2Cx (x=14) ⁽⁷⁾ LPTIMx (x=1,2) USB_FS ⁽⁸⁾

		Table	10. STM3	2L562xx mo	des overviev	v (continued)	
Mode	Regulator and SMPS mode ⁽¹⁾	CPU	Flash	SRAM	Clocks	DMA and Peripherals ⁽²⁾	Wakeup source
Stop 1	LPR	No	Off	ON	LSE LSI	BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1,2) USARTx (x=15) ⁽⁶⁾ LPUART1 ⁽⁶⁾ I2Cx (x=14) ⁽⁷⁾ LPTIMx (x=1,2) *** All other peripherals are frozen	Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=12) USARTx (x=15) ⁽⁶⁾ LPUART1 ⁽⁶⁾ I2Cx (x=14) ⁽⁷⁾ LPTIMx (x=1,2) USB_FS ⁽⁸⁾
Stop 2	LPR	No	Off	ON	LSE LSI	BOR, PVD, PVM RTC, IWDG COMPx (x=12) I2C3 ⁽⁷⁾ LPUART1 ⁽⁶⁾ LPTIMx (x= 1,3) *** All other peripherals are frozen	Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=12) I2C3 ⁽⁷⁾ LPUART1 ⁽⁶⁾ LPTIMx (x= 1,3)

DS12736 Rev 5

Table 10. STM32L562xx modes overview (continued)

Mode	Regulator and SMPS mode ⁽¹⁾	CPU	Flash	SRAM	Clocks	DMA and Peripherals ⁽²⁾	Wakeup source		
	LPR			SRAM2 ON		BOR, RTC, IWDG			
Standby	OFF	Powered Off	Off	Powered Off	LSE LSI	All other peripherals are powered off *** I/O configuration can be floating, pull-up or pull-down	Reset pin 5 I/Os (WKUPx) ⁽⁹⁾ BOR, RTC, IWDG		
Shutdown	OFF	Powered Off	Off	Powered Off	LSE	RTC *** All other peripherals are powered off *** I/O configuration can be floating, pull-up or pull-down ⁽¹⁰⁾	Reset pin 5 I/Os (WKUPx) ⁽⁹⁾ RTC		

- 1. LPR means Main regulator is OFF and Low-power regulator is ON.
- 2. All peripherals can be active or clock gated to save power consumption.
- 3. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
- 4. The SRAM1 and SRAM2 clocks can be gated on or off independently.
- 5. SMPS mode can be used in Stop 0 mode, but no significant power gain can be expected.
- 6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. USB_FS wakeup by resume from suspend and attach detection protocol event.
- 9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Low-power run mode

This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

• Low-power sleep mode

This mode is entered from the Low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the Low-power run mode.

Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wake-up capability can enable the HSI16 RC during Stop mode to detect their wake-up condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The Brownout reset (BOR) always remains active in Standby mode.

The state of each I/O during Standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, the full SRAM2 or 4 Kbytes can be retained in Standby mode, supplied by the low-power regulator (standby with RAM2 retention mode).

DS12736 Rev 5 45/341

The BORL (brown out detector low) can be configured in ultra-low-power mode to further reduce power consumption during standby mode.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE). The system clock after wakeup is MSI up to 8 MHz.

Shutdown mode

The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

Table 11. Functionalities depending on the working mode⁽¹⁾

		- Tuno			Stop		Sto	p 2	Star	idby	Shute	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	1	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CPU	Y	-	Y	-	-	-	-	-	-	-	-	-	-
Flash memory (512 Kbyte)	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	-	-	-	-	-	-	-		-
SRAM1 (192 Kbytes)	Y	Y ⁽³⁾	Y	Y ⁽³⁾	Y	-	Y	-	-	-	-		-
SRAM2 (64 Kbytes)	Υ	Y ⁽³⁾	Υ	Y ⁽³⁾	Υ	-	Υ	-	O ⁽⁴⁾	-	-	-	-
FSMC	0	0	0	0	-	-	-	-	-	-	-	-	-
OCTOSPI	0	0	0	0	-	-	-	-	-	-	-	-	-
OTFDEC	0	0	0	0	-	-	-	-	-	-	-	1	-
Backup registers	Υ	Υ	Y	Y	Υ	-	Υ	-	Υ	-	Υ	1	Υ
Brownout reset (BOR)	Υ	Y	Y	Y	Y	Y	Y	Y	Y	Y	-		-
Programmable voltage detector (PVD)	0	0	0	0	0	0	0	0	-	-	-		-
Peripheral voltage monitor (PVMx; x=1,2,3,4)	0	0	0	0	0	0	0	0	-	-	-	-	-
DMA	0	0	0	0	-	-	-	-	-	-	-	-	-
High speed internal (HSI16)	0	0	0	0	(5)	-	(5)	-	-	-	-	ı	-
Oscillator HSI48	0	0	-	-	-	-	-	-	-	-	-	-	-
High speed external (HSE)	0	0	0	0	-	-	-	-	-	-	-		-
Low speed internal (LSI)	0	0	0	0	0	-	0	-	0	-	-		-
Low speed external (LSE)	0	0	0	0	0	-	0	-	0	-	0		0
Multi speed internal (MSI)	0	0	0	0	-	-	-	-	-	-	-		-
Clock security system (CSS)	0	0	0	0	1	-	-	-	-	-	-	1	-
Clock security system on LSE	0	0	0	0	0	0	0	0	0	0	-	-	-

47/341

Table 11. Functionalities depending on the working mode⁽¹⁾ (continued)

					Stop	0/1	Sto	p 2	Star	ndby	Shute	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	1	Wakeup capability	1	Wakeup capability	-	Wakeup capability	VBAT
V _{DD} voltage monitoring, temperature monitoring	0	0	0	0	0	0	0	0	0	0	-	-	-
RTC / TAMP	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of RTC Tamper pins	8	8	8	8	8	0	8	0	8	0	8	0	3
USB, UCPD	O ⁽⁸⁾	O ⁽⁸⁾	-	-	-	0	-	-	-	-	-	-	-
USARTx (x=1,2,3,4,5)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-	-	-
Low-power UART (LPUART)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-
I2Cx (x=1,2,4)	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	-	-	ı	-	-	-	-
I2C3	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	-	-	-	-	-
SPIx (x=1,2,3)	0	0	0	0	-	-	•	-	ı	-	-	-	-
FDCAN1	0	0	0	0	-	-	-	-	-	-	-	-	-
SDMMC1	0	0	0	0	-	-	-	-	-	-	-	-	-
SAIx (x=1,2)	0	0	0	0	-	-	-	-	-	-	-	-	-
DFSDM1	0	0	0	0	-	-	-	-	-	-	-	-	-
ADCx (x=1,2)	0	0	0	0	-	-	-	-	ı	-	-	-	-
DAC1	0	0	0	0	0	-	-	-	-	-	-	-	-
VREFBUF	0	0	0	0	0	-	-	-	-	-	-	-	-
OPAMPx (x=1,2)	0	0	0	0	0	-	-	-	ı	-	-	-	-
COMPx (x=1,2)	0	0	0	0	0	0	0	0	-	-	-	-	-
Temperature sensor	0	0	0	0	-	-	1	•	ı	-	-	-	-
Timers (TIMx)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low-power timer 1, 3 (LPTIM1 and LPTIM3)	0	0	0	0	0	0	0	0	1	-	-	-	-
Low-power timer 2 (LPTIM2)	0	0	0	0	0	0	-	-	-	-		-	-
Independent watchdog (IWDG)	0	0	0	0	0	0	0	0	0	0	-	-	-

Table 11. Functionalities depending on the working mode⁽¹⁾ (continued)

			lies dep		Stop			p 2		ndby	Shute	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	,	Wakeup capability	1	Wakeup capability	1	Wakeup capability	1	Wakeup capability	VBAT
Window watchdog (WWDG)	0	0	0	0	-	1	-	-	-	-	-	,	-
SysTick timer	0	0	0	0	-	-	-	-	-	-	-	-	-
Touch sensing controller (TSC)	0	0	0	0	-	1	-	-	-	-	-	,	-
True random number generator (RNG)	O ⁽⁸⁾	O ⁽⁸⁾	-	-	-	1	-	-	-	-	-	1	-
AES hardware accelerator	0	0	0	0	-	-	-	-	-	-	-	-	-
HASH hardware accelerator	0	0	0	0	-	-	-	-	-	-	-	-	-
PKA	0	0	0	0	-	-	-	-	-	-	-	-	-
CRC calculation unit	0	0	0	0	ı	-	ı	-	ı	-	ı	-	-
GPIOs	0	0	0	0	0	0	0	0	(9)	5 pins (10)	(11)	5 pins (10)	-

^{1.} Legend: Y = yes (enable). O = optional (disable by default, can be enabled by software). - = not available.

Gray cells highlight the wakeup capability in each mode.

- 2. The Flash can be configured in Power-down mode. By default, it is not in Power-down mode.
- 3. The SRAM clock can be gated on or off.
- 4. 4 Kbytes or full SRAM2 content is preserved depending on RRS[1:0] bits configuration in PWR_CR3 register.
- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling ranges 0 and 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from standby/shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.6 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.7 **VBAT** operation

The VBAT pin allows the device VBAT domain to be powered from an external battery, an external supercapacitor, or from V_{DD} when there is no external battery and when an external supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

The VBAT operation is automatically activated when V_{DD} is not present. An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

When the microcontroller is supplied from VBAT, neither external interrupts nor RTC Note: alarm/events exit the microcontroller from the VBAT operation.

3.9.8 PWR TrustZone security

When the TrustZone security is activated by the TZEN option bit, the PWR is switched in TrustZone security mode.

The PWR TrustZone security allows to secure the following configuration:

- Low-power mode
- Wake-up (WKUP) pins
- Voltage detection and monitoring
- VBAT mode

Other PWR configuration bits are secure when:

- The system clock selection is secure in RCC, the voltage scaling (VOS) configuration is
- A GPIO is configured as secure, it's corresponding bit for Pull-up/Pull-down in standby mode is secure
- The RTC is secure, the backup domain write protection bit in PWR is secure.

3.10 Peripheral interconnect matrix

Several peripherals have direct connections between them, which allow autonomous communication between them and support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency.

Depending on the peripherals, these interconnections can operate in Run, Sleep, Lowpower run and Sleep, Stop 0, Stop 1 and Stop 2 modes. See *Table 12* for more details.

Table 12. STM32L562xx peripherals interconnect matrix

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Υ	Υ	Υ	Υ	ı	-
TIMx	ADC DAC1 DFSDM1	Conversion triggers	Υ	Υ	Υ	Υ	ı	-
	DMA	Memory to memory transfer trigger	Υ	Υ	Υ	Υ	1	-
	COMPx	Comparator output blanking	Υ	Υ	Υ	Υ	1	-
COMPx	TIM1, 8 TIM2, 3	Timer input channel, trigger, break from analog signals comparison	Υ	Υ	Υ	Υ	1	-
COMPX	LPTIMERx	Low-power timer triggered by analog signals comparison	Υ	Υ	Υ	Υ	Υ	Y (1)
ADCx	TIM1, 8	Timer triggered by analog watchdog	Υ	Υ	Υ	Υ	-	-
	TIM16	Timer input channel from RTC events	Υ	Υ	Υ	Υ	-	-
RTC LPTIMERx		Low-power timer triggered by RTC alarms or tampers	Υ	Υ	Υ	Υ	Υ	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16, 17	Clock source used as input channel for RC measurement and trimming	Υ	Υ	Υ	Y	1	-
USB	TIM2	Timer triggered by USB SOF	Υ	Υ	-	ı	1	-
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD DFSDM1 (analog watchdog, short circuit detection)	TIM1,8 TIM15,16,17	Timer break	Υ	Y	Y	Y	1	-
	TIMx	External trigger	Υ	Υ	Υ	Υ	-	-
GPIO	LPTIMERx	External trigger	Υ	Υ	Υ	Υ	Υ	Y (1)
GI IO	ADC DAC1 DFSDM1	Conversion external trigger	Υ	Υ	Y	Υ	1	-

^{1.} LPTIM1 and LPTIM3 only.

3.11 Reset and clock controller (RCC)

The clock controller (see *Figure 7*) distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- Clock security system: clock sources can be changed safely on the fly in Run mode through a configuration register.
- **Clock management:** to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: four different clock sources can be used to drive the master clock SYSCLK:
 - 4 to 48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 110 MHz.
- RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48)can be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- **UCPD kernel clock**: it is derived from HSI16 clock. The HSI16 RC oscillator must be enabled prior to the UCPD kernel clock use.
- Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
 The LSI clock accuracy is ±5% accuracy. The LSI clock can be divided by 128 to output a 250 Hz as source clock.
- Peripheral clock sources: several peripherals (USB, SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.

- Clock-out capability:
 - MCO (microcontroller clock output): it outputs one of the internal clocks for external use by the application
 - LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes (except VBAT).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 110 MHz.

DS12736 Rev 5 53/341

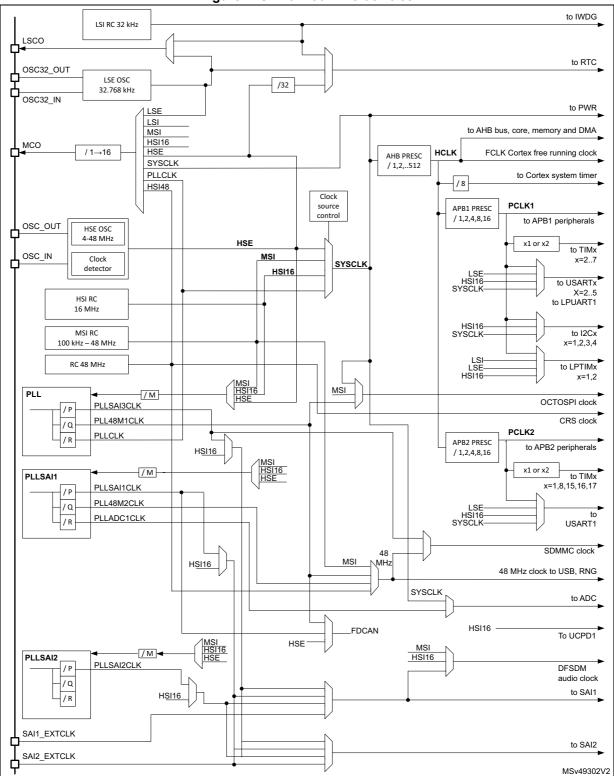


Figure 7. STM32L562xx clock tree

TrustZone security

When the TrustZone security is activated by the TZEN option bit, the RCC is switched in TrustZone security mode.

The RCC TrustZone security allows to secure some RCC system configuration and peripheral configuration clock from being read or modified by non-secure accesses:

- RCC system security:
 - HSE, HSE-CSS, HSI, MSI, LSI, LSE, LSE-CSS, HSI48 configuration and status bits
 - Main PLL, PLLSAI1, PLLSAI2, AHB prescaler configuration and status bits
 - System clock SYSCLK and HSI48 source clock selection and status bits
 - MCO clock output configuration and STOPWUCK bit
 - Reset flag RMVF configuration bit
- RCC peripheral security:
 - When a peripheral is secure, the related peripheral clock, reset, clock source selection and clock enable during low power modes control bits are secure.
- A peripheral is in secure state when:
 - For securable peripherals, when it's corresponding SEC security bit is set in the TZSC (TrustZone security controller)
 - For TrustZone-aware peripherals, a security feature of this peripheral is enabled through its dedicated bits.

3.12 Clock recovery system (CRS)

The devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.13 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

After reset, all GPIOs are in Analog mode to reduce power consumption.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

Note: For information on GPIO configuration, refer to the application note AN4899 "STM32 GPIO configuration for hardware settings and low-power consumption" available from the ST website www.st.com.

4

DS12736 Rev 5 55/341

GPIO TrustZone security

Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O pin is configured as secure, its corresponding configuration bits for alternate function, mode selection, I/O data are secure against a non-secure access. The associated registers bit access is restricted to a secure software only. After reset, all GPIO ports are secure.

3.14 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, SDMMC1) and the slaves (Flash memory, RAM, FMC, OCTOSPI, AHB and APB peripherals). It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

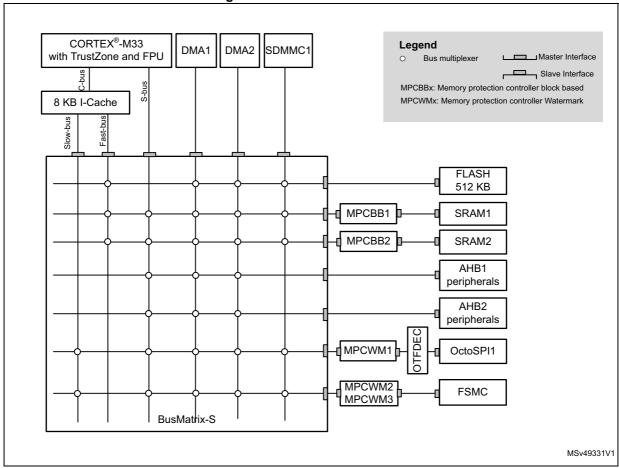


Figure 8. Multi-AHB bus matrix

3.15 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 13: DMA1 and DMA2 implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations.

The two DMA controllers have 16 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests.

The DMA supports 8 channels for each DMA1 and DMA2, independently configurable:

- Each channel is associated either with a DMA request signal coming from a peripheral, or with a software trigger in memory-to-memory transfers. This configuration is done by software
- Priority between the requests is programmable by software (4 levels per channel: very high, high, medium, low) or by hardware in case of equality (such as request 1 has priority over request 2).
- Transfer size of source and destination are independent (byte, half-word, word), emulating packing and unpacking. Source and destination addresses must be aligned on the data size.
- Support of transfers from/to peripherals to/from memory with circular buffer management.
- Programmable number of data to be transferred: 0 to 2¹⁸ 1.
- Generation of an interrupt request per channel. Each interrupt request is caused from any of the three DMA events: transfer complete, half transfer, or transfer error.
- TrustZone support:
 - Support for AHB secure and non-secure DMA transfers, independently at a first channel level, and independently at a source and destination sub-level
 - TrustZone-aware AHB slave port, protecting any secure resource (register, register field) from a non-secure software access
- Privileged / unprivileged support:
 - Support for AHB privileged and unprivileged DMA transfers, independently at a channel level
 - Privileged-aware AHB slave port.

Table 13. DMA1 and DMA2 implementation

Feature	DMA1	DMA2		
Number of DMA channels	8	8		
TrustZone	1 (supported)	1 (supported)		

3.16 DMA request router (DMAMUX)

When a peripheral indicates a request for DMA transfer by setting its DMA request line, the DMA request is pending until it is served and the corresponding DMA request line is reset. The DMA request router allows to route the DMA control lines between the peripherals and the DMA controllers of the product.

An embedded multi-channel DMA request generator can be considered as one of such peripherals. The routing function is ensured by a multi-channel DMA request line multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or synchronously with events on synchronization inputs.

DMAMUX main features

- 16-channel programmable DMA request line multiplexer output
- 4-channel DMA request generator
- 23 trigger inputs to DMA request generator
- 23 synchronization inputs
- Per DMA request generator channel:
 - DMA request trigger input selector
 - DMA request counter
 - Event overrun flag for selected DMA request trigger input
- Per DMA request line multiplexer channel output:
 - 90 input DMA request lines from peripherals
 - One DMA request line output
 - Synchronization input selector
 - DMA request counter
 - Event overrun flag for selected synchronization input
 - One event output, for DMA request chaining
- TrustZone support:
 - Support for AHB secure and non-secure DMA transfers, independently at a channel level.
 - TrustZone-aware AHB slave port, protecting any secure resource (register, register field) from a non-secure software access, with configurable interrupt event.
 - Two secure and non-secure interrupt requests, resulting from any of the respectively secure and non-secure channels. Each channel event being caused from any of the two DMAMUX input events: trigger or synchronization overrun, associated with a respectively secure and non-secure channels.
- Privileged / Unprivileged support:
 - Support for AHB privileged and unprivileged DMA transfers, independently, at a channel level.
 - Privileged-aware AHB slave port.

3.17 Interrupts and events

3.17.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller which is able to manage 8 priority levels, and to handle up to 109 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M33.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead
- TrustZone support. The NVIC registers are banked across secure and non-secure states

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.17.2 Extended interrupt/event controller (EXTI)

The Extended interrupts and event controller (EXTI) manages the individual CPU and system wakeup through configurable and direct event inputs. It provides wakeup requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional Event Generation block (EVG) is needed to generate the CPU event signal.

The EXTI wakeup requests allow the system to be woken up from Stop modes.

The interrupt request and event request generation can also be used in RUN modes. The EXTI also includes the EXTI mux IOport selection.

The EXTI main features are the following:

The EXTI main features are the following:

- 43 input events supported
- All event inputs allow to wake up the system.
- Events which do not have an associated wakeup flag in the peripheral, have a flag in the EXTI and generate an interrupt to the CPU from the EXTI.

The asynchronous event inputs are classified in 2 groups:

- Configurable events (signals from I/Os or peripherals able to generate a pulse)
 - Configurable events have the following features:
 - Selectable active trigger edge
 - Interrupt pending status register bit independent for the rising and falling edge. Individual interrupt and event generation mask, used for conditioning the CPU wakeup, interrupt and event generation.
 - SW trigger possibility
- Direct events (interrupt and wakeup sources from peripherals having an associated flag which requiring to be cleared in the peripheral)
 - Direct events have the following features:
 - Fixed rising edge active trigger
 - No interrupt pending status register bit in the EXTI. (The interrupt pending status flag is provided by the peripheral generating the event.)
 - Individual interrupt and event generation mask, used for conditioning the CPU wakeup and event generation.
 - No SW trigger possibility
- TrustZone secure events
 - The access to control and configuration bits of secure input events can be made secure.
- EXTI IO port selection

3.18 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size.

Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity.

The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location.

3.19 Flexible static memory controller (FSMC)

The flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller

This memory controller is also named flexible memory controller (FMC).

The main features of the FSMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (four memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
 - Ferroelectric RAM (FRAM)
- 8-,16- bit data bus width
- Independent chip select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

TrustZone security

When the TrustZone security is enabled, the whole FSMC banks are secure after reset. Non-secure area can be configured using the TZSC MPCWMx controller.

- The FSMC NOR/PSRAM bank:
 - Up to two non-secure area can be configured thought the TZSC MPCWM2 controller with a granularity of 64 Kbytes.
- The FSMC NAND bank:
 - Can be either configured as fully secure or fully non-secure using the TZSC MPCWM3 controller.

The FSMC registers can be configured as secure through the TZSC controller.

3.20 Octo-SPI interface (OCTOSPI)

The OCTOSPI is a specialized communication interface targetting single, dual, quad or octal SPI memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the OCTOSPI registers
- Status polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation

The OCTOSPI supports two frame formats:

- Classical frame format with command, address, alternate byte, dummy cycles and data phase over 1, 2, 4 or 8 data pins
- HyperBusTM frame format

The OCTOSPI offers the following features:

- Three functional modes: indirect, status-polling, and memory-mapped
- Read and write support in memory-mapped mode
- Supports for single, dual, quad and octal communication
- Dual-quad mode, where 8 bits can be sent/received simultaneously by accessing two quad memories in parallel.
- SDR and DTR support
- Data strobe support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the five following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- HyperBusTM support
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

TrustZone security

When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset.

Up to two non-secure area can be configured thought the TZSC MPCWM1 controller with a granularity of 64 Kbytes.

The OCTOSPI registers can be configured as secure through the TZSC controller.

DS12736 Rev 5 63/341

3.21 Analog-to-digital converter (ADC)

The device embeds two successive approximation analog-to-digital converters with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 31.25 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 16 external channels
- 5 internal channels: internal reference voltage, temperature sensor, VBAT/3 and DAC1 outputs
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into a data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.21.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN17 input channels which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value nameDescriptionMemory addressTS_CAL1TS ADC raw data acquired at a temperature of 30° C (\pm 5°C), $V_{DDA} = V_{REF+} = 3.0 \text{ V } (\pm 10 \text{ mV})$ 0x0BFA 05A8 - 0x0BFA 05A9TS_CAL2TS ADC raw data acquired at a temperature of 130° C (\pm 5°C), $V_{DDA} = V_{REF+} = 3.0 \text{ V } (\pm 10 \text{ mV})$ 0x0BFA 05CA- 0x0BFA 05CB

Table 14. Temperature sensor calibration values

3.21.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 15. Internal voltage reference calibration values

Calibration value name	Description	Memory address			
VREFINT	Raw data acquired at a temperature of 30°C (± 5°C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x0BFA 05AA - 0x0BFA 05AB			

3.21.3 V_{BAT} battery voltage monitoring

This embedded hardware enables the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN18. As the V_{BAT} voltage may be higher than the VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third of the V_{BAT} voltage.

3.22 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.23 Voltage reference buffer (VREFBUF)

The devices embed a voltage reference buffer which can be used as voltage reference for ADC, DACs and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports two voltages:

- 2.048 V
- 2.5 V

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

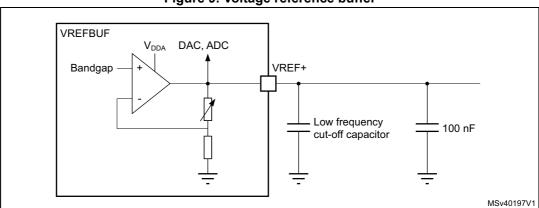


Figure 9. Voltage reference buffer

3.24 Comparators (COMP)

The devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output channels
- Internal reference voltage or submultiple (1/4, 1/2, 3/4)

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can also be combined into a window comparator.

3.25 Operational amplifier (OPAMP)

The devices embed two operational amplifiers with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.26 Digital filter for sigma-delta modulators (DFSDM)

The devices embed one DFSDM with four digital filters modules and eight external input serial channels (transceivers) or alternately eight internal parallel inputs support.

The DFSDM peripheral is dedicated to interface the external $\Sigma\Delta$ modulators to the microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma\Delta$ modulators inputs).

The DFSDM can also interface the PDM (pulse density modulation) microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM).

The DFSDM transceivers support several serial interface formats (to support various $\Sigma\Delta$ modulators) and the DFSDM digital filter modules perform digital processing according to the user's selected filter parameters with up to 24-bit final ADC resolution.

DS12736 Rev 5 67/341

The DFSDM peripheral supports:

- Up to 4 multiplexed input digital serial channels:
 - Configurable SPI interface to connect various $\Sigma\Delta$ modulators
 - Configurable Manchester coded 1 wire interface support
 - Clock output for ΣΔ modulator(s)
- Alternative inputs from up to 4 internal digital parallel channels:
 - Inputs with up to 16 bit resolution
 - Internal sources: ADCs data or memory (CPU/DMA write) data streams
- Adjustable digital signal processing:
 - Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
 - Integrator: oversampling ratio (1..256)
- Up to 24-bit output data resolution:
 - Right bit-shifter on final data (0..31 bits)
- Signed output data format
- Automatic data offset correction (offset stored in register by user)
- Continuous or single conversion
- Start-of-conversion synchronization with:
 - Software trigger
 - Internal timers
 - External events
 - Start-of-conversion synchronously with first DFSDM filter (DFSDM FLT0)
- Analog watchdog feature:
 - Low value and high value data threshold registers
 - Own configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - Input from output data register or from one or more input digital serial channels
 - Continuous monitoring independently from standard conversion
- Short-circuit detector to detect saturated analog input values (bottom and top ranges):
 - Up to 8-bit counter to detect 1..256 consecutive 0's or 1's on input data stream
 - Mnitoring continuously each channel (4 serial channel transceiver outputs)
- Break generation on analog watchdog event or short-circuit detector event
- Extremes detector:
 - Store minimum and maximum values of output data values
 - Refreshed by software
- DMA may be used to read the conversion data
- Interrupts: end of conversion, overrun, analog watchdog, short-circuit, channel clock absence
- "Regular" or "injected" conversions:
 - "Regular" conversions can be requested at any time or even in continuous mode without having any impact on the timing of "injected" conversions.

3.27 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution to add capacitive sensing functionality to any application. A capacitive sensing technology is able to detect finger presence near an electrode that is protected from direct touch by a dielectric (glass, plastic or other). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 22 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

Note:

The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

3.28 True random number generator (RNG)

The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component.

The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a non-deterministic random bit generator (NDRBG).

The true random number generator:

- delivers 32-bit true random numbers, produced by an analog entropy source conditioned by a NIST SP800-90B approved conditioning stage,
- can be used as entropy source to construct a non-deterministic random bit generator (NDRBG),
- produces four 32-bit random samples every 412 AHB clock cycles if fAHB < 77 MHz (256 RNG clock cycles otherwise),
- embeds start-up and NIST SP800-90B approved continuous health tests (repetition count and adaptive proportion tests), associated with specific error management,
- can be disabled to reduce power consumption, or enabled with an automatic low-power mode (default configuration),
- has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated, and the write accesses are ignored).

3.29 Advanced encryption standard hardware accelerator (AES)

The devices embed an AES hardware accelerator that can be used both to encipher and to decipher data using an AES algorithm.

The AES peripheral supports:

- Encryption/decryption using AES Rijndael block cipher algorithm
- NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm
- 128-bit and 256-bit register for storing the encryption, decryption or derivation key (4x 32-bit registers)
- Electronic codebook (ECB), cipher block chaining (CBC), Counter mode (CTR), Galois Counter Mode (GCM), Galois Message Authentication Code mode (GMAC) and Cipher Message Authentication Code mode (CMAC) supported
- Key scheduler
- Key derivation for decryption
- 128-bit data block processing
- 128-bit, 256-bit key length
- 1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer
- Register access supporting 32-bit data width only
- One 128-bit Register for the initialization vector when AES is configured in CBC mode or for the 32-bit counter initialization when CTR mode is selected, GCM mode or CMAC mode
- Automatic data flow control with support of direct memory access (DMA) using 2 channels, one for incoming data, and one for out coming data
- Suspend a message if another message with a higher priority needs to be processed.

3.30 HASH hardware accelerator (HASH)

The hash processor is a fully compliant implementation of the secure hash algorithm (SHA-1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message authentication code) algorithm suitable for a variety of applications.

It computes a message digest (160 bits for the SHA-1 algorithm, 256 bits for the SHA-256 algorithm and 224 bits for the SHA-224 algorithm, 128 bits for the MD5 algorithm) for messages of up to (264 - 1) bits, while the HMAC algorithms provide a way of authenticating messages by means of hash functions. The HMAC algorithms consist in calling the SHA-1, SHA-224, SHA-256 or MD5 hash function twice.

3.31 Public key accelerator PKA

The public key accelerator (PKA) is intended for the computation of cryptographic public key primitives, specifically those related to RSA, Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). To achieve high performance at a reasonable cost, these operations are executed in the Montgomery domain.

All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs.

PKA main features:

- Acceleration of RSA, DH and ECC over GF(p) operations, based on the Montgomery method for fast modular multiplications. More specifically:
 - RSA modular exponentiation, RSA Chinese remainder theorem (CRT) exponentiation
 - ECC scalar multiplication, point on curve check
 - ECDSA signature generation and verification
- Capability to handle operands up to 3136 bits for RSA/DH and 640 bits for ECC.
- Arithmetic and modular operations such as addition, subtraction, multiplication, modular reduction, modular inversion, comparison, and Montgomery multiplication.
- Built-in Montgomery domain inward and outward transformations
- AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (otherwise, for writes, an AHB bus error is generated, and write accesses are ignored)

3.32 On-the-fly decryption engine (OTFDEC)

The embedded OTFDEC decrypts in real-time the encrypted content stored in the external Octo-SPI memories used in Memory-mapped mode.

The OTFDEC uses the AES-128 algorithm in counter mode (CTR).

4

DS12736 Rev 5 71/341

The OTFDEC main features are the following:

 Zero latency 128-bit decryption during STM32 AHB OCTOSPI read operations (single or multiple).

- Minimum read granularity is 8-bit, maximum is 512-bit
- AES-CTR algorithm
- Up to four independent encrypted regions
 - Granularity of the region definition: 4096 bytes
 - Region configuration write locking mechanism
 - Option to condition data decryption on instruction fetches only.
- 128-bit data decryption specific to each protected region.
 - Each region has its firmware version (two bytes), its 128-bit key and a fixed 64-bit nonce.
 - Keystream based on the data system address
- Encryption keys confidentiality and integrity protection
 - Write only registers, with software locking mechanism
- Support for STM32 OCTOSPI pre-fetching mechanism.
 - AES-CTR keystream FIFO (depth=2)
- Possibility to select an enhanced encryption mode to add a proprietary layer of protection on top of AES stream cipher.

3.33 Timers and watchdogs

The devices include two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer.

Table 16 compares the features of the advanced control, general-purpose and basic timers.

Table 16. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1, TIM8	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2, TIM5	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM3, TIM4	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1

		abic 10. IIII	ici icataic	Companison	ii (continuct	4)	
Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 16. Timer feature comparison (continued)

3.33.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers.

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs.

Many features are shared with the general-purpose TIMx timers (described in Section 3.33.2) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

Functional overview STM32L562xx

3.33.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)

There are up to seven synchronizable general-purpose timers embedded in the STM32L562xx devices (see *Table 16* for differences).

Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

TIM2, TIM3, TIM4 and TIM5

They are full-featured general-purpose timers:

- TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler
- TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.

These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.

The counters can be frozen in debug mode.

All have independent DMA request generation and support quadrature encoders.

TIM15, 16 and 17

They are general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has two channels and one complementary channel
- TIM16 and TIM17 have one channel and one complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.33.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

3.33.4 Low-power timers (LPTIM1, LPTIM2 and LPTIM3)

The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode.

LPTIM1 and LPTIM3 are active in Stop 0, Stop 1 and Stop 2 modes.

LPTIM2 is active in Stop 0 and Stop 1 mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous/ one shot mode
- Selectable software/hardware input trigger
- Selectable clock source
 - Internal clock sources: LSE, LSI, HSI16 or APB clock
 - External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application)
- · Programmable digital glitch filter
- Encoder mode (LPTIM1 only)

3.33.5 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.33.6 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.33.7 SysTick timer

The Cortex®-M33 with TrustZone embeds two SysTick timers.

When TrustZone is activated, two SysTick timer are available:

- SysTick, Secure instance.
- SysTick, Non-secure instance.

When TrustZone is disabled, only one SysTick timer is available.

This timer (secure or non-secure) is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

4

DS12736 Rev 5 75/341

Functional overview STM32L562xx

3.34 Real-time clock (RTC)

The RTC supports the following features:

 Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.

- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V_{BAT} mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.
- TrustZone support:
 - RTC fully securable
 - Alarm A, alarm B, wakeup Timer and timestamp individual secure or non-secure configuration

The RTC is supplied through a switch that takes power either from the V_{DD} supply when present or from the V_{BAT} pin.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE), divided by a prescaler in the RCC.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup the device from the low-power modes.

3.35 Tamper and backup registers (TAMP)

32 32-bit backup registers are retained in all low-power modes and also in VBAT mode. They can be used to store sensitive data as their content is protected by an tamper detection circuit. 8 tamper pins and 7 internal tampers are available for anti-tamper detection.

The external tamper pins can be configured for edge detection, or level detection with or without filtering, or active tamper which increases the security level by auto checking that the tamper pins are not externally opened or shorted.

TAMP main features:

- 32 backup registers:
 - The backup registers (TAMP_BKPxR) are implemented in the RTC domain that remains powered-on by VBAT when the VDD power is switched off
- 8 external tamper detection events
 - Each external event can be configured to be active or passive
 - External passive tampers with configurable filter and internal pull-up
- 5 internal tamper events
- Any tamper detection can generate a RTC timestamp event
- Any tamper detection can erase the backup registers
- TrustZone support:
 - Tamper secure or non-secure configuration.
 - Backup registers configuration in 3 configurable-size areas:
 - 1 read/write secure area
 - 1 write secure/read non-secure area
 - 1 read/write non-secure area
- Monotonic counter.

DS12736 Rev 5 77/341

Functional overview STM32L562xx

3.36 Inter-integrated circuit interface (I2C)

The device embeds four I2C. Refer to *Table 17: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Target and controller modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit target addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System management bus (SMBus) specification rev 3.0 compatibility:
 - Hardware PEC (packet error checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power system management protocol (PMBusTM) specification rev 1.3 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 7: STM32L562xx clock tree
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 17. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х
Wakeup from Stop 0, Stop 1 mode on address match	Х	Х	Х	Х
Wakeup from Stop 2 mode on address match	-	-	Х	-

1. X: Supported

3.37 Universal synchronous/asynchronous receiver transmitter (USART)

The devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5).

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN master/slave capability. They provide hardware management of the CTS and RTS signals, and RS485 driver enable. They are able to communicate at speeds of up to 10 Mbit/s.

The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant) and an SPI-like communication capability.

All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 200 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

All USART interfaces can be served by the DMA controller.

USART modes/features⁽¹⁾ USART1 USART2 USART3 **UART4 UART5** LPUART1 Hardware flow control for modem Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Continuous communication using DMA Multiprocessor communication Χ Χ Χ Χ Χ Χ Synchronous SPI mode (master/slave) Х Χ Х Smartcard mode Χ Χ Χ Χ Χ Х Χ Single-wire half-duplex communication Χ Х IrDA SIR ENDEC block Χ Χ Х Χ Χ LIN mode Χ Χ Χ Χ Χ Dual clock domain Х Χ Х Χ Х Χ Wakeup from Stop 0 / Stop 1 modes Х Х Х Χ Х Χ Wakeup from Stop 2 mode Χ Receiver timeout interrupt Х Х Х Х Χ Х Х Х Χ Х Modbus communication X (4 modes) Auto baud rate detection Driver enable Χ Х Χ Х Х Х LPUART/USART data length 7, 8 and 9 bits

Table 18. USART/UART/LPUART features

^{1.} X = supported.

Functional overview STM32L562xx

3.38 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

The LPUART interface can be served by the DMA controller.

3.39 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives eight master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and hardware CRC calculation.

All SPI interfaces can be served by the DMA controller.

3.40 Serial audio interfaces (SAI)

The devices embed two SAI. Refer to *Table 19: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO.
- 8-word integrated FIFOs for each audio sub-block.
- Synchronous or asynchronous mode between the audio sub-blocks.
- Master or slave configuration independent for both audio sub-blocks.
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode.
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
- Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out.

Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.

- Number of bits by frame may be configurable.
- Frame synchronization active level configurable (offset, bit length, level).
- First active bit position in the slot is configurable.
- LSB first or MSB first for data transfer.
- Mute mode.
- Stereo/Mono audio frame capability.
- Communication clock strobing edge configurable (SCK).
- Error flags with associated interrupts if enabled respectively.
 - Overrun and underrun detection.
 - Anticipated frame synchronization signal detection in slave mode.
 - Late frame synchronization signal detection in slave mode.
 - Codec not ready for the AC'97 mode in reception.
- Interruption sources when enabled:
 - Errors.
 - FIFO requests.
- DMA interface with two dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

Table 19. SAI implementation

SAI features ⁽¹⁾	SAI1	SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	X	X
Mute mode	Х	Х
Stereo/Mono audio frame capability.	Х	Х
16 slots	Х	Х
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х	Х
FIFO size	X (8 Word)	X (8 Word)
SPDIF	Х	Х
PDM	Х	-

^{1.} X: supported

3.41 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The SD/SDIO, MultiMediaCard (MMC) host interface (SDMMC) provides an interface between the AHB bus and SD memory cards, SDIO cards and MMC devices.

Functional overview STM32L562xx

The SDMMC features include the following:

• Full compliance with MultiMediaCard System Specification Version 4.51. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit

- Full compatibility with previous versions of MultiMediaCards (backward compatibility)
- Full compliance with SD Memory Card Specifications Version 4.1. (SDR104 SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported)
- Full compliance with SDIO Card Specification Version 4.0: card support for two different databus modes: 1-bit (default) and 4-bit. (SDR104 SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported)
- Data transfer up to 104 Mbyte/s for the 8-bit mode (depending maximum allowed I/O speed)
- Data and command output enable signals to control external bidirectional drivers.

3.42 Controller area network (FDCAN)

The controller area network (CAN) subsystem consists of one CAN modules and message RAM memory.

The CAN module (FDCAN) is compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

A 1 Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers.

3.43 Universal serial bus (USB FS)

The devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and battery charging detection according to Battery Charging Specification Revision 1.2.

The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 link power management. It has software-configurable endpoint setting with packet memory up-to 1 Kbyte and suspend/resume support.

This interface requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator (HSI48) in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

3.44 USB Type-C™ / USB Power Delivery controller (UCPD)

The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB Power Delivery Rev. 3.0 specifications.

The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery requirements, featuring:

- USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
- "Dead battery" support
- USB Power Delivery message transmission and reception
- FRS (fast role swap) support

The digital controller handles notably:

- USB Type-C level detection with debounce, generating interrupts
- FRS detection, generating an interrupt
- Byte-level interface for USB Power Delivery payload, generating interrupts (DMA compatible)
- USB Power Delivery timing dividers (including a clock pre-scaler)
- CRC generation/checking
- 4b5b encode/decode
- Ordered sets (with a programmable ordered set mask at receive)
- Frequency recovery in receiver during preamble

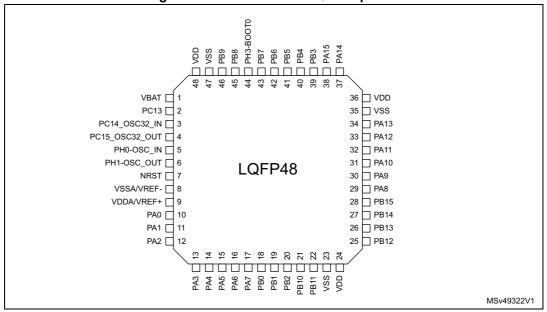
The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB Power Delivery messages and FRS signaling.

3.45 Development support

3.45.1 Serial wire JTAG debug port (SWJ-DP)

The Arm[®] SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using two pins only instead of five required by the JTAG (JTAG pins could be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.


3.45.2 Embedded Trace Macrocell™

The Arm[®] Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

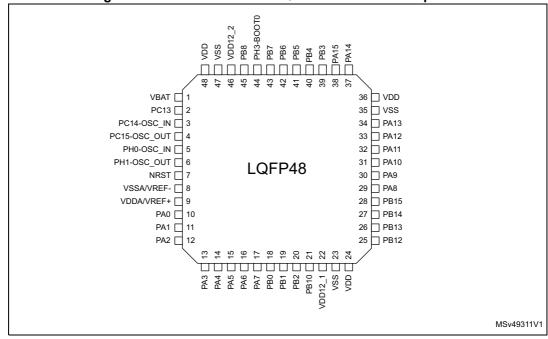

4 Pinouts and pin description

Figure 10. STM32L562xx LQFP48 pinout

1. The above figure shows the package top view.

Figure 11. STM32L562xxxxP LQFP48 external SMPS pinout

1. The above figure shows the package top view.

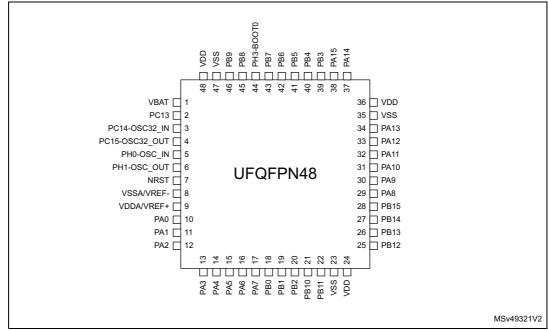


Figure 12. STM32L562xx UFQFPN48 pinout

Figure 13. STM32L562xxxxP UFQFPN48 external SMPS pinout

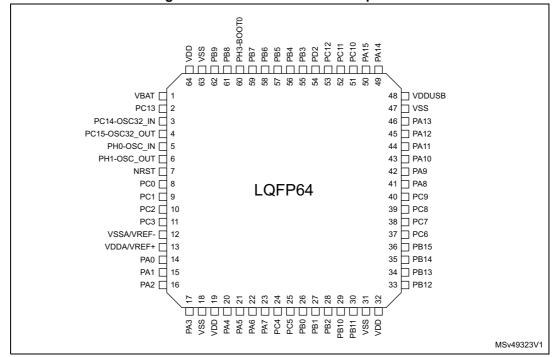


Figure 14. STM32L562xx LQFP64 pinout

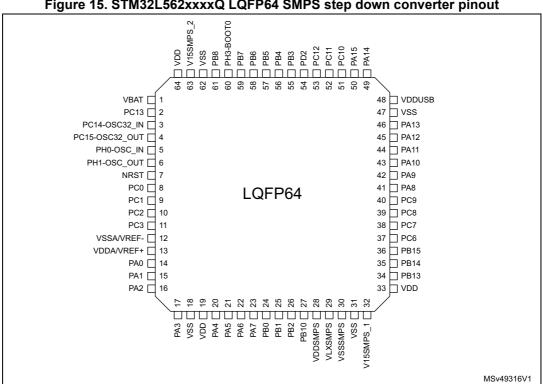


Figure 15. STM32L562xxxxQ LQFP64 SMPS step down converter pinout

Figure 16. STM32L562xxxxP LQFP64 external SMPS pinout

Figure 17. STM32L562xxxxQ WLCSP81 SMPS step down converter ballout

VDD VDD12_2 VDD PC10 VDDIO2 PB5 VDDUSB vss PC12 PG12 vss PB4 PC13 vss VBAT PC15-DSC32_OUT PC14-OSC32_IN PA11 PA12 PC11 PG10 PB6 PB8 PA13 PH1-OSC_OUT PA9 PA14 PG9 PG14 РН3-ВООТ PH0-OSC_II PB7 PC6 PC7 PA10 PA15 PG11 PB3 PC0 vss NRST PB15 PA8 PA3 PC2 PC1 VDD PB13 PC8 PA1 PB14 PB12 PC4 PA6 VREF+ VSSA/VREF PC9 PA2 PC3 vss PE15 PB1 PA4 VDD PE14 PA5 PA0 VDDA VDD12_1 PB11 PB10 PE13 PB2 PB0 PA7 VDD VSS MSv49313V1

Figure 18. STM32L562xxxxP WLCSP81 external SMPS ballout

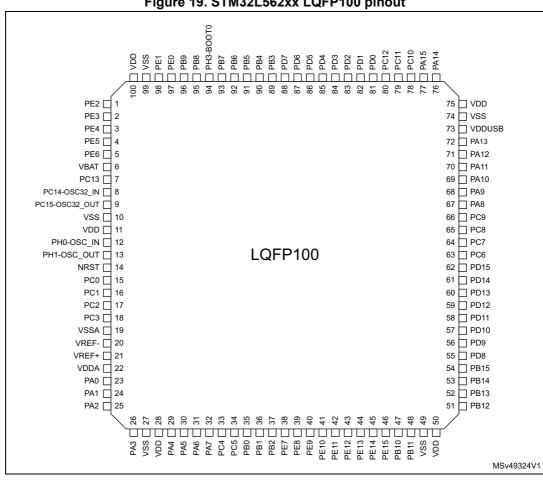


Figure 19. STM32L562xx LQFP100 pinout

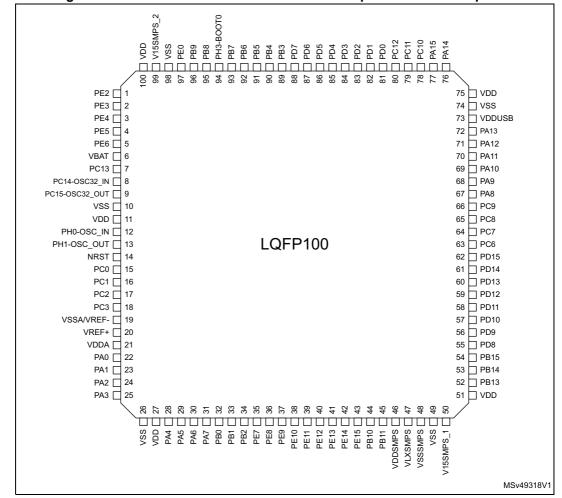


Figure 20. STM32L562xxxxQ LQFP100 SMPS step down converter pinout

MSv49325V1

PE5 PD5 VDDUSB VBAT PE4 PE2 PG15 РН3-ВООТ0 PB4 PG9 PD4 PD1 PC12 PC10 PA12 PE6 PC13 PB3 PD3 PD0 PA13 PA14 PG10 PA11 С PC15-OSC32_OUT PF0 PF3 VDD РВ7 PB5 PD7 VDDIO2 VDD PA9 PA10 PA8 D PF2 PF1 PF4 PC8 vss VSS PC7 PC9 PH0-OSC_IN PF5 PC2 vss PG7 PC6 PG8 PC3 VDD PG6 PH1-OSC_OUT NRST PC1 PA1 VDD vss PG4 PG2 PG3 PG5 OPAMP1_VI NM VSSA/VREF PC0 vss VSS PD14 PD13 PD15 VREF+ PF14 PE8 PE10 PE12 PA0 PC5 VDD VDD PD9 PD11 PD12 PF11 PE7 PE14 PB15 VDDA PA2 PA7 PB2 PG1 PB10 PB13 PB14 PA3 PA6 PA4 PB1 PF12 PF15 PE11 PE15 PB11 vss PB12 PD8 PA5 PC4 PB0 PF13 PG0 PE9 PE13 PG14 PG13 PG11 PD10

Figure 21. STM32L562xx UFBGA132 ballout

1. The above figure shows the package top view.

Figure 22. STM32L562xxxxQ UFBGA132 SMPS step down converter ballout

	1	2	3	4	5	6	7	8	9	10	11	12
А	PE5	PE3	PE1	PB9	PB6	PG12	PD6	PD5	PD2	PC11	PA15	VDDUSB
В	VBAT	PE4	PE2	V15SMPS_2	РН3-ВООТ0	PB4	PG9	PD4	PD1	PC12	PC10	PA12
С	PC14- OSC32_IN	PE6	PC13	PE0	PB8	PB3	PG10	PD3	PD0	PA13	PA14	PA11
D	PC15- OSC32_OUT	PF0	PF3	VDD	PB7	PB5	PD7	VDDIO2	VDD	PA9	PA10	PA8
E	PF2	PF1	PF4	vss					vss	PC7	PC9	PC8
F	PH0-OSC_IN	PF5	PC2	PC3		vss	VDD		PG6	PG7	PC6	PG8
G	PH1- OSC_OUT	NRST	PC1	PA1		VDD	vss		PG4	PG2	PG3	PG5
н	VSSA/VREF-	PC0	OPAMP1_VI NM	vss					vss	PD14	PD13	PD15
J	VREF+	PA0	PC5	VDD	PF14	PE8	PE10	PE12	VDD	PD9	PD11	PD12
к	VDDA	PA2	PA7	PB2	PF11	PG1	PE7	PE14	PB10	PB13	PB14	PB15
L	PA3	PA6	PA4	PB1	PF12	PF15	PE11	PE15	PB11	VSSSMPS	PB12	PD8
М	PA5	OPAMP2_VI NM	PC4	PB0	PF13	PG0	PE9	PE13	VDDSMPS	VLXSMPS	V15SMPS_1	PD10
			•	•			•	•	•	•		MSv4

1. The above figure shows the package top view.

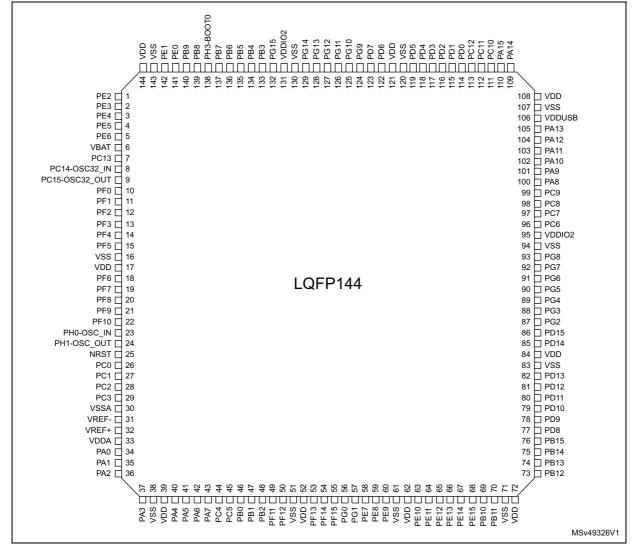


Figure 23. STM32L562xx LQFP144 pinout

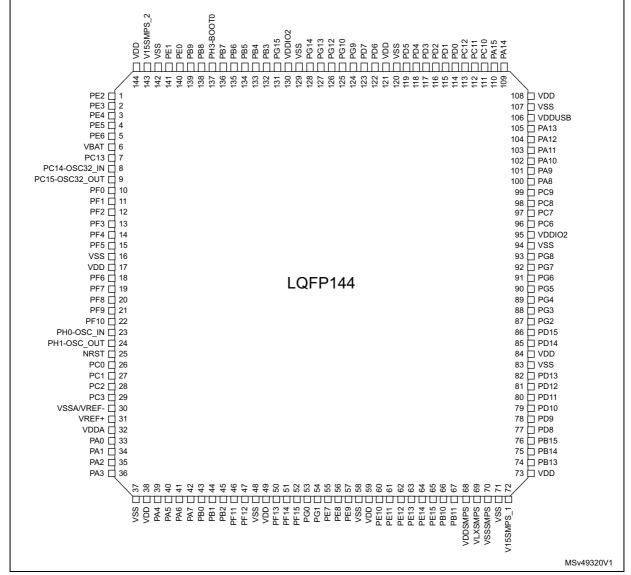


Figure 24. STM32L562xxxxQ LQFP144 SMPS step down converter pinout

Table 20. Legend/abbreviations used in the pinout table

			e 20. Legend/abbreviations used in the pinout table
Na	ame	Abbreviation	Definition
Pin	name	Unless otherwise specified	in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
		S	Supply pin
Pin	type	I	Input only pin
		I/O	Input / output pin
		FT	5 V tolerant I/O
		TT	3.6 V tolerant I/O
		В	Dedicated BOOT0 pin
		RST	Bidirectional reset pin with embedded weak pull-up resistor
			Option for TT or FT I/Os
I/O st	ructure	_f ⁽¹⁾	I/O, Fm+ capable
		_u ⁽²⁾	I/O, with USB function supplied by V _{DDUSB}
		_a ⁽³⁾⁽⁴⁾	I/O, with Analog switch function supplied by V _{DDA}
		_s ⁽⁵⁾	I/O supplied only by V _{DDIO2}
		_c	I/O, USB Type-C PD capable
		_d	I/O, USB Type-C PD dead battery function
No	otes	Unless otherwise specified	by a note, all I/Os are set as analog inputs during and after reset.
Pin	Alternate functions	Functions selected through	GPIOx_AFR registers
functions	Additional functions	Functions directly selected/	enabled through peripheral registers

- 1. The related I/O structures in *Table 21* are: FT_f, FT_fa.
- 2. The related I/O structures in *Table 21* are: FT_u.
- 3. The related I/O structures in *Table 21* are: FT_a, FT_fa, TT_a.
- 4. The analog switch for the TSC function is supplied by $V_{\mbox{\scriptsize DD}}$.
- 5. The related I/O structures in *Table 21* are: FT_s, FT_fs.

Pinouts and pin description

									Ta	able 2	21. S	ГМ32	L562	xx pi	n defini	tions	;			
						Pin	Num	ber												
STI	/132L5	62xx	ххР	8	STM32	2L562	xxxx	2		S	TM32	L562	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	1	В3	1	-	1	-	1	В3	1	PE2	I/O	FT	1	TRACECK, TIM3_ETR, SAI1_CK1, TSC_G7_IO1, FMC_A23, SAI1_MCLK_A, EVENTOUT	-
-	-	-	-	-	-	2	A2	2	-	-	-	2	A2	2	PE3	I/O	FT	-	TRACED0, TIM3_CH1, OCTOSPI1_DQS, TSC_G7_IO2, FMC_A19, SAI1_SD_B, EVENTOUT	-
-	-	-	-	-	-	3	B2	3	-	1	-	3	B2	3	PE4	I/O	FT	-	TRACED1, TIM3_CH2, SAI1_D2, DFSDM1_DATIN3, TSC_G7_IO3, FMC_A20, SAI1_FS_A, EVENTOUT	-
-	-	-	-	-	-	4	A1	4	-	1	-	4	A1	4	PE5	I/O	FT	-	TRACED2, TIM3_CH3, SAI1_CK2, DFSDM1_CKIN3, TSC_G7_IO4, FMC_A21, SAI1_SCK_A, EVENTOUT	-

						Pin	Num	ber					•							
STI	/132L5	62xx	ххР	5	STM3	2L562	xxxx)		S	TM32	L562>	cχ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	5	C2	5	-	-	-	5	C2	5	PE6	I/O	FT	-	TRACED3, TIM3_CH4, SAI1_D1, FMC_A22, SAI1_SD_A, EVENTOUT	WKUP3, TAMP_IN3/TAMP_ OUT6
1	1	1	В9	1	В9	6	B1	6	1	1	1	6	B1	6	VBAT	S	-	-	-	-
2	2	2	В7	2	В7	7	С3	7	2	2	2	7	C3	7	PC13	I/O	FT	(1) (2)	EVENTOUT	WKUP2, RTC_TS/RTC_ OUT1, TAMP_IN1/TAMP_ OUT2
3	3	3	C9	3	С9	8	C1	8	3	3	3	8	C1	8	PC14- OSC3 2_IN (PC14)	I/O	FT	(1) (2)	EVENTOUT	OSC32_IN
4	4	4	C8	4	C8	9	D1	9	4	4	4	9	D1	9	PC15- OSC3 2_OUT (PC15)	I/O	FT	(1) (2)	EVENTOUT	OSC32_OUT
-	-	-	-	-	-	-	D2	10	-	-	-	-	D2	10	PF0	I/O	FT _f	-	I2C2_SDA, FMC_A0, EVENTOUT	-
-	-	-	-	ı	-	-	E2	11	ı	ı	-	-	E2	11	PF1	I/O	FT _f	ı	I2C2_SCL, FMC_A1, EVENTOUT	-

DS12736 Rev 5

								Tal	ble 2	1. ST	M32L	.562x	x pin	defii	nitions	(cont	inue	d)		
						Pin	Num	ber												
STI	/132L5	562xx	ххР	5	STM3	2L562	xxxx	2		s	TM32	L562>	α		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	E1	12	-	-	-	-	E1	12	PF2	I/O	FT	-	I2C2_SMBA, FMC_A2, EVENTOUT	-
-	-	-	-	-	-	-	D3	13	-	-	-	-	D3	13	PF3	I/O	FT	-	LPTIM3_IN1, FMC_A3, EVENTOUT	-
-	-	-	-	-	-	-	E3	14	-	-	-	-	E3	14	PF4	I/O	FT	-	LPTIM3_ETR, FMC_A4, EVENTOUT	-
-	-	-	-	-	-	-	F2	15	1	-	-	-	F2	15	PF5	I/O	FT	-	LPTIM3_OUT, FMC_A5, EVENTOUT	-
-	-	-	-	-	-	10	F6	16	-	-	-	10	F6	16	VSS	S	-	-	-	-
-	-	-	-	-	-	11	F7	17	-	-	-	11	F7	17	VDD	S	-	-	-	-
-	-	-	-	-	-	-	-	18	-	-	-	-	-	18	PF6	I/O	FT	-	TIM5_ETR, TIM5_CH1, OCTOSPI1_IO3, SAI1_SD_B, EVENTOUT	-
-	-	-	-	-	-	-	-	19	-	-	-	-	-	19	PF7	I/O	FT	-	TIM5_CH2, OCTOSPI1_IO2, SAI1_MCLK_B, EVENTOUT	TAMP_IN6/TAMP_ OUT3
-	-	-	-	-	-	-	-	20	-	-	-	-	-	20	PF8	I/O	FT	-	TIM5_CH3, OCTOSPI1_IO0, SAI1_SCK_B, EVENTOUT	TAMP_IN7/TAMP_ OUT8

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	M32L5	62xx	ххР	5	STM32	2L562	xxxx	2		S	TM32	L562>	ίχ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	-	-	-	-	-	-	21	-	1	-	-	-	21	PF9	I/O	FT	-	TIM5_CH4, OCTOSPI1_IO1, SAI1_FS_B, TIM15_CH1, EVENTOUT	TAMP_IN8/TAMP_ OUT7
-	-	-	-	-	-	-	-	22	-	-	-	-	-	22	PF10	I/O	FT	-	OCTOSPI1_CLK, DFSDM1_CKOUT, SAI1_D3, TIM15_CH2, EVENTOUT	-
5	5	5	D9	5	D9	12	F1	23	5	5	5	12	F1	23	PH0- OSC_I N (PH0)	I/O	FT	-	EVENTOUT	OSC_IN
6	6	6	D8	6	D8	13	G1	24	6	6	6	13	G1	24	PH1- OSC_ OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
7	7	7	E9	7	E9	14	G2	25	7	7	7	14	G2	25	NRST	I-O	RS T	-	-	-

Pinouts and pin description

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	M32L5	62xx	ххР	5	STM32	2L562	xxxx	2		S	TM32	L562>	СХ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	8	E7	8	E7	15	H2	26	1	1	8	15	H2	26	PC0	I/O	FT _fa	-	LPTIM1_IN1, OCTOSPI1_IO7, I2C3_SCL, LPUART1_RX, SDMMC1_D5, SAI2_FS_A, LPTIM2_IN1, EVENTOUT	ADC12_IN1
-	-	9	F8	9	F8	16	G3	27	-	-	9	16	G3	27	PC1	I/O	FT _fa	-	TRACED0, LPTIM1_OUT, SPI2_MOSI, I2C3_SDA, LPUART1_TX, OCTOSPI1_IO4, SAI1_SD_A, EVENTOUT	ADC12_IN2
-	-	10	F7	10	F7	17	F3	28	1	1	10	17	F3	28	PC2	I/O	FT _a	-	LPTIM1_IN2, SPI2_MISO, DFSDM1_CKOUT, OCTOSPI1_IO5, EVENTOUT	ADC12_IN3

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	/132L5	62xx	ххР	5	STM32	2L562	xxxx	2		S	TM32	L562>	ίχ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	11	G7	11	G7	18	F4	29	-	-	11	18	F4	29	PC3	I/O	FT _a	-	LPTIM1_ETR, LPTIM3_OUT, SAI1_D1, SPI2_MOSI, OCTOSPI1_IO6, SAI1_SD_A, LPTIM2_ETR, EVENTOUT	ADC12_IN4
-	ı	-	-	-	-	-	-	-	ı	ı	ı	19	-	30	VSSA	S	-	ı	-	-
-	-	-	-	-	-	-	-	-	-	-	-	20	-	31	VREF-	S	-	ı	-	-
8	8	12	G9	12	G9	19	H1	30	8	8	12	-	H1	-	VSSA/ VREF-	s	-	-	-	-
-	-	-	G8	-	G8	20	J1	31	-	-	-	21	J1	32	VREF +	s	-	-	-	VREFBUF_OUT
-	-	-	Н9	-	Н9	21	K1	32	-	-	-	22	K1	33	VDDA	S	-	-	-	-
9	9	13	-	13	-	-	-	-	9	9	13	-	-	-	VDDA/ VREF +	S	-	ı	-	-

								Tal	ole 2	1. ST	M32L	.562x	x pin	defi	nitions ((cont	inue	d)		
						Pin	Num	ber												
STI	//32L5	62xx	xxP	5	STM3	2L562	xxxx	2		S	TM32	L562>	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
10	10	14	Н8	14	Н8	22	J2	33	10	10	14	23	J2	34	PA0	I/O	FT _a	-	TIM2_CH1, TIM5_CH1, TIM8_ETR, USART2_CTS/USART 2_NSS, UART4_TX, SAI1_EXTCLK, TIM2_ETR, EVENTOUT	OPAMP1_VINP, ADC12_IN5, WKUP1, TAMP_IN2/TAMP_ OUT1
-	-	-	-	-	-	-	НЗ	-	-	-	-	-	НЗ	-	OPAM P1_VI NM	1	TT	-	-	-
11	11	15	F6	15	F6	23	G4	34	11	11	15	24	G4	35	PA1	I/O	FT _a	-	TIM2_CH2, TIM5_CH2, I2C1_SMBA, SPI1_SCK, USART2_RTS/USART 2_DE, UART4_RX, OCTOSPI1_DQS, TIM15_CH1N, EVENTOUT	OPAMP1_VINM, ADC12_IN6, TAMP_IN5/TAMP_ OUT4

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	M32L5	62xx	ххР	5	STM32	2L562	xxxx	2		s	TM32	L562>	СX		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
12	12	16	G6	16	G6	24	K2	35	12	12	16	25	K2	36	PA2	I/O	FT _a	-	TIM2_CH3, TIM5_CH3,	ADC12_IN7, WKUP4/LSCO, COMP1_INP
13	13	17	F5	17	F5	25	L1	36	13	13	17	26	L1	37	PA3	I/O	TT _a	-	TIM2_CH4, TIM5_CH4, SAI1_CK1, USART2_RX, LPUART1_RX, OCTOSPI1_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	OPAMP1_VOUT, ADC12_IN8
-	-	18	H2	18	H2	26	G7	37	ı	ı	18	27	G7	38	VSS	S	ı	ı	-	-
-	-	19	-	19	-	27	G6	38	-	ı	19	28	G6	39	VDD	S	-	ı	-	-
14	14	20	H7	20	H7	28	L3	39	14	14	20	29	L3	40	PA4	I/O	TT _a	-	OCTOSPI1_NCS, SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	ADC12_IN9, DAC1_OUT1

DS12736 Rev 5

Pinouts and pin description

								Tal	ble 2	1. ST	M32L	.562x	x pin	defi	nitions	(cont	tinue	d)		
						Pin	Num	ber												
ST	M32L5	62xx	ххР		3TM32	2L562	xxxxC	2		S	TM32	L562>	¢χ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
15	15	21	Н6	21	Н6	29	M1	40	15	15	21	30	M1	41	PA5	I/O	TT _a	-	TIM2_CH1, TIM2_ETR, TIM8_CH1N, SPI1_SCK, LPTIM2_ETR, EVENTOUT	ADC12_IN10, DAC1_OUT2
16	16	22	G5	22	G5	30	L2	41	16	16	22	31	L2	42	PA6	I/O	FT _a	-	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, USART3_CTS/USART 3_NSS, LPUART1_CTS, OCTOSPI1_IO3, TIM16_CH1, EVENTOUT	OPAMP2_VINP, ADC12_IN11

M2

M2

OPAM P2_VI

NM

TT

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	M32L5	62xx	кхР	5	STM32	2L562	xxxx	2		S	TM32	L562>	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
17	17	23	J7	23	J7	31	КЗ	42	17	17	23	32	КЗ	43	PA7	I/O	FT _fa	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, I2C3_SCL, SPI1_MOSI, OCTOSPI1_IO2, TIM17_CH1, EVENTOUT	OPAMP2_VINM, ADC12_IN12
-	-	24	G4	-	G4	-	МЗ	-	-	-	24	33	МЗ	44	PC4	I/O	FT _a	-	USART3_TX, OCTOSPI1_IO7, EVENTOUT	COMP1_INM, ADC12_IN13
-	-	-	1	-	-	-	J3	-	-	-	25	34	J3	45	PC5	I/O	FT _a	-	SAI1_D3, USART3_RX, EVENTOUT	ADC12_IN14, WKUP5, TAMP_IN4/TAMP_ OUT5, COMP1_INP
18	18	25	J6	24	J6	32	M4	43	18	18	26	35	M4	46	PB0	I/O	TT _a	-	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI1_NSS, USART3_CK, OCTOSPI1_IO1, COMP1_OUT, SAI1_EXTCLK, EVENTOUT	OPAMP2_VOUT, ADC12_IN15

								Tal	ole 2	1. ST	M32L	.562x	x pin	defir	nitions	(cont	inue	d)		
						Pin	Num	ber												
STI	/132L5	62xx	ххР	8	STM32	2L562	xxxx	2		S	TM32	L562x	¢χ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
19	19	26	H5	25	H5	33	L4	44	19	19	27	36	L4	47	PB1	I/O	FT _a	-	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, DFSDM1_DATIN0, USART3_RTS/USART 3_DE, LPUART1_RTS/LPUA RT1_DE, OCTOSPI1_IO0, LPTIM2_IN1, EVENTOUT	COMP1_INM, ADC12_IN16
20	20	27	J5	26	J5	34	K4	45	20	20	28	37	K4	48	PB2	I/O	FT _a	-	LPTIM1_OUT, 12C3_SMBA, DFSDM1_CKIN0, OCTOSPI1_DQS, UCPD1_FRSTX1, EVENTOUT	RTC_OUT2, COMP1_INP
-	1	-	-	-	-	-	K5	46	-	-	-	-	K5	49	PF11	I/O	FT	-	OCTOSPI1_NCLK, EVENTOUT	-
-	-	-	-	-	-	-	L5	47	-	-	-	-	L5	50	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	-	-	J9	-	J9	-	-	48	-	-	-	-	-	51	VSS	S	-	-	-	-
-	-	-	J8	-	J8	-	-	49	-	-	-	-	-	52	VDD	S	-	-	-	-
-	ı	ı	-	-	-	-	M5	50	ı	-	-	-	M5	53	PF13	I/O	FT	-	I2C4_SMBA, FMC_A7, EVENTOUT	-

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	//32L5	62xx	ххР		STM3	2L562	xxxx)		s	TM32	L562>	cχ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	-	-	-	-	-	J5	51	-	-	-	-	J5	54	PF14	I/O	FT _f	-	I2C4_SCL, TSC_G8_IO1, FMC_A8, EVENTOUT	-
-	-	-	-	-	-	-	L6	52	-	-	-	-	L6	55	PF15	I/O	FT _f	-1	I2C4_SDA, TSC_G8_IO2, FMC_A9, EVENTOUT	-
-	-	-	-	-	-	-	M6	53	-	-	-	-	M6	56	PG0	I/O	FT	1	TSC_G8_IO3, FMC_A10, EVENTOUT	-
-	-	-	-	-	-	-	K6	54	-	-	-	-	K6	57	PG1	I/O	FT	-	TSC_G8_IO4, FMC_A11, EVENTOUT	-
-	-	-	-	-	-	35	K7	55	-	-	-	38	K7	58	PE7	I/O	FT	-	TIM1_ETR, DFSDM1_DATIN2, FMC_D4, SAI1_SD_B, EVENTOUT	-
-	-	-	-	-	-	36	J6	56	-	-	-	39	J6	59	PE8	I/O	FT	1	TIM1_CH1N, DFSDM1_CKIN2, FMC_D5, SAI1_SCK_B, EVENTOUT	-
-	-	-	-	-	-	37	M7	57	-	-	-	40	M7	60	PE9	I/O	FT	-	TIM1_CH1, DFSDM1_CKOUT, OCTOSPI1_NCLK, FMC_D6, SAI1_FS_B, EVENTOUT	-

DS12736 Rev 5

								Tal	ble 2	1. ST	M32L	.562x	x pin	defi	nitions	(cont	tinue	d)		
						Pin	Num	ber												
STI	/132L5	62xx	xxP	5	STM32	2L562	xxxx	2		S	TM32	L562>	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	-	58	-	-	-	-	L10	61	VSS	S	-	-	-	-
-	-	-	H1	-	H1	-	J4	59	-	-	-	-	J4	62	VDD	S	-	-	-	-
-	1	1	-	-	1	38	J7	60	1	1	-	41	J7	63	PE10	I/O	FT	-	TIM1_CH2N, TSC_G5_IO1, OCTOSPI1_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT	-
-	1	-	-	-	-	39	L7	61	1	-	-	42	L7	64	PE11	I/O	FT	-	TIM1_CH2, TSC_G5_IO2, OCTOSPI1_NCS, FMC_D8, EVENTOUT	-
-	-	-	-	-	-	40	J8	62	-	-	-	43	J8	65	PE12	I/O	FT	-	TIM1_CH3N, SPI1_NSS, TSC_G5_IO3, OCTOSPI1_IO0, FMC_D9, EVENTOUT	-
-	1	1	J4	-	1	41	M8	63	1	1	-	44	M8	66	PE13	I/O	FT	-	TIM1_CH3, SPI1_SCK, TSC_G5_IO4, OCTOSPI1_IO1, FMC_D10, EVENTOUT	-

18

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	M32L5	62xx	ххР	5	STM32	2L562	xxxx	2		S	TM32	L562>	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	H4	-	-	42	K8	64	-	-	-	45	K8	67	PE14	I/O	FT	-	TIM1_CH4, TIM1_BKIN2, SPI1_MISO, OCTOSPI1_IO2, FMC_D11, EVENTOUT	-
-	-	-	НЗ	-	-	43	L8	65	-	-	-	46	L8	68	PE15	I/O	FT	1	TIM1_BKIN, SPI1_MOSI, OCTOSPI1_IO3, FMC_D12, EVENTOUT	-
21	21	28	J3	27	J4	44	K9	66	21	21	29	47	К9	69	PB10	I/O	FT _f	-	TIM2_CH3, LPTIM3_OUT, I2C4_SCL, I2C2_SCL, SPI2_SCK, USART3_TX, LPUART1_RX, TSC_SYNC, OCTOSPI1_CLK, COMP1_OUT, SAI1_SCK_A, EVENTOUT	-

								Tal	ble 2	1. ST	M32L	.562x	x pin	defi	nitions (cont	inue	d)		
						Pin	Num	ber												
STI	/132L5	62xx	ххР	5	STM32	2L562	xxxx	2		S	TM32	L562>	СХ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	29	J2	-	H4	45	L9	67	22	22	30	48	L9	70	PB11	I/O	FT _f	-	TIM2_CH4, I2C4_SDA, I2C2_SDA, USART3_RX, LPUART1_TX, OCTOSPI1_NCS, COMP2_OUT, EVENTOUT	-
-	-	-	-	28	J3	46	M9	68	-	-	-	-	-	-	VDDS MPS	S	-	-	-	-
-	-	-	-	29	НЗ	47	M1 0	69	-	-	-	-	-	-	VLXS MPS	S	-	1	-	-
-	-	-	-	30	J2	48	L10	70	-	-	-	-	-	-	VSSS MPS	S	-	-	-	-
22	22	30	J1	-	-	-	-	-	-	-	-	-	-	-	VDD12 _1	S	-	1	-	-
23	23	31	B2	31	B2	49	E9	71	23	23	31	49	E9	71	VSS	S	-	ı	-	-
-	1	-	-	32	J1	50	M11	72	-	-	-	-	-	-	V15S MPS_ 1	S	-	-	-	-
24	24	32	A1	33	A1	51	D4	73	24	24	32	50	D4	72	VDD	S	-	-	-	-

577

						Pin	Num	ber					<u>-</u>							
STI	M32L5	62xx	ххР	5	STM32	2L562	xxxx	2		s	TM32	L562	кх		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
25	25	33	G2	-	G2	-	L11	-	25	25	33	51	L11	73	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS, DFSDM1_DATIN1, USART3_CK, LPUART1_RTS/LPUA RT1_DE, TSC_G1_IO1, OCTOSPI1_NCLK, SAI2_FS_A, TIM15_BKIN, EVENTOUT	-
26	26	34	F2	34	F2	52	K10	74	26	26	34	52	K10	74	PB13	I/O	FT _f	-	TIM1_CH1N, LPTIM3_IN1, I2C2_SCL, SPI2_SCK, DFSDM1_CKIN1, USART3_CTS/USART 3_NSS, LPUART1_CTS, TSC_G1_IO2, UCPD1_FRSTX2, SAI2_SCK_A, TIM15_CH1N, EVENTOUT	-

								Tal	ole 2	1. ST	M32L	.562x	x pin	defir	nitions	(cont	inue	d)		
						Pin	Num	ber												
STI	/132L5	62xx	кхР	8	STM3	2L562	xxxx	2		S	TM32	L562>	ίχ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
27	27	35	G1	35	G1	53	K11	75	27	27	35	53	K11	75	PB14	I/O	FT _fd	-	TIM1_CH2N, LPTIM3_ETR, TIM8_CH2N, I2C2_SDA, SPI2_MISO, DFSDM1_DATIN2, USART3_RTS/USART 3_DE, TSC_G1_IO3, SAI2_MCLK_A, TIM15_CH1, EVENTOUT	UCPD1_DB2
28	28	36	F1	36	F1	54	K12	76	28	28	36	54	K12	76	PB15	I/O	FT _c	-	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI, DFSDM1_CKIN2, SAI2_SD_A, TIM15_CH2, EVENTOUT	UCPD1_CC2
-	-	-	-	-	-	55	L12	77	-	-	-	55	L12	77	PD8	I/O	FT	-	USART3_TX, FMC_D13, EVENTOUT	-
-	-	-	-	-	-	56	J10	78	-	1	-	56	J10	78	PD9	I/O	FT	-	USART3_RX, FMC_D14, SAI2_MCLK_A, EVENTOUT	-

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
ST	M32L5	62xx	кхР	5	STM3	2L562	xxxx	2		S	TM32	L562>	ίχ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	57	M1 2	79	-	1	-	57	M1 2	79	PD10	I/O	FT	-	USART3_CK, TSC_G6_IO1, FMC_D15, SAI2_SCK_A, EVENTOUT	-
-	-	-	-	-	-	58	J11	80	-	1	-	58	J11	80	PD11	I/O	FT	-	I2C4_SMBA, USART3_CTS/USART 3_NSS, TSC_G6_IO2, FMC_A16, SAI2_SD_A, LPTIM2_ETR, EVENTOUT	-
-	-	-	-	-	-	59	J12	81	-	-	-	59	J12	81	PD12	I/O	FT _f	-	TIM4_CH1, I2C4_SCL, USART3_RTS/USART 3_DE, TSC_G6_IO3, FMC_A17, SAI2_FS_A, LPTIM2_IN1, EVENTOUT	-
-	-	-	-	-	-	60	H11	82	-	1	-	60	H11	82	PD13	I/O	FT _f	-	TIM4_CH2, I2C4_SDA, TSC_G6_IO4, FMC_A18, LPTIM2_OUT, EVENTOUT	-
-	-	-	-	-	-	-	-	83	-	-	-	-	-	83	VSS	S	-	•	-	-

								Tal	ble 2	1. ST	M32L	.562x	x pin	defi	nitions	(cont	tinue	d)		
						Pin	Pin Number													
STI	//32L5	62xx	ххР	8	STM32	2L562	562xxxxQ			S	TM32	L562	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	-	84	-	-	-	-	-	84	VDD	S	-	-	-	-
-	-	-	-	-	-	61	H10	85	-	-	-	61	H10	85	PD14	I/O	FT	-	TIM4_CH3, FMC_D0, EVENTOUT	-
-	-	-	-	-	-	62	H12	86	-	-	-	62	H12	86	PD15	I/O	FT	-	TIM4_CH4, FMC_D1, EVENTOUT	-
-	-	-	-	-	-	-	G10	87	-	-	-	-	G10	87	PG2	I/O	FT _s	-	SPI1_SCK, FMC_A12, SAI2_SCK_B, EVENTOUT	-
-	-	-	-	-	-	-	G11	88	-	-	-	-	G11	88	PG3	I/O	FT _s	-	SPI1_MISO,FMC_A13, SAI2_FS_B, EVENTOUT	-
-	-	-	-	-	-	-	G9	89	ı	ı	-	-	G9	89	PG4	I/O	FT _s	-	SPI1_MOSI,FMC_A14, SAI2_MCLK_B, EVENTOUT	-
-	-	-	-	-	-	-	G12	90	-	-	-	-	G12	90	PG5	I/O	FT _s	_	SPI1_NSS, LPUART1_CTS, FMC_A15, SAI2_SD_B, EVENTOUT	-

47//	1

						Pin	Num	ber												
STI	/132L5	62xx	ххР	5	STM32	2L562	xxxx)		S	TM32	L562	кх		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	F9	91	-	-	-	-	F9	91	PG6	I/O	FT _s	-	OCTOSPI1_DQS, I2C3_SMBA, LPUART1_RTS/LPUA RT1_DE, UCPD1_FRSTX1, EVENTOUT	-
-	-	-	-	-	-	-	F10	92	-	-	-	-	F10	92	PG7	I/O	FT _fs	-	SAI1_CK1, I2C3_SCL, DFSDM1_CKOUT, LPUART1_TX, UCPD1_FRSTX2, FMC_INT, SAI1_MCLK_A, EVENTOUT	-
-	1	-	-	-	-	-	F12	93	1	-	-	-	F12	93	PG8	I/O	FT _fs	1	I2C3_SDA, LPUART1_RX, EVENTOUT	-
-	-	-	-	-	-	-	-	94	-	-	-	-	-	94	VSS	S	-	-	-	-
-	-	-	-	-	-	-	-	95	-	-	-	_	-	95	VDDIO 2	S	-	ı	-	-

						Pin	Num	ber												
STI	//32L5	62xx	ххР	8	STM32	2L562	xxxxQ	2		S	TM32	L562>	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	37	E1	37	E1	63	F11	96	-	-	37	63	F11	96	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, DFSDM1_CKIN3, SDMMC1_D0DIR, TSC_G4_IO1, SDMMC1_D6, SAI2_MCLK_A, EVENTOUT	-
-	-	38	E2	38	E2	64	E10	97	1	-	38	64	E10	97	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, DFSDM1_DATIN3, SDMMC1_D123DIR, TSC_G4_IO2, SDMMC1_D7, SAI2_MCLK_B, EVENTOUT	-
-	-	39	F3	39	F3	65	E12	98	1	-	39	65	E12	98	PC8	I/O	FT	-	TIM3_CH3, TIM8_CH3, TSC_G4_IO3, SDMMC1_D0, EVENTOUT	-

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
STI	M32L5	62xx	ххР	8	STM32	M32L562xxxxQ STM32		TM32	L562)	κx		set)								
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	40	G3	40	G3	66	E11	99	-	-	40	66	E11	99	PC9	I/O	FT _f	-	TRACED0, TIM8_BKIN2, TIM3_CH4, TIM8_CH4, TSC_G4_IO4, USB_NOE, SDMMC1_D1, SAI2_EXTCLK, EVENTOUT	-
29	29	41	F4	41	F4	67	D12	100	29	29	41	67	D12	100	PA8	I/O	FT _f	-	MCO, TIM1_CH1, SAI1_CK2, USART1_CK, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT	-
30	30	42	D1	42	D1	68	D10	101	30	30	42	68	D10	101	PA9	I/O	FT _fu	-	TIM1_CH2, SPI2_SCK, USART1_TX, SAI1_FS_A, TIM15_BKIN, EVENTOUT	-
31	31	43	E3	43	E3	69	D11	102	31	31	43	69	D11	102	PA10	I/O	FT _fu	-	TIM1_CH3, SAI1_D1, USART1_RX, CRS_SYNC, SAI1_SD_A, TIM17_BKIN, EVENTOUT	-

								Tal	ole 2	1. ST	M32L	.562x	x pin	defi	nitions ((cont	inue	d)		
						Pin	Num	ber												
STI	/132L5	62xx	кхР	,	STM32	2L562	xxxx	2		s	TM32	L562	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
32	32	44	C1	44	C1	70	C12	103	32	32	44	70	C12	103	PA11	I/O	FT _u	-	TIM1_CH4, TIM1_BKIN2, SPI1_MISO, USART1_CTS/USART 1_NSS, FDCAN1_RX, USB_DM, EVENTOUT	-
33	33	45	C2	45	C2	71	B12	104	33	33	45	71	B12	104	PA12	I/O	FT _u	-	TIM1_ETR, SPI1_MOSI, USART1_RTS/USART 1_DE, FDCAN1_TX, USB_DP, EVENTOUT	-
34	34	46	D2	46	D2	72	C10	105	34	34	46	72	C10	105	PA13 (JTMS/ SWDI O)	I/O	FT	(3)	JTMS/SWDIO, IR_OUT, USB_NOE, SAI1_SD_B, EVENTOUT	-
-	ı	47	ı	47	-	-	-	-	-	ı	47	-	-	-	VSS	S	-	-	-	-
-	-	48	B1	48	B1	73	A12	106	-	-	48	73	A12	106	VDDU SB	S	-	-	-	-

74

75

107

108

VSS

VDD

H4

D9

S

S

-

-

-

-

-

В5

Α9

35

36

35

36

B5

Α9

74 H4 107

75 D9

35

36

108

35

36

18

								Tal	ole 2	1. ST	M32L	.562x	x pin	defii	nitions	(cont	inue	d)	,	
						Pin	Num	ber												
STI	//32L5	62xx	ххР	5	STM32	2L562	xxxx	ຊ		S	TM32	L562	кх		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
37	37	49	D3	49	D3	76	C11	109	37	37	49	76	C11	109	PA14 (JTCK/ SWCL K)	I/O	FT	(3)	JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, SAI1_FS_B, EVENTOUT	-
38	38	50	E4	50	E4	77	A11	110	38	38	50	77	A11	110	PA15 (JTDI)	I/O	FT _c	(3)	JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS/USART 3_DE, UART4_RTS/UART4_ DE, SAI2_FS_B, EVENTOUT	UCPD1_CC1
-	-	51	A2	51	A2	78	B11	111	-	-	51	78	B11	111	PC10	I/O	FT	-	TRACED1, LPTIM3_ETR, SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, SDMMC1_D2, SAI2_SCK_B, EVENTOUT	-

								Tal	ole 2	1. ST	M32L	.562x	x pin	defir	nitions	(cont	inue	d)		
						Pin	Num	ber												
STI	/132L5	62xx	ххР	S	STM32	2L562	xxxx	Z Z		S	TM32	L562)	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	52	C3	52	C3	79	A10	112	-	-	52	79	A10	112	PC11	I/O	FT	-	LPTIM3_IN1, OCTOSPI1_NCS, SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, UCPD1_FRSTX2, SDMMC1_D3, SAI2_MCLK_B, EVENTOUT	-
-	1	53	В3	53	В3	80	B10	113	-	1	53	80	B10	113	PC12	I/O	FT	-	TRACED3, SPI3_MOSI, USART3_CK, UART5_TX, TSC_G3_IO4, SDMMC1_CK, SAI2_SD_B, EVENTOUT	-
-	-	-	-	1	-	81	C9	114	-	1	-	81	C9	114	PD0	I/O	FT	-	SPI2_NSS, FDCAN1_RX, FMC_D2, EVENTOUT	-
-	-	-	-	1	-	82	В9	115	-	1	-	82	В9	115	PD1	I/O	FT	1	SPI2_SCK, FDCAN1_TX, FMC_D3, EVENTOUT	-

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num													
STI	/132L5	62xx	ххР	5	STM32	2L562	хххх	2		S	TM32	L562x	x		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	-	А3	54	А3	83	A9	116	1	1	54	83	A9	116	PD2	I/O	FT	-	TRACED2, TIM3_ETR, USART3_RTS/USART 3_DE, UART5_RX, TSC_SYNC, SDMMC1_CMD, EVENTOUT	-
-	1	1	-	-	-	84	C8	117	1	1	1	84	C8	117	PD3	I/O	FT	-	SPI2_SCK, SPI2_MISO, DFSDM1_DATINO, USART2_CTS/USART 2_NSS, FMC_CLK, EVENTOUT	-
-	1	-	-	-	-	85	В8	118	1	1	-	85	B8	118	PD4	I/O	FT	-	SPI2_MOSI, DFSDM1_CKIN0, USART2_RTS/USART 2_DE, OCTOSPI1_IO4, FMC_NOE, EVENTOUT	-
-	1	-	-	-	-	86	A8	119	ı	ı	ı	86	A8	119	PD5	I/O	FT	-	USART2_TX, OCTOSPI1_IO5, FMC_NWE, EVENTOUT	-
-	-	-	-	-	-	-	-	120	-	-	-	-	-	120	VSS	S	-	-	-	-
-	-	-	-	-	-	-	-	121	-	-	ı	-	-	121	VDD	S	-	-	-	-

120/341

						Pin	Num	ber					-			Ì				
STN	/132L5	62xx	кхР	5	STM32	2L562	хххх	2		S	TM32	L562	кх		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	-	E5	-	E5	-	-	-	-	-	-	-	M11	126	PG11	I/O	FT _s	-	LPTIM1_IN2, OCTOSPI1_IO5, SPI3_MOSI, USART1_CTS/USART 1_NSS, SAI2_MCLK_A, TIM15_CH2, EVENTOUT	-
-	1	-	B4	-	B4	-	A6	126	-	-	-	-	A6	127	PG12	I/O	FT _s	1	LPTIM1_ETR, SPI3_NSS, USART1_RTS/USART 1_DE, FMC_NE4, SAI2_SD_A, EVENTOUT	-
-	-	-	A4	-	A4	-	-	127	-	-	-	-	M1 0	128	PG13	I/O	FT _fs	-	I2C1_SDA, USART1_CK, FMC_A24, EVENTOUT	-
-	-	ı	D5	-	D5	-	-	128	ı	ı	-	-	M9	129	PG14	I/O	FT _fs	-	I2C1_SCL, FMC_A25, EVENTOUT	
-	-	-	B8	-	B8	-	Н9	129	-	-	-	-	H9	130	VSS	S	-	-	-	-
-	-	-	A5	-	A5	-	D8	130	-	-	-	-	D8	131	VDDIO 2	s	-	ı	-	-

								Tal	ole 2	1. ST	M32L	.562x	x pin	defi	nitions	(con	tinue	d)		
						Pin	Num	ber												
STI	M32L5	62xx	ххР	5	STM3	2L562	хххх	2		S	ТМ32	L562>	¢χ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	C5	-	C5	-	-	131	-	-	-	-	B4	132	PG15	I/O	FT _s	-	LPTIM1_OUT, I2C1_SMBA, EVENTOUT	-
39	39	54	E6	55	E6	89	C6	132	39	39	55	89	C6	133	PB3 (JTDO/ TRAC ESWO	I/O	FT _a	-	JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK, USART1_RTS/USART 1_DE, CRS_SYNC, SAI1_SCK_B, EVENTOUT	COMP2_INM
40	40	55	В6	56	В6	90	В6	133	40	40	56	90	B6	134	PB4 (NJTR ST)	I/O	FT _fa	(3)	NJTRST, TIM3_CH1, I2C3_SDA, SPI1_MISO, SPI3_MISO, USART1_CTS/USART 1_NSS, UART5_RTS/UART5_ DE, TSC_G2_IO1, SAI1_MCLK_B, TIM17_BKIN, EVENTOUT	COMP2_INP

						Pin	Num	ber					-							
STI	M32L5	62xx	ххР	5	STM32	2L562	xxxx	2		s	TM32	L562>	κx		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
41	41	56	A6	57	A6	91	D6	134	41	41	57	91	D6	135	PB5	I/O	FT _d	-	LPTIM1_IN1, TIM3_CH2, OCTOSPI1_NCLK, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI, USART1_CK, UART5_CTS/UART5_ NSS, TSC_G2_IO2, COMP2_OUT, SAI1_SD_B, TIM16_BKIN, EVENTOUT	UCPD1_DB1
42	42	57	C6	58	C6	92	A5	135	42	42	58	92	A5	136	PB6	I/O	FT _fa	-	LPTIM1_ETR, TIM4_CH1, TIM8_BKIN2, I2C1_SCL, I2C4_SCL, USART1_TX, TSC_G2_IO3, SAI1_FS_B, TIM16_CH1N, EVENTOUT	COMP2_INP

								Tal	ole 2	1. ST	M32L	.562x	x pin	defi	nitions	(con	tinue	d)		
						Pin	Num	ber												
STI	//32L5	562xx	ххР	,	STM3	2L562	xxxx	Q .		s	ТМ32	L562>	СХ		set)					
UFQFPN48_Ext- SMPS	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
43	43	58	D6	59	D6	93	D5	136	43	43	59	93	D5	137	PB7	I/O	FT _fa	-	LPTIM1_IN2, TIM4_CH2, TIM8_BKIN, I2C1_SDA, I2C4_SDA, USART1_RX, UART4_CTS, TSC_G2_IO4, FMC_NL, TIM17_CH1N, EVENTOUT	COMP2_INM, PVD_IN
44	44	59	D7	60	D7	94	B5	137	44	44	60	94	B5	138	PH3- BOOT 0	I/O	FT	-	EVENTOUT	-
45	45	60	C7	61	C7	95	C5	138	45	45	61	95	C5	139	PB8	I/O	FT _f	-	TIM4_CH3, SAI1_CK1, I2C1_SCL, DFSDM1_CKOUT, SDMMC1_CKIN, FDCAN1_RX, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT	-

Table 21. STM32L562xx pin definitions (continued)

						Pin	Num	ber												
ST	M32L5	562xx	ххР		STM32	2L562	хххх	2		s	TM32	L562>	СХ		set)					
UFQFPN48_Ext-	LQFP48_Ext-SMPS	LQFP64_Ext-SMPS	WLCSP81_Ext-SMPS	LQFP64_SMPS	WLCSP81_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	UFQFPN48	LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	61	A7	-	A7	96	A4	139	46	46	62	96	A4	140	PB9	I/O	FT _f	1	IR_OUT, TIM4_CH4, SAI1_D2, I2C1_SDA, SPI2_NSS, SDMMC1_CDIR, FDCAN1_TX, SDMMC1_D5, SAI1_FS_A, TIM17_CH1, EVENTOUT	-
-	-	-	-	-	-	97	C4	140	-	-	-	97	C4	141	PE0	I/O	FT	1	TIM4_ETR, FMC_NBL0, TIM16_CH1, EVENTOUT	-
-	-	-	-	-	-	-	А3	141	-	-	-	98	А3	142	PE1	I/O	FT	1	FMC_NBL1, TIM17_CH1, EVENTOUT	-
46	46	62	A8	-	-	-	-	1	-	-	-	-	-	-	VDD12 _2	S	-	ı	-	-
47	47	63	E8	62	E8	98	E4	142	47	47	63	99	E4	143	VSS	S	-	i	-	-
-	-	-	-	63	A8	99	B4	143	ı	ı	-	1	-	-	V15S MPS_ 2	S	ı	ı	-	-
48	48	64	F9	64	F9	100	J9	144	48	48	64	100	J9	144	VDD	S	-	•	-	-

- 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

 - The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (for example to drive a LED).
- 2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0438 reference manual.
- 3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

Table 22. Alternate function AF0 to AF7⁽¹⁾

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1	I2C1/2/3/4	SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
	PA0	-	TIM2_CH1	TIM5_CH1	TIM8_ETR	-	-	-	USART2_CTS_ NSS
	PA1	-	TIM2_CH2	TIM5_CH2	-	I2C1_SMBA	SPI1_SCK	-	USART2_RTS_ DE
	PA2	-	TIM2_CH3	TIM5_CH3	-	-	-	-	USART2_TX
	PA3	-	TIM2_CH4	TIM5_CH4	SAI1_CK1	-	-	-	USART2_RX
	PA4	-	-	-	OCTOSPI1_NCS	-	SPI1_NSS	SPI3_NSS	USART2_CK
	PA5	-	TIM2_CH1	TIM2_ETR	TIM8_CH1N	-	SPI1_SCK	-	-
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	-	USART3_CTS_ NSS
Port	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	I2C3_SCL	SPI1_MOSI	-	-
Α	PA8	MCO	TIM1_CH1	-	SAI1_CK2	-	-	-	USART1_CK
	PA9	-	TIM1_CH2	-	SPI2_SCK	-	-	-	USART1_TX
	PA10	-	TIM1_CH3	-	SAI1_D1	-	-	-	USART1_RX
	PA11	-	TIM1_CH4	TIM1_BKIN2	-	-	SPI1_MISO	-	USART1_CTS_ NSS
	PA12	-	TIM1_ETR	-	-	-	SPI1_MOSI	-	USART1_RTS_ DE
	PA13	JTMS/SWDIO	IR_OUT	-	-	-	-	-	-
	PA14	JTCK/SWCLK	LPTIM1_OUT	-	-	I2C1_SMBA	I2C4_SMBA	-	-
	PA15	JTDI	TIM2_CH1	TIM2_ETR	USART2_RX	-	SPI1_NSS	SPI3_NSS	USART3_RTS_ DE

128/341

Table 22. Alternate function AF0 to AF7 ⁽¹⁾ (continued)
--

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1	12C1/2/3/4	SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	SPI1_NSS	-	USART3_CK
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	DFSDM1_DATI N0	USART3_RTS_ DE
	PB2	-	LPTIM1_OUT	-	-	I2C3_SMBA	-	DFSDM1_CKI N0	-
	РВ3	JTDO/TRACE SWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK	USART1_RTS_ DE
	PB4	NJTRST	-	TIM3_CH1	-	I2C3_SDA	SPI1_MISO	SPI3_MISO	USART1_CTS_ NSS
	PB5	-	LPTIM1_IN1	TIM3_CH2	OCTOSPI1_NCLK	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI	USART1_CK
	PB6	-	LPTIM1_ETR	TIM4_CH1	TIM8_BKIN2	I2C1_SCL	I2C4_SCL	-	USART1_TX
Port	PB7	-	LPTIM1_IN2	TIM4_CH2	TIM8_BKIN	I2C1_SDA	I2C4_SDA	-	USART1_RX
В	PB8	-	-	TIM4_CH3	SAI1_CK1	I2C1_SCL	DFSDM1_CKOU T	-	-
	PB9	-	IR_OUT	TIM4_CH4	SAI1_D2	I2C1_SDA	SPI2_NSS	-	-
	PB10	-	TIM2_CH3	LPTIM3_OUT	I2C4_SCL	I2C2_SCL	SPI2_SCK	-	USART3_TX
	PB11	-	TIM2_CH4	-	I2C4_SDA	I2C2_SDA	-	-	USART3_RX
	PB12	-	TIM1_BKIN	-	TIM1_BKIN	I2C2_SMBA	SPI2_NSS	DFSDM1_DATI N1	USART3_CK
	PB13	-	TIM1_CH1N	LPTIM3_IN1	-	I2C2_SCL	SPI2_SCK	DFSDM1_CKI N1	USART3_CTS_ NSS
	PB14		TIM1_CH2N	LPTIM3_ETR	TIM8_CH2N	I2C2_SDA	SPI2_MISO	DFSDM1_DATI N2	USART3_RTS_ DE
	PB15	RTC_REFIN	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI	DFSDM1_CKI N2	-

Table 22. Alternate function AF0 to AF7⁽¹⁾ (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1	12C1/2/3/4	SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
	PC0	-	LPTIM1_IN1	-	OCTOSPI1_IO7	I2C3_SCL	-	-	-
	PC1	TRACED0	LPTIM1_OUT	-	SPI2_MOSI	I2C3_SDA	-	-	-
	PC2	-	LPTIM1_IN2	-	-	-	SPI2_MISO	DFSDM1_CKO UT	-
	PC3	-	LPTIM1_ETR	LPTIM3_OUT	SAI1_D1	-	SPI2_MOSI	-	-
	PC4	-	-	-	-	-	-	-	USART3_TX
	PC5	-	-	-	SAI1_D3	-	-	-	USART3_RX
	PC6	-	-	TIM3_CH1	TIM8_CH1	-	-	DFSDM1_CKI N3	-
Port C	PC7	-	-	TIM3_CH2	TIM8_CH2	-	-	DFSDM1_DATI N3	-
	PC8	-	-	TIM3_CH3	TIM8_CH3	-	-	-	-
	PC9	TRACED0	TIM8_BKIN2	TIM3_CH4	TIM8_CH4	-	-	-	-
	PC10	TRACED1	-	LPTIM3_ETR	-	-	-	SPI3_SCK	USART3_TX
	PC11	-	-	LPTIM3_IN1	-	-	OCTOSPI1_NCS	SPI3_MISO	USART3_RX
	PC12	TRACED3	-	-	-	-	-	SPI3_MOSI	USART3_CK
	PC13	-	-	-	-	-	-	-	-
	PC14	-	-	-	-	-	-	-	-
	PC15	-	-	-	-	-	-	-	-

130/341

Table 22. Alternate function AF0 to AF7⁽¹⁾ (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1	I2C1/2/3/4	SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
	PD0	-	-	-	-	-	SPI2_NSS	-	-
	PD1	-	-	-	-	-	SPI2_SCK	-	-
	PD2	TRACED2	-	TIM3_ETR	-	-	-	-	USART3_RTS_ DE
	PD3	-	-	-	SPI2_SCK	-	SPI2_MISO	DFSDM1_DATI N0	USART2_CTS_ NSS
	PD4	-	-	-	-	-	SPI2_MOSI	DFSDM1_CKI N0	USART2_RTS_ DE
	PD5	-	-	-	-	-	-	-	USART2_TX
	PD6	-	-	-	SAI1_D1	-	SPI3_MOSI	DFSDM1_DATI N1	USART2_RX
Port D	PD7	-	-	-	-	-	-	DFSDM1_CKI N1	USART2_CK
	PD8	-	-	-	-	-	-	-	USART3_TX
	PD9	-	-	-	-	-	-	-	USART3_RX
	PD10	-	-	-	-	-	-	-	USART3_CK
	PD11	-	-	-	-	I2C4_SMBA	-	-	USART3_CTS_ NSS
	PD12	-	-	TIM4_CH1	-	I2C4_SCL	-	-	USART3_RTS_ DE
	PD13	-	-	TIM4_CH2	-	I2C4_SDA	-	-	-
	PD14	-	-	TIM4_CH3	-	-	-	-	-
	PD15	-	-	TIM4_CH4	-	-	-	-	-

Table 22. Alternate function AF0 to AF7⁽¹⁾ (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Р	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1	I2C1/2/3/4	SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
	PE0	-	-	TIM4_ETR	-	-	-	-	-
	PE1	-	-	-	-	-	-	-	-
	PE2	TRACECK	-	TIM3_ETR	SAI1_CK1	-	-	-	-
	PE3	TRACED0	-	TIM3_CH1	OCTOSPI1_DQS	-	-	-	-
	PE4	TRACED1	-	TIM3_CH2	SAI1_D2	-	-	DFSDM1_DATI N3	-
	PE5	TRACED2	-	TIM3_CH3	SAI1_CK2	-	-	DFSDM1_CKI N3	-
	PE6	TRACED3	-	TIM3_CH4	SAI1_D1	-	-	-	-
Port E	PE7	-	TIM1_ETR	-	-	-	-	DFSDM1_DATI N2	-
=	PE8	-	TIM1_CH1N	-	-	-	-	DFSDM1_CKI N2	-
	PE9	-	TIM1_CH1	-	-	-	-	DFSDM1_CKO UT	-
	PE10	-	TIM1_CH2N	-	-	-	-	-	-
	PE11	-	TIM1_CH2	-	-	-	-	-	-
	PE12	-	TIM1_CH3N	-	-	-	SPI1_NSS	-	-
	PE13	-	TIM1_CH3	-	-	-	SPI1_SCK	-	-
	PE14	-	TIM1_CH4	TIM1_BKIN2	TIM1_BKIN2	-	SPI1_MISO	-	-
	PE15	-	TIM1_BKIN	-	TIM1_BKIN	-	SPI1_MOSI	-	-

Table 22. Alternate function AF0 to AF7⁽¹⁾ (continued)

			1			<u>-</u>	<u> </u>		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1	I2C1/2/3/4	SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
	PF0	-	-	-	-	I2C2_SDA	-	-	-
	PF1	-	-	-	-	I2C2_SCL	-	-	-
	PF2	-	-	-	-	I2C2_SMBA	-	-	-
	PF3	-	-	LPTIM3_IN1	-	-	-	-	-
	PF4	-	-	LPTIM3_ETR	-	-	-	-	-
	PF5	-	-	LPTIM3_OUT	-	-	-	-	-
	PF6	-	TIM5_ETR	TIM5_CH1	-	-	-	-	-
Port	PF7	-	-	TIM5_CH2	-	-	-	-	-
F	PF8	-	-	TIM5_CH3	-	-	-	-	-
	PF9	-	-	TIM5_CH4	-	-	-	-	-
	PF10	-	-	-	OCTOSPI1_CLK	-	-	DFSDM1_CKO UT	-
	PF11	-	-	-	OCTOSPI1_NCLK	-	-	-	-
	PF12	-	-	-	-	-	-	-	-
	PF13	-	-	-	-	I2C4_SMBA	-	-	-
	PF14	-	-	-	-	I2C4_SCL	-	-	-
	PF15	-	-	-	-	I2C4_SDA	-	-	-

Table 22. Alternate function AF0 to AF7⁽¹⁾ (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Р	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1		SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
	PG0	-	-	-	-	-	-	-	-
	PG1	-	-	-	-	-	-	-	-
	PG2	-	-	-	-	-	SPI1_SCK	-	-
	PG3	-	-	-	-	-	SPI1_MISO	-	-
	PG4	-	-	-	-	-	SPI1_MOSI	-	-
	PG5	-	-	-	-	-	SPI1_NSS	-	-
	PG6	-	-	-	OCTOSPI1_DQS	I2C3_SMBA	-	-	-
	PG7	-	-	-	SAI1_CK1	I2C3_SCL	-	DFSDM1_CKO UT	-
	PG8	-	-	-	-	I2C3_SDA	-	-	-
Port G	PG9	-	-	-	-	-	-	SPI3_SCK	USART1_TX
	PG1 0	-	LPTIM1_IN1	-	-	-	-	SPI3_MISO	USART1_RX
	PG11	-	LPTIM1_IN2	-	OCTOSPI1_IO5	-	-	SPI3_MOSI	USART1_CTS_ NSS
	PG1 2	-	LPTIM1_ETR	-	-	-	-	SPI3_NSS	USART1_RTS_ DE
	PG1 3	-	-	-	-	I2C1_SDA	-	-	USART1_CK
	PG1 4	-	-	-	-	I2C1_SCL	-	-	-
	PG1 5	-	LPTIM1_OUT	-	-	I2C1_SMBA	-	-	-

Table 22. Alternate function AF0 to AF7⁽¹⁾ (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	ort	SYS_AF	TIM1/2/5/8/L PTIM1	TIM1/2/3/4/5/ LPTIM3	SPI2/SAI1/I2C4/ USART2/TIM1/8/ OCTOSPI1	I2C1/2/3/4	SPI1/2/3/I2C4/ DFSDM1/ OCTOSPI1	SPI3/I2C3/DFS DM1/COMP1/	USART1/2/3
Port	PH0	-	-	-	-	-	-	-	-
H	PH1	-	-	-	-	-	-	-	-
-	PH3	-	-	-	-	-	-	-	-

^{1.} Refer to Table 23 for AF8 to AF15.

Table 23. Alternate function AF8 to AF15⁽¹⁾

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
F	Port	UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT
	PA0	UART4_TX	-	-	-	-	SAI1_EXTCLK	TIM2_ETR	EVENTOUT
	PA1	UART4_RX	-	OCTOSPI1_DQS	-	-	-	TIM15_CH1N	EVENTOUT
	PA2	LPUART1_TX	-	OCTOSPI1_NCS	UCPD1_FRSTX1	-	SAI2_EXTCLK	TIM15_CH1	EVENTOUT
	PA3	LPUART1_RX	-	OCTOSPI1_CLK	-	-	SAI1_MCLK_A	TIM15_CH2	EVENTOUT
	PA4	-	-	-	-	-	SAI1_FS_B	LPTIM2_OUT	EVENTOUT
	PA5	-	-	-	-	-	-	LPTIM2_ETR	EVENTOUT
	PA6	LPUART1_CTS _NSS	-	OCTOSPI1_IO3	-	TIM1_BKIN	TIM8_BKIN	TIM16_CH1	EVENTOUT
	PA7	-	-	OCTOSPI1_IO2	-	-	-	TIM17_CH1	EVENTOUT
Port A	PA8	-	-	-	-	-	SAI1_SCK_A	LPTIM2_OUT	EVENTOUT
	PA9	-	-	-	-	-	SAI1_FS_A	TIM15_BKIN	EVENTOUT
	PA10	-	-	CRS_SYNC	-	-	SAI1_SD_A	TIM17_BKIN	EVENTOUT
	PA11	-	FDCAN1_ RX	USB_DM	-	TIM1_BKIN2	-	-	EVENTOUT
	PA12	-	FDCAN1_ TX	USB_DP	-	-	-	-	EVENTOUT
	PA13	-	-	USB_NOE	-	-	SAI1_SD_B	-	EVENTOUT
	PA14	-	-	-	-	-	SAI1_FS_B	-	EVENTOUT
	PA15	UART4_RTS_D E	-	-	-	-	SAI2_FS_B	-	EVENTOUT

136/341

Table 23. Alternate	function AF8 to AF15 ⁽¹⁾	(continued)
---------------------	-------------------------------------	-------------

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT
	PB0	-	-	OCTOSPI1_IO1	-	COMP1_OUT	SAI1_EXTCLK	-	EVENTOUT
	PB1	LPUART1_RTS_ DE	-	OCTOSPI1_IO0	-	-	-	LPTIM2_IN1	EVENTOUT
	PB2	-	-	OCTOSPI1_DQS	UCPD1_FRSTX1	-	-	-	EVENTOUT
	PB3	-	-	CRS_SYNC	-	-	SAI1_SCK_B	-	EVENTOUT
	PB4	UART5_RTS_D E	TSC_G2_ IO1	-	-	-	SAI1_MCLK_B	TIM17_BKIN	EVENTOUT
	PB5	UART5_CTS_N SS	TSC_G2_ IO2	-	-	COMP2_OUT	SAI1_SD_B	TIM16_BKIN	EVENTOUT
	PB6	-	TSC_G2_ IO3	-	-	TIM8_BKIN2	SAI1_FS_B	TIM16_CH1N	EVENTOUT
Port	PB7	UART4_CTS_N SS	TSC_G2_ IO4	-	-	FMC_NL	TIM8_BKIN	TIM17_CH1N	EVENTOUT
В	PB8	SDMMC1_CKIN	FDCAN1_ RX	-	-	SDMMC1_D4	SAI1_MCLK_A	TIM16_CH1	EVENTOUT
	PB9	SDMMC1_CDIR	FDCAN1_ TX	-	-	SDMMC1_D5	SAI1_FS_A	TIM17_CH1	EVENTOUT
	PB10	LPUART1_RX	TSC_SY NC	OCTOSPI1_CLK	-	COMP1_OUT	SAI1_SCK_A	-	EVENTOUT
	PB11	LPUART1_TX	-	OCTOSPI1_NCS	-	COMP2_OUT	-	-	EVENTOUT
	PB12	LPUART1_RTS_ DE	TSC_G1_ IO1	OCTOSPI1_NCLK	-	-	SAI2_FS_A	TIM15_BKIN	EVENTOUT
	PB13	LPUART1_CTS _NSS	TSC_G1_ IO2	-	UCPD1_FRSTX2	-	SAI2_SCK_A	TIM15_CH1N	EVENTOUT
	PB14	-	TSC_G1_ IO3	-	-	-	SAI2_MCLK_A	TIM15_CH1	EVENTOUT
	PB15	-	-	-	-	-	SAI2_SD_A	TIM15_CH2	EVENTOUT

Table 23. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
F	Port	UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT
	PC0	LPUART1_RX	-	-	-	SDMMC1_D5	SAI2_FS_A	LPTIM2_IN1	EVENTOUT
	PC1	LPUART1_TX	-	OCTOSPI1_IO4	-	-	SAI1_SD_A	-	EVENTOUT
	PC2	-	TSC_G3_ IO1	OCTOSPI1_IO5	-	-	-	-	EVENTOUT
	PC3	-	TSC_G1_ IO4	OCTOSPI1_IO6	-	-	SAI1_SD_A	LPTIM2_ETR	EVENTOUT
	PC4	-	-	OCTOSPI1_IO7	-	-	-	-	EVENTOUT
	PC5	-	-	-	-	-	-	-	EVENTOUT
	PC6	SDMMC1_D0DI R	TSC_G4_ IO1	-	-	SDMMC1_D6	SAI2_MCLK_A	-	EVENTOUT
Port	PC7	SDMMC1_D123 DIR	TSC_G4_ IO2	-	-	SDMMC1_D7	SAI2_MCLK_B	-	EVENTOUT
C	PC8	-	TSC_G4_ IO3	-	-	SDMMC1_D0	-	-	EVENTOUT
	PC9	-	TSC_G4_ IO4	USB_NOE	-	SDMMC1_D1	SAI2_EXTCLK	TIM8_BKIN2	EVENTOUT
	PC10	UART4_TX	TSC_G3_ IO2	-	-	SDMMC1_D2	SAI2_SCK_B	-	EVENTOUT
	PC11	UART4_RX	TSC_G3_ IO3	-	UCPD1_FRSTX2	SDMMC1_D3	SAI2_MCLK_B	-	EVENTOUT
	PC12	UART5_TX	TSC_G3_ IO4	-	-	SDMMC1_CK	SAI2_SD_B	-	EVENTOUT
	PC13	-	-	-	-	-	-	-	EVENTOUT
	PC14	-	-	-	-	-	-	-	EVENTOUT
	PC15	-	-	-	-	-	-	-	EVENTOUT

Table 23. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
F	Port	UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT
	PD0	-	FDCAN1_ RX	-	-	FMC_D2	-	-	EVENTOUT
	PD1	-	FDCAN1_ TX	-	-	FMC_D3	-	-	EVENTOUT
	PD2	UART5_RX	TSC_SY NC	-	-	SDMMC1_CMD	-	-	EVENTOUT
	PD3	-	-	-	-	FMC_CLK	-	-	EVENTOUT
	PD4	-	-	OCTOSPI1_IO4	-	FMC_NOE	-	-	EVENTOUT
	PD5	-	-	OCTOSPI1_IO5	-	FMC_NWE	-	-	EVENTOUT
	PD6	-	-	OCTOSPI1_IO6	-	FMC_NWAIT	SAI1_SD_A	-	EVENTOUT
Port	PD7	-	-	OCTOSPI1_IO7	-	FMC_NCE/FMC_ NE1	-	-	EVENTOUT
D	PD8	-	-	-	-	FMC_D13	-	-	EVENTOUT
	PD9	-	-	-	-	FMC_D14	SAI2_MCLK_A	-	EVENTOUT
	PD10	-	TSC_G6_ IO1	-	-	FMC_D15	SAI2_SCK_A	-	EVENTOUT
	PD11	-	TSC_G6_ IO2	-	-	FMC_A16	SAI2_SD_A	LPTIM2_ETR	EVENTOUT
	PD12	-	TSC_G6_ IO3	-	-	FMC_A17	SAI2_FS_A	LPTIM2_IN1	EVENTOUT
	PD13	-	TSC_G6_ IO4	-	-	FMC_A18	-	LPTIM2_OUT	EVENTOUT
	PD14	-	-	-	-	FMC_D0	-	-	EVENTOUT
	PD15	-	-	-	-	FMC_D1	-	-	EVENTOUT

Table 23. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
F	Port	UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT
	PE0	-	-	-	-	FMC_NBL0	-	TIM16_CH1	EVENTOUT
	PE1	-	-	-	-	FMC_NBL1	-	TIM17_CH1	EVENTOUT
	PE2	-	TSC_G7_ IO1	-	-	FMC_A23	SAI1_MCLK_A	-	EVENTOUT
	PE3	-	TSC_G7_ IO2	-	-	FMC_A19	SAI1_SD_B	-	EVENTOUT
	PE4	-	TSC_G7_ IO3	-	-	FMC_A20	SAI1_FS_A	-	EVENTOUT
	PE5	-	TSC_G7_ IO4	-	-	FMC_A21	SAI1_SCK_A	-	EVENTOUT
	PE6	-	-	-	-	FMC_A22	SAI1_SD_A	-	EVENTOUT
Port	PE7	-	-	-	-	FMC_D4	SAI1_SD_B	-	EVENTOUT
E	PE8	-	-	-	-	FMC_D5	SAI1_SCK_B	-	EVENTOUT
	PE9	-	-	OCTOSPI1_NCLK	-	FMC_D6	SAI1_FS_B	-	EVENTOUT
	PE10	-	TSC_G5_ IO1	OCTOSPI1_CLK	-	FMC_D7	SAI1_MCLK_B	-	EVENTOUT
	PE11	-	TSC_G5_ IO2	OCTOSPI1_NCS	-	FMC_D8	-	-	EVENTOUT
	PE12	-	TSC_G5_ IO3	OCTOSPI1_IO0	-	FMC_D9	-	-	EVENTOUT
	PE13	-	TSC_G5_ IO4	OCTOSPI1_IO1	-	FMC_D10	-	-	EVENTOUT
	PE14	-	-	OCTOSPI1_IO2	-	FMC_D11	-	-	EVENTOUT
	PE15	-	-	OCTOSPI1_IO3	-	FMC_D12	-	-	EVENTOUT

Table 23. Alternate	function AF8 to AF15 ⁽¹⁾	(continued)
---------------------	-------------------------------------	-------------

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
F	Port	UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT
	PF0	-	-	-	-	FMC_A0	-	-	EVENTOUT
	PF1	-	-	-	-	FMC_A1	-	-	EVENTOUT
	PF2	-	-	-	-	FMC_A2	-	-	EVENTOUT
	PF3	-	-	-	-	FMC_A3	-	-	EVENTOUT
	PF4	-	-	-	-	FMC_A4	-	-	EVENTOUT
	PF5	-	-	-	-	FMC_A5	-	-	EVENTOUT
	PF6	-	-	OCTOSPI1_IO3	-	-	SAI1_SD_B	-	EVENTOUT
	PF7	-	-	OCTOSPI1_IO2	-	-	SAI1_MCLK_B	-	EVENTOUT
Port F	PF8	-	-	OCTOSPI1_IO0	-	-	SAI1_SCK_B	-	EVENTOUT
-	PF9	-	-	OCTOSPI1_IO1	-	-	SAI1_FS_B	TIM15_CH1	EVENTOUT
	PF10	-	-	-	-	-	SAI1_D3	TIM15_CH2	EVENTOUT
	PF11	-	-	-	-	-	-	-	EVENTOUT
	PF12	-	-	-	-	FMC_A6	-	-	EVENTOUT
	PF13	-	-	-	-	FMC_A7	-	-	EVENTOUT
	PF14	-	TSC_G8_ IO1	-	-	FMC_A8	-	-	EVENTOUT
	PF15	-	TSC_G8_ IO2	-	-	FMC_A9	-	-	EVENTOUT

Table 23. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Port		UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT
	PG0	-	TSC_G8_ IO3	-	-	FMC_A10	-	-	EVENTOUT
	PG1	-	TSC_G8_ IO4	-	-	FMC_A11	-	-	EVENTOUT
	PG2	-	-	-	-	FMC_A12	SAI2_SCK_B	-	EVENTOUT
	PG3	-	-	-	-	FMC_A13	SAI2_FS_B	-	EVENTOUT
	PG4	-	-	-	-	FMC_A14	SAI2_MCLK_B	-	EVENTOUT
	PG5	LPUART1_CTS _NSS	-	-	-	FMC_A15	SAI2_SD_B	-	EVENTOUT
Port	PG6	LPUART1_RTS_ DE	-	-	UCPD1_FRSTX1	-	-	-	EVENTOUT
G	PG7	LPUART1_TX	-	-	UCPD1_FRSTX2	FMC_INT	SAI1_MCLK_A	-	EVENTOUT
	PG8	LPUART1_RX	-	-	-	-	-	-	EVENTOUT
	PG9	-	-	-	-	FMC_NCE/FMC_ NE2	SAI2_SCK_A	TIM15_CH1N	EVENTOUT
	PG10	-	-	-	-	FMC_NE3	SAI2_FS_A	TIM15_CH1	EVENTOUT
	PG11	-	-	-	-	-	SAI2_MCLK_A	TIM15_CH2	EVENTOUT
	PG12	-	-	-	-	FMC_NE4	SAI2_SD_A	-	EVENTOUT
	PG13	-	-	-	-	FMC_A24	-	-	EVENTOUT
	PG14	-	-	-	-	FMC_A25	-	-	EVENTOUT
	PG15	-	-	-	-	-	-	-	EVENTOUT

Table 23. Alternate function AF8 to AF15 ⁽¹⁾ (continued)										
Port		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	
		UART4/5/LPUA RT1/SDMMC1	FDCAN1/ TSC	USB/OCTOSPI1	UCPD1	SDMMC1/COMP1 /2/TIM1/8/FMC	SAI1/2/TIM8	TIM2/8/15/16/17/ LPTIM2	EVENTOUT	
Port H	PH0	-	-	-	-	-	-	-	EVENTOUT	
	PH1	-	-	-	-	-	-	-	EVENTOUT	
	PH3	-	-	-	-	-	-	-	EVENTOUT	

^{1.} Refer to *Table 22* for AF0 to AF7.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25^{\circ}C$ and $T_A = T_A$ max (given by the selected temperature range).

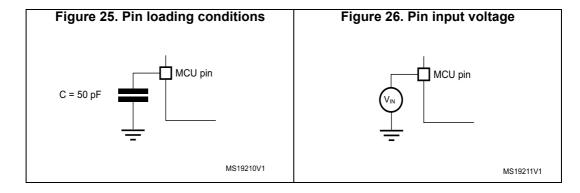
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \sigma$).

5.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 25.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 26*.

Electrical characteristics STM32L562xx

5.1.6 Power supply scheme

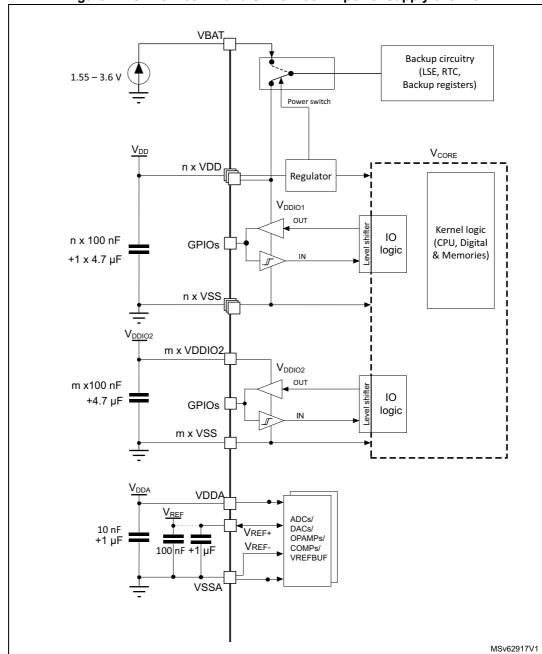


Figure 27. STM32L552xx and STM32L562xx power supply overview

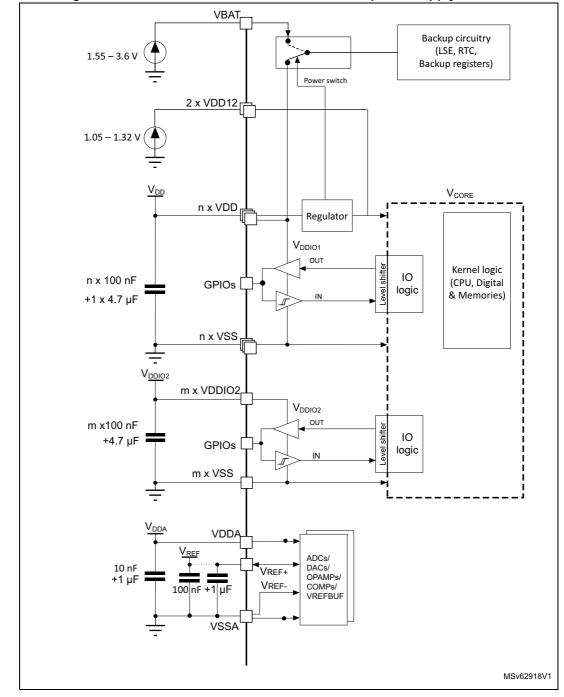


Figure 28. STM32L552xxxP and STM32L562xxxP power supply overview

Note:

If the selected package has the external SMPS option but no external SMPS is used by the application (the embedded LDO is used instead), the VDD12 pins are kept unconnected.

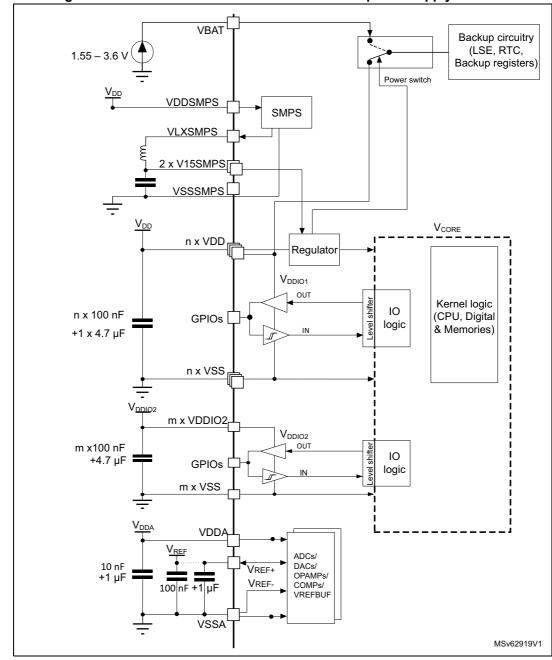


Figure 29. STM32L552xxxQ and STM32L562xxxQ power supply overview

1. Refer to Figure 3 for SMPS step down converter power supply scheme.

Note:

If the selected package has the SMPS step down converter option but the application does not ever use the SMPS, it is recommended to set the SMPS power supply pins as follows: VDDSMPS and VLXSMPS connected to VSS V15SMPSconnected to VDD.

Caution:

Each power supply pair $(V_{DD}/V_{SS}, V_{DDA}/V_{SSA})$ etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

LY/

5.1.7 Current consumption measurement

The I_{DD_ALL} parameters given in *Table 33* to *Table 96* represent the total MCU consumption including the current supplying V_{DD} , V_{DDIO2} , V_{DDA} , V_{DDUSB} , V_{BAT} and V_{DDSMPS} if the device embeds the SMPS.

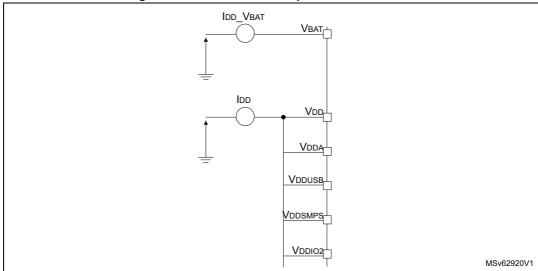


Figure 30. Current consumption measurement

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 24: Voltage characteristics*, *Table 25: Current characteristics* and *Table 26: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit			
V _{DDX} - V _{SS}	External main supply voltage (incl $V_{DDA}, V_{DDIO2}, V_{DDUSB}, V_{BAT}, V_{DUSE}, V_{REF+}$)	-0.3	4.0				
V V.	External SMPS supply voltage	Allranges	-0.3	1.4			
$V_{\rm DD12} - V_{\rm SS}$	External Sivir 3 Supply Voltage	0/1/2	-0.3	1.4			
V _{IN} ⁽²⁾	Input voltage on FT_xxx pins except FT_c pins		V _{SS} -0.3	$\begin{aligned} & \text{Min(Min(V}_{\text{DD}}, \text{V}_{\text{DDA}}, \\ & \text{V}_{\text{DDIO2}}, \text{V}_{\text{DDUSB}}, \\ & \text{V}_{\text{DDSMPS}}) + 4.0, \\ & 6.0)^{(3)(4)} \end{aligned}$	V		
	Input voltage on FT_c pins		V _{SS} -0.3	5.5			
Input voltage on any other pins		V _{SS} -0.3	4.0 ⁽⁵⁾				

Table 24. Voltage characteristics⁽¹⁾

Symbol	Ratings	Min	Max	Unit
V _{REF+} - V _{DDA}	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	V
ΔV _{DDx}	Variations between different V_{DDX} power pins of the same domain	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins ⁽⁶⁾	-	50	IIIV

- All main power (V_{DD}, V_{DDA}, V_{DDIO2}, V_{DDUSB}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- 2. V_{IN} maximum must always be respected. Refer to *Table 25: Current characteristics* for the maximum allowed injected current values.
- 3. This formula has to be applied only on the power supplies related to the I/O structure described in the pin definition table.
- 4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
- 5. When an FT_a pin is used by an analog peripheral such as ADC, the maximum V_{IN} is 4 V.
- 6. Include VREF- pin.

Table 25. Current characteristics

Symbol	Ratings	Max	Unit
ΣIV_{DD}	Total current into sum of all V _{DD} power lines (source) ^{(1) (2)}	160	
ΣIV _{SS}	Total current out of sum of all V _{SS} ground lines (sink) ^{(1) (2)}	160	
IV _{DD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS(PIN)}	Maximum current out of each V _{SS} ground pin (sink) ⁽¹⁾	100	
	Output current sunk by any I/O and control pin except FT_f	20	
I _{IO(PIN)}	Output current sunk by any FT_f pin	20	mA
	Output current sourced by any I/O and control pin	20	IIIA
7 1	Total output current sunk by sum of all I/Os and control pins ⁽³⁾	100	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control pins ⁽³⁾		
. (4)	Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5		
I _{INJ(PIN)} ⁽⁴⁾	Injected current on PA4, PA5	-5/0	
$\Sigma I_{INJ(PIN)} $	Total injected current (sum of all I/Os and control pins) ⁽⁶⁾	+/-25	

- All main power (V_{DD}, V_{DDA}, V_{DDIO2}, V_{DDUSB}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.
- Valid also for V_{DD12} on SMPS package.
- This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
- 4. Positive injection (when V_{IN} > V_{DDIOx}) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 24:* Voltage characteristics for the minimum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

148/341 DS12736 Rev 5

Table 26. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 27. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	110	
f _{PCLK1}	Internal APB1 clock frequency	-	0	110	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	110	
V _{DD}	Standard operating voltage	-	1.71 (1)	3.6	٧
V _{DDSMPS}	Supply voltage for the internal SMPS step-down converter	V _{DDSMPS} = V _{DD}	1.71	3.6	V
	Standard operating voltage	Up to 110 MHz	1.14	1.32	V
V _{DD12}		Up to 80 MHz	1.08	1.32	
0012		Up to 26 MHz	1.05 (2)	1.32	
V _{DDIO2}	PG[15:2] I/Os supply voltage	At least one I/O in PG[15:2] used	1.08	3.6	٧
		PG[15:2] not used	0	3.6	
		ADC or COMP used	1.62		
		DAC or OPAMP used	1.8		V
V_{DDA}	Analog supply voltage	VREFBUF used	2.4	3.6	
· DDA	g capp., rollago	ADC, DAC, OPAMP, COMP, VREFBUF not used	0		

Table 27. General operating conditions (continued)

Symbol	Parameter	Conditions	Min	Max	Unit	
V_{BAT}	Backup operating voltage	-	1.55	3.6	V	
V		USB used	3.0 3.6		V	
V _{DDUSB}	USB supply voltage	USB not used	0	3.6	·	
		TT_xx I/O	-0.3	V _{DDIOx} +0.3		
		FT_c I/O	-0.3	5		
V _{IN}	I/O input voltage	All I/O except FT_c and TT_xx	-0.3	MIN(MIN(V _{DD} , V _{DDA} , V _{DDIO2} , V _{DDUSB}) +3.6 V, 5.5 V) ⁽³⁾⁽⁴⁾	٧	
		LQFP48	See	See Section 6.9: Thermal characteristics for		
	Power dissipation at T _A = 85°C for suffix 6 ⁽⁵⁾	UFQFPN48	cha			
		LQFP64	applica	application appropriate		
		WLCSP81	thermal resistance and package. Power			
P_D		LQFP100	diss	dissipation is then		
		UFBGA132		calculated according ambient temperature		
		LQFP144	(T _A) juncti (T _J) therr			
		LQFP48	See	e Section 6.9:		
		UFQFPN48	cha	Thermal racteristics for		
		LQFP64	applica	ation appropriate		
	Dower dissinction of	WLCSP81	l l	al resistance and ckage. Power		
P_D	Power dissipation at $T_A = 125$ °C for suffix $3^{(5)}$	LQFP100	diss	dissipation is then		
		UFBGA132	calculated according ambient temperature (T _A) and maximum junction temperature (T _J) and selected thermal resistance.			
		LQFP144				

Symbol	Parameter	Conditions	Min	Max	Unit	
	Ambient temperature for the suffix 6 version	Maximum power dissipation	-40	85		
TA	the sum o version	Low-power dissipation ⁽⁶⁾	-40	105	°C	
IA	Ambient temperature for the suffix 3 version	Maximum power dissipation	-40	125		
		Low-power dissipation ⁽⁶⁾	-40	130		
TJ	Junction temperature range	Suffix 6 version	-40	105	°C	
		Suffix 3 version	-40	130		

Table 27. General operating conditions (continued)

- 1. When RESET is released functionality is guaranteed down to $V_{BOR0}\,Min.$
- 2. For Flash erase and program operation, V_{DD12} min must be 1.08 V.
- 3. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(V_{DD} , V_{DDA} , V_{DDIO2} , V_{DDUSB})+3.6 V and 5.5V.
- For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DDIO2}, V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).
- In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

5.3.2 SMPS step-down converter

The device embeds an SMPS step down converter which requires the external components shown in below figure.

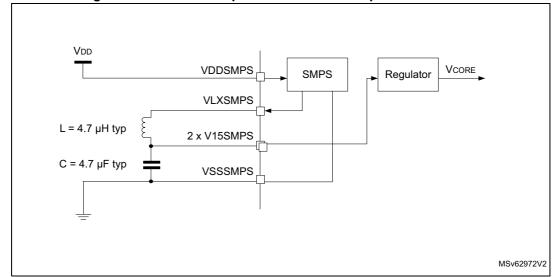


Figure 31. External components for SMPS step down converter

The following table summarizes the SMPS behavior depending on the main regulator range, VDD and consumption.

Table 28. SMPS modes summary

Ranges Max AHB clock		V	SMPS mode			
italiges	Max AHB clock	V _{CORE}	V _{DD} ≤ 2.05 V	V _{DD} > 2.05 V		
Range 0	110 MHz	1.28 V	Automatic Bypass mode $V_{15 \text{SMPS}} = V_{\text{DD}}$	HP mode Max current consumption = 120 mA V _{15SMPS} = 1.6 V		
Range 1	80 MHz	1.2 V	Automatic Bypass mode V _{15SMPS} = V _{DD}	HP mode Max current consumption = 80 mA V _{15SMPS} = 1.5 V		
Range 2	26 MHz	1.0 V	Software Bypass mode ⁽¹⁾ V _{15SMPS} = V _{DD}	LP mode or HP mode Max current consumption = 30 mA V _{15SMPS} = 1.3 V		

There is no automatic SMPS bypass in Range 2. The user application should use PVD0 to monitor V_{DD} supply and request the SMPS Bypass mode.

Table 29. SMPS characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDSMPS	SMPS power supply		1.71 ⁽²⁾		3.6	V
		Range 0	1.55	1.6	1.65	
V15SMPS	V15SMPS SMPS output voltage	Range 1	1.45	1.5	1.55	V
		Range 2	1.25	1.3	1.35	
SR	SMPS output slew	Fast startup disabled SMPSFSTEN = 0	-	600	-	μs/V
	Tuto	Fast startup enabled SMPSFSTEN = 1	-	120	_	

^{1.} Guaranteed by design.

152/341 DS12736 Rev 5

When VDDSMPS is less than 2.05 V, the SMPS bypass mode is forced by hardware in Range 0 and Range 1. In Range 2, there is no automatic switch into SMPS bypass mode. It should be requested by software. Refer to Table 28: SMPS modes summary.

5.3.3 Operating conditions at power-up / power-down

The parameters given in *Table 30* are derived from tests performed under the ambient temperature condition summarized in *Table 27*.

Table 30. Operating conditions at power-up / power-down⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate		0	∞	
	V _{DD} fall time rate	-	10	∞	
t _{VDDA}	V _{DDA} rise time rate		0	∞	
	V _{DDA} fall time rate	-	10	∞	uo/\/
+	V _{DDUSB} rise time rate		0	∞	μs/V
^T VDDUSB	V _{DDUSB} fall time rate	-	10	∞	
t _{VDDIO2}	V _{DDIO2} rise time rate		0	∞	
	V _{DDIO2} fall time rate	-	10	∞	

^{1.} At power-up, the $\rm V_{\rm DD12}$ voltage should not be forced externally.

5.3.4 Embedded reset and power control block characteristics

The parameters given in *Table 31* are derived from tests performed under the ambient temperature conditions summarized in *Table 27: General operating conditions*.

Table 31. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
t _{RSTTEMPO} (2)	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs
V _{BOR0} ⁽²⁾	Brown-out reset threshold 0	Rising edge	1.62	1.66	1.7	V
	Brown-out reset timeshold o	Falling edge	1.6	1.64	1.69	V
V	Prown out reset threshold 1	Rising edge	2.06	2.1	2.14	V
V _{BOR1}	Brown-out reset threshold 1	Falling edge	1.96	2	2.04	V
V _{BOR2}	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V
		Falling edge	2.16	2.20	2.24	
V	Brown-out reset threshold 3	Rising edge	2.56	2.61	2.66	V
V _{BOR3}		Falling edge	2.47	2.52	2.57	
V	Brown-out reset threshold 4	Rising edge	2.85	2.90	2.95	V
V _{BOR4}		Falling edge	2.76	2.81	2.86	V
V	Programmable voltage	Rising edge	2.1	2.15	2.19	V
V _{PVD0}	detector threshold 0	Falling edge	2	2.05	2.1	V
	DVD throshold 1	Rising edge	2.26	2.31	2.36	V
V _{PVD1}	PVD threshold 1	Falling edge	2.15	2.20	2.25	

Table 31. Embedded reset and power control block characteristics (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
V	PVD threshold 2	Rising edge	2.41	2.46	2.51	V
V _{PVD2}	PVD threshold 2	Falling edge	2.31	2.36	2.41	V
V	PVD threshold 3	Rising edge	2.56	2.61	2.66	V
V _{PVD3}	FVD tillesiloid 3	Falling edge	2.47	2.52	2.57	V
V	PVD threshold 4	Rising edge	2.69	2.74	2.79	V
V_{PVD4}	1 VD tilleshold 4	Falling edge	2.59	2.64	2.69	V
V _{PVD5}	PVD threshold 5	Rising edge	2.85	2.91	2.96	V
VPVD5	F VD tilleshold 5	Falling edge	2.75	2.81	2.86	V
V	PVD threshold 6	Rising edge	2.92	2.98	3.04	V
V _{PVD6}	F VD tilleshold o	Falling edge	2.84	2.90	2.96	V
V _{hyst_BORH0}	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV
7.2		Hysteresis in other mode	-	30	-	
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV
I _{DD} (BOR_PVD) ⁽²⁾	BOR ⁽³⁾ (except BOR0) and PVD consumption from V _{DD}	-	-	1.1	1.6	μΑ
	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	V
V _{PVM3}	monitoring	Falling edge	1.6	1.64	1.68	V
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V
V _{PVM4}	monitoring	Falling edge	1.77	1.81	1.85	V
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV
I _{DD} (PVM1/PVM2)	PVM1 and PVM2 consumption from V _{DD}	-	-	0.2	-	μΑ
I _{DD} (PVM3/PVM4)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μΑ

Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

154/341 DS12736 Rev 5

^{2.} Guaranteed by design.

^{3.} BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

5.3.5 Embedded voltage reference

The parameters given in *Table 32* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 27: General operating conditions*.

Table 32. Embedded internal voltage reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40°C < T _A < +130°C	1.182	1.212	1.232	V
t _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage	-	4 ⁽²⁾	-	-	μs
t _{start_vrefint}	Start time of reference voltage buffer when ADC is enable	-	-	8	12 ⁽²⁾	μs
I _{DD} (V _{REFINTBUF})	V _{REFINT} buffer consumption from V _{DD} when converted by ADC	-	-	12.5	20 ⁽²⁾	μΑ
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	5	7.5 ⁽²⁾	mV
T _{Coeff}	Average temperature coefficient	-40°C < T _A < +130°C	-	30	50 ⁽²⁾	ppm/°C
A _{Coeff}	Long term stability	1000 hours, T = 25°C	-	300	1000 ⁽²⁾	ppm
V _{DDCoeff}	Average voltage coefficient	3.0 V < V _{DD} < 3.6 V	-	250	1200 ⁽²⁾	ppm/V
V _{REFINT_DIV1}	1/4 reference voltage		24	25	26	0.4
V _{REFINT_DIV2}	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3}	3/4 reference voltage		74	75	76	INLFIINI

^{1.} The shortest sampling time can be determined in the application by multiple iterations.

^{2.} Guaranteed by design.

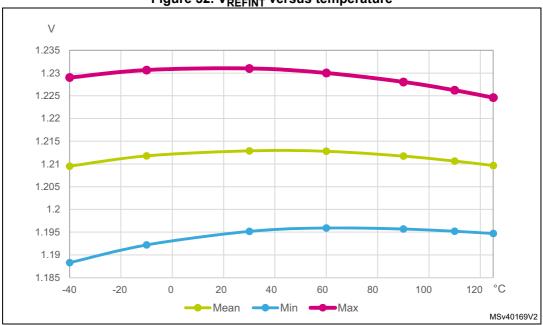


Figure 32. V_{REFINT} versus temperature

5.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Section 5.1.7: Current consumption measurement*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode.
- All peripherals are disabled except when explicitly mentioned.
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{HCLK} frequency (refer to the table "Number of wait states according to CPU clock (HCLK) frequency" available in the RM0438 reference manual).
- When the peripherals are enabled f_{PCLK} = f_{HCLK}
- The voltage scaling range is adjusted to f_{HCLK} frequency as follows:
 - Voltage Range 0 for 80 MHz < f_{HCI K} <= 110 MHz
 - Voltage Range 1 for 26 MHz < f_{HCLK} <= 80 MHz
 - Voltage Range 2 for f_{HCLK} <= 26 MHz

The parameters given in *Table 33* to *Table 81* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 27: General operating conditions*.

157/341

Table 33. Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ICACHE ON in 2-way

		Cor	nditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105° C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	3.20	3.54	4.47	5.80	8.10	4.38	6.84	12.12	18.82	29.63	
				16 MHz	2.05	2.38	3.31	4.62	6.92	3.24	5.69	10.95	17.63	28.39	
				8 MHz	1.14	1.45	2.38	3.68	5.97	2.33	4.77	10.02	16.68	27.42	
			Range 2	4 MHz	0.675	0.99	1.91	3.22	5.50	1.87	4.30	9.55	16.20	26.92	
				2 MHz	0.441	0.758	1.67	2.97	5.25	1.64	4.07	9.31	15.96	26.68	
	Supply current in Run mode 48	fHCLK = fHSE up to 48 MHz		1 MHz	0.326	0.639	1.54	2.86	5.14	1.59	4.01	9.26	15.90	26.62	
laa		included,		100 KHz	0.223	0.533	1.45	2.74	5.03	1.43	3.85	9.09	15.73	26.56	
		bypass mode PLL ON above	Range 0	110 MHz	16.7	17.3	18.7	20.5	23.7	19.07	21.53	31.38	41.23	56.59	mA
(i tuii)		48 MHz all		80 MHz	11.4	11.9	13.2	14.8	17.7	13.33	16.89	24.17	33.07	46.91	
		peripherals disabled		72 MHz	10.3	10.8	12.0	13.7	16.6	12.22	15.76	23.03	31.92	45.75	
				64 MHz	9.20	9.68	10.9	12.6	15.4	11.10	14.64	21.89	30.78	44.60	
			Range 1	48 MHz	6.97	7.44	8.64	10.3	13.1	8.85	12.38	19.62	28.48	42.29	
				32 MHz	4.73	5.18	6.36	7.97	10.8	6.61	10.12	17.32	26.15	39.93	
				24 MHz	3.62	4.06	5.22	6.82	9.6	5.49	8.99	16.17	24.99	38.82	
				16 MHz	2.51	2.93	4.08	5.67	8.4	4.37	7.85	15.02	23.83	37.64	
	Cumply			2 MHz	424	779	1816	3274	5719	2026	5001	12861	20164	31407	
IDD		fHCLK = f	MSI	1 MHz	296	648	1686	3124	5588	1905	4941	11969	18559	31355	
(LPRun)		all peripherals	disabled	400 KHz	192	561	1594	3047	5499	1832	4762	11881	18519	31266	μA
	Turrinode			100 KHz	163	528	1559	3012	5469	1799	4573	11877	18469	31247	

Table 34. Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ICACHE ON in 1-way

		Co	nditions				TYP					MAX			
Symbol	Parame ter	-	Voltag e scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	3.10	3.44	4.37	5.69	8.01	4.28	6.74	12.02	18.70	29.46	
				16 MHz	2.00	2.32	3.23	4.55	6.86	3.18	5.63	10.89	17.55	28.30	
				8 MHz	1.11	1.42	2.33	3.64	5.93	2.30	4.73	9.99	16.64	27.37	
			Range 2	4 MHz	0.65	0.98	1.87	3.19	5.48	1.86	4.29	9.53	16.18	26.89	
		fHCLK =	_	2 MHz	0.43	0.74	1.65	2.97	5.24	1.64	4.06	9.31	15.95	26.66	
		fHSE up to		1 MHz	0.32	0.62	1.53	2.85	5.10	1.58	4.01	9.25	15.89	26.61	
	Supply	48 MHz included,		100 KHz	0.22	0.52	1.43	2.75	5.01	1.43	3.85	9.09	15.73	26.44	
IDD (Run)	current in Run	bypass mode PLL	Range 0	110 MHz	16.1	16.7	18.2	20.0	23.2	18.54	22.63	30.86	40.70	56.07	mA
	mode	ON above 48 MHz all		80 MHz	11.0	11.5	12.8	14.5	17.3	12.97	16.53	23.82	32.71	46.57	
		peripherals		72 MHz	10.0	10.5	11.7	13.4	16.2	11.89	15.44	22.72	31.60	45.46	
		disabled		64 MHz	8.90	9.38	10.6	12.3	15.1	10.81	14.35	21.62	30.48	44.30	
			Range 1	48 MHz	6.75	7.21	8.41	10.0	12.8	8.63	12.16	19.41	28.26	42.09	
				32 MHz	4.59	5.03	6.22	7.82	10.6	6.46	9.97	17.18	26.00	39.87	
				24 MHz	3.51	3.94	5.10	6.72	9.5	5.38	8.88	16.07	24.88	38.73	
				16 MHz	2.43	2.85	3.99	5.59	8.4	4.3	7.8	15.0	23.7	37.6	
	Supply current		2 MHz	416	770	1781	3249	5708	2014	4968	12892	19856	31311		
IDD	IDD current in Low-	fHCLK =		1 MHz	291	633	1659	3127	5575	1899	4930	11960	18568	31264	
(LPRun)	power	all periph disable		400 KHz	194	557	1583	3043	5502	1827	4765	11905	18328	31256	μA
	IDD current in Low-			100 KHz	147	519	1542	3020	5462	1795	4584	11898	18312	31238	

Table 35. Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ICACHE disabled

	Darama	C	onditions	3			TYP					MAX			
Symbol	Parame ter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	4.08	4.43	5.36	6.72	9.02	5.38	7.84	13.14	19.81	30.60	
				16 MHz	2.65	2.98	3.91	5.22	7.55	3.93	6.38	11.67	18.32	29.09	
				8 MHz	1.43	1.76	2.67	3.99	6.26	2.67	5.11	10.38	17.02	27.77	
		fHCLK = fHSE up	Range 2	4 MHz	0.82	1.14	2.05	3.36	5.65	2.04	4.48	9.73	16.36	27.11	
		to		2 MHz	0.51	0.82	1.75	3.05	5.31	1.73	4.16	9.41	16.04	26.78	
		48 MHz included,		1 MHz	0.36	0.68	1.59	2.89	5.16	1.65	4.08	9.33	15.96	26.70	
1	Supply	bypass		100 KHz	0.22	0.53	1.45	2.76	5.00	1.43	3.86	9.11	15.73	26.47	
IDD (Run)	current in Run	mode PLL ON	node L ON Range 0	110 MHz	18.8	19.4	20.9	22.8	25.9	19.97	24.02	32.25	42.05	57.42	mA
(1 (011)	mode	above		80 MHz	14.1	14.6	15.9	17.6	20.5	16.16	19.71	27.01	35.88	49.75	
		48 MHz all		72 MHz	12.8	13.3	14.5	16.2	19.1	14.80	18.34	25.64	34.50	48.37	
		peripher		64 MHz	11.79	12.30	13.5	15.2	18.1	13.90	17.45	24.74	33.60	47.45	
		als disabled	Range 1	48 MHz	8.87	9.37	10.63	12.3	15.1	10.97	14.51	21.78	30.62	44.47	
				32 MHz	6.12	6.58	7.80	9.44	12.2	8.22	11.74	18.98	27.78	41.68	
				24 MHz	4.66	5.11	6.29	7.92	10.7	6.70	10.20	17.42	26.20	40.09	
				16 MHz	3.26	3.70	4.86	6.47	9.2	5.28	8.77	15.97	24.74	38.61	
	Supply			2 MHz	511	866	1890	3353	5834	2122	5256	12721	20681	31502	
IDD	current in Low-		LK = fMSI	1 MHz	344	692	1715	3168	5642	1949	5022	12001	18581	31161	
(LPRun)	power	all perip disal		400 KHz	203	591	1603	3062	5505	1852	4828	11924	18580	31131	μA
	run mode	3.100.		100 KHz	159	531	1553	3018	5468	1802	4590	11905	18301	30947	

Table 36. Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 2-way and power supplied by internal SMPS step down converter

		Co	onditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	1.87	1.95	2.41	3.09	5.03	1.92	2.72	4.63	7.11	11.08	
		fuo.u		16 MHz	1.23	1.33	1.78	2.45	4.33	1.31	2.09	3.99	6.46	10.42	
		fHCLK = fHSE up to	Range 2	8 MHz	0.72	0.83	1.28	1.95	3.79	0.81	1.59	3.47	5.93	9.88	
		48 MHz	SMPS LP	4 MHz	0.46	0.58	1.03	1.69	3.52	0.56	1.33	3.22	5.67	9.62	
IDD	Supply current in	included, bypass	mode	2 MHz	0.33	0.46	0.91	1.55	3.38	0.44	1.21	3.09	5.54	9.48	
(Run)	Run mode	mode PLL ON above		1 MHz	0.27	0.39	0.84	1.49	3.311	0.41	1.17	3.05	5.51	9.45	
		48 MHz all		100 KHz	0.21	0.34	0.78	1.44	3.25	0.32	1.08	2.96	5.42	9.35	
		peripherals disabled	Range 0 SMPS HP mode	110 MHz	11.21	11.76	12.72	13.98	17.58	11.49	13.03	16.3	20.32	26.73	mA
		fHCLK =		80 MHz	7.00	7.28	8.37	9.41	11.92	7.52	8.94	11.84	15.22	20.62	
		fHSE up to 48MHz		72 MHz	6.34	6.61	7.57	8.67	11.20	6.87	8.25	11.19	14.55	19.93	
loo	Supply	included,	Range 1	64 MHz	5.68	5.94	6.73	7.96	10.44	6.19	7.55	10.53	13.92	19.26	
	IDD Supply current in Run mode	bypass mode PLL	SMPS HP	48 MHz	4.36	4.61	5.28	6.49	8.97	4.82	6.15	9.18	12.6	17.89	
(rtarr)	Run mode	ON above	mode	32 MHz	3.03	3.25	3.91	4.86	7.48	3.43	4.73	7.7	11.29	16.52	
		48 MHz all peripherals		24 MHz	2.36	2.57	3.21	4.13	6.73	2.73	4.01	6.98	10.63	15.82	
		disabled		16 MHz	1.69	1.90	2.53	3.43	5.97	2.03	3.3	6.24	9.95	15.14	

Table 37. Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter

		Con	ditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	1.82	1.90	2.36	3.03	4.96	1.88	2.67	4.58	7.06	11.03	
				16 MHz	1.20	1.30	1.75	2.41	4.31	1.28	2.06	3.96	6.43	10.39	
		fHCLK = fHSE up	Range 2	8 MHz	0.70	0.82	1.27	1.93	3.75	0.8	1.57	3.46	5.92	9.87	
		to 48MHz included,	SMPS	4 MHz	0.45	0.58	1.02	1.68	3.51	0.56	1.32	3.21	5.67	9.61	
IDD (Dama)	Supply current in	bypass mode PLL ON above	LP mode	2 MHz	0.33	0.45	0.90	1.55	3.37	0.44	1.2	3.08	5.54	9.48	
(Run)	(Run) Run mode	48 MHz all		1 MHz	0.26	0.39	0.84	1.49	3.30	0.4	1.17	3.05	5.51	9.45	
		peripherals disabled		100 KHz	0.21	0.33	0.78	1.43	3.24	0.32	1.08	2.96	5.42	9.35	
		uisabieu	Range 0 SMPS HP mode	110 MHz	10.80	11.38	12.35	13.61	17.20	11.18	12.71	15.98	19.99	26.39	mA
				80 MHz	6.79	7.06	8.152	9.17	11.65	7.32	8.74	11.64	15.01	20.4	
		fHCLK = fHSE up to 48 MHz		72 MHz	6.15	6.42	7.38	8.46	10.92	6.68	8.06	11.01	14.37	19.73	
1		included,	Range 1	64 MHz	5.51	5.77	6.62	7.77	10.22	6.02	7.38	10.36	13.75	19.09	
IDD (Run)	Supply current in Run mode	bypass mode PLL ON above	SMPS	48 MHz	4.23	4.48	5.15	6.34	8.814	4.69	6.02	9.05	12.48	17.76	
(rtail)	(Run) Run mode	48 MHz all	HP mode	32 MHz	2.94	3.17	3.82	4.76	7.341	3.34	4.64	7.62	11.21	16.43	
		peripherals disabled		24 MHz	2.29	2.51	3.15	4.06	6.62	2.66	3.95	6.91	10.56	15.76	
				16 MHz	1.65	1.85	2.49	3.39	5.89	1.99	3.25	6.2	9.91	15.09	

Table 38. Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE disabled and power supplied by internal SMPS step down converter

		Con	ditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	2.38	2.44	2.91	3.60	5.55	2.43	3.23	5.15	7.63	11.61	
				16 MHz	1.57	1.66	2.11	2.79	4.68	1.64	2.43	4.34	6.8	10.77	
			Range 2	8 MHz	0.89	0.99	1.45	2.11	3.97	0.98	1.76	3.65	6.11	10.06	
			SMPS	4 MHz	0.54	0.67	1.11	1.77	3.59	0.65	1.41	3.3	5.76	9.7	
			LP mode	2 MHz	0.37	0.50	0.94	1.60	3.42	0.48	1.24	3.13	5.59	9.52	
		fHCLK = fHSE up		1 MHz	0.29	0.41	0.86	1.52	3.33	0.44	1.2	3.09	5.54	9.48	
		to 48 MHz		100 KHz	0.21	0.34	0.78	1.43	3.24	0.32	1.08	2.97	5.42	9.36	
IDD (Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all	Range 0 SMPS HP mode	110 MHz	12.87	13.29	14.25	15.62	18.91	13.02	14.59	17.89	21.92	28.32	mA
		peripherals		80 MHz	8.69	9.01	10.21	11.24	13.82	9.35	10.76	13.6	17.02	22.47	
		disabled		72 MHz	7.88	8.23	9.30	10.34	12.83	8.53	9.98	12.77	16.15	21.57	
			Range 1	64 MHz	7.28	7.56	8.67	9.70	12.17	7.86	9.27	12.16	15.54	20.94	
			SMPS	48 MHz	5.56	5.81	6.66	7.79	10.30	6.1	7.44	10.46	13.82	19.16	
			HP mode	32 MHz	3.87	4.11	4.79	5.87	8.40	4.33	5.65	8.63	12.16	17.41	
				24 MHz	2.99	3.21	3.87	4.84	7.41	3.41	4.7	7.67	11.28	16.5	
				16 MHz	2.15	2.36	3.00	3.92	6.45	2.52	3.79	6.73	10.42	15.62	

Table 39. Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ICACHE ON in 2-way

		Co	onditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	3.19	3.53	4.57	6.08	8.87	4.38	6.84	12.13	18.79	29.69	
				16 MHz	2.05	2.38	3.41	4.90	7.67	3.24	5.69	10.96	17.60	28.45	
				8 MHz	1.13	1.45	2.47	3.95	6.71	2.33	4.77	10.03	16.64	27.47	
			Range 2	4 MHz	0.67	0.99	1.98	3.48	6.22	1.87	4.30	9.56	16.16	26.97	
		fHCLK =		2 MHz	0.43	0.75	1.76	3.24	5.97	1.64	4.07	9.32	15.92	26.73	
		fHSE up to 48MHz		1 MHz	0.32	0.63	1.63	3.13	5.85	1.59	4.02	9.26	15.86	26.66	
	Supply	included,		100 KHz	0.22	0.53	1.53	3.00	5.75	1.43	3.85	9.10	15.70	26.48	
	IDD Supply k	bypass mode PLL	Range 0	110 MHz	16.66	17.28	18.84	20.97	24.75	19.07	23.15	31.38	41.18	56.65	mA
(rtarr)	(Run) current in Run mode	ON above		80 MHz	11.39	11.91	13.30	15.22	18.68	13.33	16.88	24.17	33.02	46.97	
		48 MHz all peripherals		72 MHz	10.28	10.79	12.16	14.08	17.52	12.22	15.76	23.03	31.87	45.80	
		disabled		64 MHz	9.18	9.68	11.02	12.93	16.35	11.10	14.64	21.89	30.72	44.63	
			Range 1	48 MHz	6.95	7.43	8.76	10.63	14.02	8.85	12.38	19.62	28.43	42.33	
				32 MHz	4.72	5.17	6.48	8.33	11.68	6.61	10.12	17.32	26.10	39.96	
				24 MHz	3.61	4.05	5.35	7.20	10.50	5.49	8.98	16.17	24.94	38.85	
				16 MHz	2.50	2.92	4.20	6.04	9.33	4.37	7.85	15.02	23.77	37.67	
	Cumply			2 MHz	402.64	785.95	1919	3558	6501	2025	4984	12805	20319	31556	
IDD	Supply current in fHCLK =	fMSI	1 MHz	274.43	651.32	1775	3435	6367	1907	4958	11887	18764	31438		
(LPRun)	Low-power run mode	all peripherals	s disabled	400 KHz	184.36	568.08	1697	3359	6278	1835	4759	11810	18426	31274	μA
	Tull illoue			100 KHz	164.07	526.82	1660	3306	6238	1797	4578	11807	18139	30765	

Table 40. Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ICACHE ON in 1-way

		Co	onditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fhclk	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	3.10	3.44	4.45	5.99	8.76	4.28	6.74	12.01	18.65	29.47	
				16 MHz	1.99	2.32	3.33	4.84	7.60	3.18	5.63	10.88	17.51	28.31	
				8 MHz	1.10	1.42	2.43	3.93	6.67	2.30	4.73	9.97	16.59	27.37	
			Range 2	4 MHz	0.65	0.97	1.96	3.47	6.19	1.86	4.29	9.52	16.13	26.90	mA
		fHCLK =		2 MHz	0.43	0.76	1.75	3.24	5.97	1.64	4.06	9.29	15.90	26.67	
	IDD Supply current in Run mode PLL ON above 48 MHz al	fHSE up to 48MHz		1 MHz	0.31	0.63	1.63	3.14	5.84	1.58	4.01	9.24	15.85	26.61	
loo		included,		100 KHz	0.21	0.53	1.52	3.01	5.75	1.43	3.85	9.08	15.69	26.45	
		bypass mode PLL	Range 0	110 MHz	16.14	16.75	18.31	20.43	24.12	18.54	22.62	30.83	40.64	56.06	
(1.13)		ON above		80 MHz	11.03	11.54	12.91	14.83	18.22	12.97	16.52	23.79	32.65	46.57	
		peripherals		72 MHz	9.96	10.46	11.81	13.73	17.10	11.89	15.44	22.69	31.54	45.44	
		disabled		64 MHz	8.89	9.39	10.72	12.62	16.00	10.81	14.35	21.59	30.43	44.31	
			Range 1	48 MHz	6.74	7.21	8.52	10.41	13.77	8.63	12.16	19.38	28.20	42.08	mA
				32 MHz	4.58	5.04	6.31	8.19	11.47	6.46	9.97	17.16	25.95	39.86	
				24 MHz	3.50	3.94	5.22	7.07	10.36	5.38	8.87	16.04	24.82	38.72	
				16 MHz	2.42	2.85	4.10	5.93	9.21	4.30	7.78	14.93	23.69	37.57	
				2 MHz	395.2 8	772.8 3	1907	3571	6492	2013	4976	12833	20077	31507	
IDD		fHCLK =	fmsı	1 MHz	289.9 8	641.7 3	1775	3418	6339	1907	4922	11903	18462	31382	
(LPRun)		s disabled	400 KHz	186.6 8	557.5 3	1698	3343	6271	1823	4765	11840	18375	31356	μΑ	
				100 KHz	165.5 4	523.3 3	1666	3299	6245	1799	4595	11826	18345	30923	

		Co	onditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	4.17	4.52	5.55	7.10	9.86	5.38	7.84	13.11	19.77	30.58	
				16 MHz	2.73	3.07	4.09	5.63	8.40	3.93	6.38	11.64	18.28	29.07	
				8 MHz	1.47	1.80	2.81	4.32	7.05	2.67	5.11	10.35	16.98	27.75	
			Range 2	4 MHz	0.84	1.166	2.16	3.66	6.39	2.04	4.47	9.70	16.33	27.08	
		fHCLK =		2 MHz	0.52	0.84	1.84	3.33	6.05	1.73	4.16	9.38	16.00	26.76	
		fHSE up to 48MHz		1 MHz	0.36	0.68	1.68	3.18	5.89	1.65	4.08	9.30	15.92	26.67	
Inn	Supply	included,		100 KHz	0.22	0.53	1.53	3.03	5.74	1.43	3.86	9.08	15.70	26.44	
IDD (Run)	current in Run	bypass mode PLL	Range 0	110 MHz	17.20	17.81	19.35	21.47	25.17	19.96	24.02	32.20	42.00	57.39	mA
(1.13.1)	mode	ON above		80 MHz	13.93	14.47	15.86	17.80	21.23	16.17	19.70	26.96	35.83	49.73	
		48 MHz all peripherals		72 MHz	12.60	13.12	14.51	16.45	19.86	14.80	18.34	25.59	34.46	48.34	
		disabled		64 MHz	11.82	12.34	13.73	15.65	19.05	13.90	17.45	24.69	33.55	47.42	
			Range 1	48 MHz	8.922	9.42	10.78	12.69	16.08	10.97	14.51	21.73	30.58	44.45	
				32 MHz	6.24	6.72	8.03	9.92	13.28	8.22	11.74	18.93	27.74	41.65	
				24 MHz	4.75	5.21	6.50	8.35	11.67	6.70	10.20	17.37	26.16	40.06	
				16 MHz	3.38	3.83	5.09	6.93	10.22	5.28	8.77	15.92	24.70	38.58	
				2 MHz	483.6 4	889.5 6	2022	3671	6622	2109	5283	12566	20777	31527	
IDD		fHCLK =	fMSI	1 MHz	332.2 4	705.1 9	1836	3468	6424	1954	5032	11918	18517	31263	
(LPRun)		s disabled	400 KHz	206.5 9	588.2 5	1722	3355	6314	1849	4802	11889	18449	31148	μA	
				100 KHz	156.4 1	527.8 0	1666	3315	6247	1809	4600	11847	18240	30791	

Table 42. Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE ON in 2-way and power supplied by internal SMPS step down converter

		Cond	ditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	1.85	1.94	2.41	3.14	4.40	1.93	2.73	4.65	7.13	11.13	
				16 MHz	1.21	1.33	1.79	2.48	3.76	1.31	2.09	3.99	6.46	10.43	
			Range 2	8 MHz	0.70	0.83	1.29	1.98	3.25	0.81	1.59	3.47	5.94	9.89	
			SMPS	4 MHz	0.45	0.58	1.03	1.77	3.00	0.56	1.33	3.22	5.68	9.62	
	to		LP mode	2 MHz	0.32	0.46	0.90	1.60	2.88	0.44	1.21	3.09	5.54	9.49	
				1 MHz	0.26	0.39	0.84	1.54	2.79	0.41	1.17	3.05	5.51	9.46	
		fHCLK = fHSE up to 48 MHz		100 KHz	0.20	0.33	0.79	1.51	2.74	0.32	1.08	2.96	5.42	9.36	
IDD (Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all	Range 0 SMPS HP mode	110 MHz	11.05	11.73	12.72	14.01	16.84	11.49	13.03	16.31	20.32	26.75	mA
		peripherals disabled		80 MHz	6.96	7.27	8.38	9.46	11.35	7.53	8.94	11.84	15.22	20.64	
				72 MHz	6.30	6.61	7.62	8.69	10.58	6.87	8.26	11.2	14.56	19.94	
			Range 1	64 MHz	5.65	5.94	6.80	8.00	9.88	6.19	7.55	10.53	13.92	19.27	
			SMPS HP	48 MHz	4.33	4.60	5.29	6.51	8.40	4.83	6.15	9.18	12.6	17.9	
			mode	32 MHz	3.00	3.25	3.92	4.92	6.92	3.43	4.73	7.7	11.29	16.53	
				24 MHz	2.33	2.57	3.22	4.15	6.15	2.73	4.01	6.98	10.63	15.83	
				16 MHz	1.67	1.89	2.53	3.47	5.33	2.03	3.3	6.24	9.95	15.15	

Table 43. Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter

		Con	ditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	1.80	1.89	2.37	3.07	4.35	1.88	2.67	4.58	7.06	11.04	
				16 MHz	1.18	1.30	1.76	2.46	3.72	1.28	2.06	3.96	6.43	10.39	
			Range 2	8 MHz	0.69	0.82	1.27	1.98	3.23	8.0	1.57	3.46	5.92	9.87	
			SMPS	4 MHz	0.44	0.58	1.02	1.72	2.98	0.56	1.32	3.21	5.67	9.61	
			LP mode	2 MHz	0.32	0.46	0.90	1.59	2.86	0.44	1.2	3.08	5.54	9.48	
		fHCLK = fHSE up		1 MHz	0.26	0.39	0.84	1.53	2.79	0.4	1.17	3.05	5.51	9.45	
		to 48 MHz		100 KHz	0.20	0.33	0.78	1.48	2.73	0.32	1.08	2.96	5.42	9.36	
IDD (Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all	Range 0 SMPS HP mode	110 MHz	10.51	11.37	12.33	13.63	16.26	11.18	12.72	15.98	20	26.4	mA
		peripherals		80 MHz	6.75	7.06	8.15	9.21	11.07	7.33	8.74	11.64	15.01	20.41	
		disabled		72 MHz	6.12	6.41	7.39	8.50	10.37	6.68	8.06	11.01	14.37	19.75	
			Range 1	64 MHz	5.48	5.77	6.65	7.82	9.68	6.02	7.38	10.37	13.75	19.1	
			SMPS	48 MHz	4.20	4.48	5.15	6.38	8.25	4.69	6.02	9.06	12.48	17.77	
			HP mode	32 MHz	2.92	3.16	3.82	4.79	6.81	3.34	4.64	7.62	11.21	16.44	
				24 MHz	2.27	2.51	3.15	4.12	6.06	2.66	3.95	6.91	10.56	15.76	
				16 MHz	1.63	1.85	2.49	3.44	5.26	1.99	3.25	6.2	9.91	15.1	

Table 44. Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE disabled and power supplied by internal SMPS step down converter

		Conc	litions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	2.40	2.49	2.97	3.67	4.94	2.47	3.28	5.2	7.68	11.67	
				16 MHz	1.61	1.71	2.17	2.87	4.16	1.68	2.48	4.39	6.86	10.83	
			Range 2	8 MHz	0.90	1.02	1.47	2.18	3.44	1	1.78	3.67	6.14	10.09	
			SMPS LP	4 MHz	0.55	0.67	1.12	1.82	3.07	0.66	1.43	3.31	5.77	9.72	
			mode	2 MHz	0.37	0.51	0.95	1.64	2.89	0.49	1.25	3.14	5.59	9.54	
				1 MHz	0.286	0.42	0.87	1.55	2.81	0.44	1.21	3.09	5.55	9.49	
		fHCLK = fHSE up to 48 MHz		100 KHz	0.20	0.34	0.79	1.48	2.74	0.32	1.08	2.97	5.42	9.36	
IDD (Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all	Range 0 SMPS HP mode	110 MHz	11.59	12.15	13.24	14.24	16.59	11.99	13.58	16.92	20.93	27.3	mA
		peripherals disabled		80 MHz	8.53	8.95	10.06	11.12	13.07	9.31	10.7	13.49	16.89	22.35	
				72 MHz	7.74	8.07	9.20	10.26	12.17	8.47	9.9	12.69	16.07	21.5	
			Range 1	64 MHz	7.26	7.57	8.71	9.75	11.64	7.95	9.38	12.21	15.58	21	
			SMPS HP	48 MHz	5.54	5.82	6.66	7.87	9.74	6.15	7.51	10.51	13.86	19.2	
			mode	32 MHz	3.92	4.18	4.85	5.98	7.91	4.42	5.74	8.74	12.24	17.5	
				24 MHz	3.03	3.27	3.92	4.91	6.93	3.48	4.78	7.75	11.33	16.55	
				16 MHz	2.20	2.43	3.07	4.03	5.95	2.59	3.87	6.81	10.49	15.69	

Table 45. Current consumption in Run and Low-power run modes, code with data processing running from SRAM1

		Coi	nditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fhclk	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	3.25	3.59	4.62	6.12	8.92	4.44	6.89	12.15	18.80	29.60	
				16 MHz	2.08	2.41	3.43	4.93	7.69	3.27	5.72	10.96	17.61	28.38	
				8 MHz	1.15	1.47	2.47	3.97	6.73	2.35	4.78	10.01	16.64	27.40	
			Range 2	4 MHz	0.68	1.00	1.99	3.51	6.23	1.88	4.31	9.53	16.16	26.91	
		fHCLK = fHSE		2 MHz	0.44	0.76	1.75	3.25	5.97	1.65	4.07	9.30	15.92	26.67	
		up to 48MHz		1 MHz	0.32	0.64	1.64	3.14	5.86	1.59	4.01	9.24	15.86	26.61	
lan	Supply	included, bypass		100 KHz	0.22	0.53	1.52	3.03	5.76	1.42	3.84	9.06	15.68	26.43	
IDD (Run)	current in	mode PLL	Range 0	110 MHz	16.99	17.57	19.10	21.22	24.94	19.40	23.45	31.63	41.44	56.82	mA
(rtarr)	Run mode	ON above 48 MHz all		80 MHz	11.63	12.13	13.48	15.38	18.76	13.57	17.11	24.35	33.21	47.09	
		peripherals		72 MHz	10.50	10.99	12.33	14.22	17.62	12.42	15.96	23.19	32.04	45.92	
		disabled		64 MHz	9.37	9.85	11.18	13.07	16.43	11.28	14.81	22.04	30.87	44.74	
			Range 1	48 MHz	7.10	7.56	8.87	10.74	14.10	8.99	12.51	19.71	28.54	42.40	
				32 MHz	4.826	5.27	6.55	8.40	11.70	6.70	10.20	17.38	26.18	40.08	
				24 MHz	3.68	4.11	5.37	7.23	10.54	5.55	9.05	16.21	24.99	38.88	
				16 MHz	2.54	2.97	4.22	6.05	9.34	4.41	7.89	15.04	23.81	37.68	
	Cupply	_	_	2 MHz	385.23	772.80	1911	3545	6506	2010	4724	12895	21185	30901	
IDD	Supply current in	fHCLK = 1		1 MHz	271.61	633.31	1776	3405	6382	1896	4686	12648	20905	30715	
(LPRun)	Low-power run mode	all peripherals FLASH in pow		400 KHz	198.95	554.43	1694	3337	6298	1818	4633	10788	18052	30448	μA
	ran mode	'		100 KHz	142.82	517.78	1638	3286	6267	1423	3848	9073	15687	26433	

Table 46. Current consumption in Run mode, code with data processing running from SRAM1 and power supplied by internal SMPS step down converter

		Con	ditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	1.88	1.99	2.46	3.15	4.42	1.96	2.76	4.67	7.14	11.12	
				16 MHz	1.24	1.35	1.81	2.51	3.76	1.33	2.11	4.01	6.48	10.44	
			Range 2	8 MHz	0.72	0.85	1.29	1.99	3.24	0.82	1.6	3.48	5.94	9.89	
			SMPS	4 MHz	0.46	0.59	1.04	1.73	2.97	0.57	1.34	3.22	5.68	9.62	
			LP mode	2 MHz	0.32	0.46	0.91	1.60	2.85	0.44	1.21	3.09	5.54	9.48	
		fHCLK = fHSE up		1 MHz	0.26	0.40	0.84	1.53	2.77	0.41	1.18	3.06	5.51	9.45	
		to 48 MHz		100 KHz	0.20	0.34	0.78	1.48	2.71	0.32	1.08	2.96	5.41	9.34	
IDD (Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all	Range 0 SMPS HP mode	110 MHz	11.28	12.01	12.99	14.29	17.00	12.06	14.37	19.01	24.79	33.4	mA
		peripherals		80 MHz	7.10	7.42	8.55	9.55	11.47	8.33	10.16	13.97	18.72	26.04	
		disabled		72 MHz	6.44	6.74	7.80	8.84	10.70	7.52	9.42	13.31	18.02	25.3	
			Range 1	64 MHz	5.76	6.05	6.89	8.10	9.95	6.8	8.74	12.64	17.33	24.58	
			SMPS	48 MHz	4.42	4.69	5.37	6.60	8.46	5.34	7.29	11.35	15.96	23.16	
			HP mode	32 MHz	3.06	3.31	3.96	4.93	6.93	3.86	5.79	9.98	14.58	21.7	
				24 MHz	2.38	2.61	3.26	4.20	6.16	3.15	5.05	9.26	13.88	20.98	
				16 MHz	1.70	1.92	2.55	3.51	5.32	2.45	4.31	8.52	13.19	20.25	

Table 47. Current consumption in Run and Low-power run modes, code with data processing running from SRAM2

		Co	onditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	3.20	3.53	4.55	6.08	8.86	4.33	6.79	12.05	18.6	29.56	
				16 MHz	2.05	2.38	3.40	4.90	7.67	3.19	5.63	10.88	17.41	28.32	
				8 MHz	1.13	1.45	2.46	3.97	6.71	2.28	4.71	9.94	16.46	27.34	
			Range 2	4 MHz	0.67	0.99	1.99	3.47	6.21	1.82	4.25	9.47	15.98	26.84	
		fHCLK =		2 MHz	0.43	0.76	1.75	3.24	5.97	1.59	4.01	9.24	15.74	26.59	
		fHSE up to 48 MHz		1 MHz	0.32	0.63	1.63	3.13	5.86	1.53	3.96	9.18	15.68	26.52	
1		included,		100 KHz	0.22	0.53	1.53	3.01	5.74	1.37	3.79	9	15.5	26.33	
IDD (Run)	Supply current in Run mode	bypass mode PLL	Range 0	110 MHz	16.71	17.32	18.86	20.97	24.66	19.04	23.09	31.27	40.87	56.41	mA
(rtarr)		ON above		80 MHz	11.43	11.94	13.30	15.21	18.64	13.29	16.83	24.07	32.71	46.77	
		48 MHz all peripherals		72 MHz	10.32	10.82	12.16	14.07	17.48	12.17	15.71	22.94	31.55	45.6	
		disabled		64 MHz	9.219	9.70	11.03	12.94	16.31	11.05	14.58	21.79	30.39	44.44	
			Range 1	48 MHz	6.98	7.44	8.77	10.63	13.98	8.79	12.31	19.5	28.16	42.12	
				32 MHz	4.746	5.19	6.48	8.33	11.65	6.54	10.04	17.2	25.84	39.83	
				24 MHz	3.62	4.06	5.33	7.17	10.49	5.42	8.9	16.05	24.67	38.64	
				16 MHz	2.50	2.93	4.19	6.02	9.29	4.29	7.76	14.9	23.51	37.45	
		_		2 MHz	386.41	774.71	1901	3546	6475	1946	2886	7270	11761	20360	
IDD(LPRu	Supply current	fHCLK =		1 MHz	276.23	635.13	1767	3445	6360	1829	2796	6688	12192	20188	
n)	in Low-power run mode	all peripherals		400 KHz	196.75	552.97	1679	3339	6278	1757	2749	6961	11520	19976	μA
			•	100 KHz	146.57	513.87	1644	3299	6249	1373	2313	5697	10033	17534	

Table 48. Current consumption in Run mode, code with data processing running from SRAM2 and power supplied by internal SMPS step down converter

		Cor	nditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	1.86	1.96	2.43	3.12	4.43	2.22	3.49	6.48	10.14	15.89	
				16 MHz	1.22	1.33	1.79	2.50	3.75	1.61	2.87	5.83	9.48	15.21	
			Range 2	8 MHz	0.71	0.83	1.28	1.99	3.24	1.11	2.37	5.32	8.95	14.64	
			SMPS LP	4 MHz	0.456	0.58	1.03	1.74	2.99	0.86	2.12	5.07	8.69	14.36	
			mode	2 MHz	0.32	0.46	0.90	1.60	2.86	0.74	1.99	4.94	8.56	14.22	
		fHCLK = fHSE up		1 MHz	0.26	0.40	0.84	1.54	2.79	0.71	1.96	4.9	8.52	14.18	
		to 48 MHz		100 KHz	0.20	0.34	0.78	1.49	2.73	0.62	1.87	4.81	8.43	14.07	
IDD (Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all	Range 0 SMPS HP mode	110 MHz	11.04	11.78	12.75	14.05	16.87	12.16	14.52	19.77	25.94	35.47	mA
		peripherals		80 MHz	7.00	7.29	8.40	9.44	11.33	8.23	10.44	14.63	19.73	27.8	
		disabled		72 MHz	6.34	6.62	7.64	8.72	10.59	7.49	9.79	13.98	19.05	27.08	
			Range 1	64 MHz	5.68	5.95	6.82	8.00	9.86	6.8	8.97	13.41	18.39	26.39	
			SMPS HP	48 MHz	4.35	4.61	5.30	6.51	8.38	5.39	7.53	12.27	17.03	24.99	
			mode	32 MHz	3.02	3.26	3.91	4.89	6.89	3.98	6.11	10.94	15.72	23.52	
				24 MHz	2.35	2.58	3.22	4.18	6.11	3.28	5.4	10.17	15.11	22.8	
				16 MHz	1.68	1.90	2.53	3.49	5.31	2.58	4.68	9.42	14.54	22.09	

Table 49. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ICACHE ON (2-way)

Symbol	Parameter		Conditions		TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Unit
		-	Voltage scaling	Code	25°C	25°C		25°C	25°C	
				Reduced code	3.20	3.19		123	123	
			Dancas	Coremark	3.43	3.43		132	132	
			Range2 fhctk=26MHz	Dhrystone2.1	3.66	3.64	mA	141	140	μΑ/MHz
				Fibonacci	3.06	3.05		118	117	
				While	2.77	2.77		106	106	
		fHCLK=fHSE up to		Reduced code	11.4	11.4		143	142	
		48 MHZ included, bypass mode		Coremark	12.2	12.2		153	153	
Idd (Run)	Supply current in Run mode	PLL ON above	Range 1 fHCLK=80 MHz	Dhrystone2.1	13.1	13.0	mA	163	163	μΑ/MHz
		48 MHz all peripherals		Fibonacci	10.8	10.8		135	135	
		disabled		While	9.9	9.9		123	123	
				Reduced code	16.7	16.7		152	152	
				Coremark	18.0	18.0		163	163	
			Range 0 fhclk= 110 MHz	Dhrystone2.1	19.1	19.0	mA	174	173	μA/MHz
			INOCK TO WITE	Fibonacci	15.8	15.8		143	143	
				While	14.5	14.5		131	131	
				Reduced code	424	403		212	201	
				Coremark	447	415		224	207]
IDD (LPRun)	Supply current in Low-power run	fHCLK = fMSI = 2 MI disal		Dhrystone2.1	477	432	μΑ	239	216	μΑ/MHz
(Li ixuii)	Low power run	diodi		Fibonacci	427	383		214	192	
				While	350	369		175	185]

Table 50. Typical current consumption in Run mode with SMPS, with different codes running from Flash, ICACHE ON (2-way)

Symbol	Parameter	С	onditions		TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Unit
		-	Voltage scaling	Code	25°C	25°C	-	25°C	25°C	-
				Reduced code	1.88	1.85		72	71	
			Range2, SMPS	Coremark	2.00	1.98		77	76	
			LP fhctk=26 MHz	Dhrystone2.1	2.13	2.09	mA	82	81	μA/MHz
				Fibonacci	1.79	1.77		69	68	
				While	1.65	1.64		64	63	
		fHCLK=fHSE up to		Reduced code	7.0	7.0		88	87	
IDD	Supply current in	48 MHZ included,	Range 1, SMPS	Coremark	7.5	7.5		94	93	
(Run)	Run mode	bypass mode PLL ON above 48 MHz all	HP fHCLK=80 MHz	Dhrystone2.1	8.0	7.9	mA	100	99	μA/MHz
		peripherals disabled		Fibonacci	6.7	6.6		83	83	
				While	6.1	6.1		77	76	
				Reduced code	11.2	11.1		102	101	
			Range 0, SMPS	Coremark	12.2	12.1		111	110	
			HP fhctk= 110 MHz	Dhrystone2.1	13.0	12.9	mA	118	117	μA/MHz
				Fibonacci	10.6	10.6		97	96	
				While	9.3	9.3		85	84	

Table 51. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ICACHE ON (1-way)

Symbol	Parameter		Conditions		TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Unit
		-	Voltage scaling	Code	25°C	25°C		25°C	25°C	
				Reduced code	3.10	3.10		119	119	
				Coremark	3.26	3.26		125	125	
			Range2 fhclk=26 MHz	Dhrystone2.1	3.48	3.47	mA	134	133	μΑ/MHz
				Fibonacci	2.95	2.95		114	113	
				While	2.73	2.72		105	105	
		fHCLK=fHSE up to		Reduced code	11.0	11.0		138	138	
		48 MHZ included,		Coremark	11.6	11.6		145	145	
	Supply current in Run mode	bypass mode PLL ON above 48 MHz	Range 1 fHCLK=80 MHz	Dhrystone2.1	12.4	12.4	mA	155	155	μΑ/MHz
(- /		all peripherals		Fibonacci	10.4	10.4		130	130	
		disabled		While	9.7	9.7		121	121	
				Reduced code	16.1	16.1		147	147	
			Range 0	Coremark	17.0	17.0		154	154	
			fHCLK=	Dhrystone2.1	18.2	18.1	mA	165	164	µA/MHz
			110 MHz	Fibonacci	15.2	15.2		138	138	
				While	14.2	14.2		129	129	
				Reduced code	416	395		208	198	
IDD		6 6 6		Coremark	425	389		213	194	
(LPRu	Supply current in Low-power run	fHCLK = fMSI = 2 MHz disable		Dhrystone2.1	451	405	μΑ	226	203	μΑ/MHz
(Run)				Fibonacci	392	375		196	188	
				While	355	372		178	186	

Table 52. Typical current consumption in Run mode with SMPS, with different codes running from Flash, ICACHE ON (1-way)

Symbol	Parameter	Co	onditions		TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Unit
		-	Voltage scaling	Code	25°C	25°C		25°C	25°C	
				Reduced code	1.82	1.80		70	69	
			Range2,	Coremark	1.91	1.89		73	73	
			SMPS LP fHCLK=26	Dhrystone2.1	2.03	2.00	mA	78	77	μΑ/MHz
			MHz	Fibonacci	1.74	1.72		67	66	
				While	1.63	1.61		63	62	
				Reduced code	6.8	6.8		85	84	
		fHCLK=fHSE up to 48 MHZ included,	Range 1,	Coremark	7.1	7.1		89	88	
IDD (Run)	Supply current in Run mode	bypass mode PLL ON	SMPS HP fHCLK=80	Dhrystone2.1	7.6	7.6	mA	95	94	μΑ/MHz
(-)		above 48 MHz all peripherals disabled	MHz	Fibonacci	6.4	6.4		80	80	
				While	6.0	6.0		75	75	
				Reduced code	10.8	10.5		98	96	
			Range 0,	Coremark	11.5	11.4		105	104	
			SMPS HP -	Dhrystone2.1	12.4	12.2	mA	112	111	μΑ/MHz
			110 MHz	Fibonacci	10.0	10.0		91	91	
				While	9.2	9.1		83	83	

Table 53. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ICACHE disabled

Symbol	Parameter		Conditions		TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Unit
		-	Voltage scaling	Code	25°C	25°C		25°C	25°C	
				Reduced code	4.08	4.17		157	160	
				Coremark	4.42	4.22		170	162	
			Range2 fhctk=26 MHz	Dhrystone2.1	4.56	4.41	mA	175	170	μΑ/MHz
				Fibonacci	3.62	3.55		139	137	
				While	3.04	3.14		117	121	
	IDD Supply current in	6		Reduced code	14.1	13.9		176	174	
1		fHCLK=fHSE up to 48 MHZ included,	D 4 510114 00	Coremark	13.6	12.2		171	152	
(Run)	Supply current in Run mode	bypass mode PLL ON	Range 1 fHCLK=80 MHz	Dhrystone2.1	12.5	12.5	mA	156	156	μΑ/MHz
,		above 48 MHz all peripherals disabled		Fibonacci	12.1	11.3		151	142	
				While	10.9	11.3		136	141	
				Reduced code	18.8	17.2		171	156	
			Dance 0	Coremark	17.5	15.2		159	138	
			Range 0 fhctk= 110 MHz	Dhrystone2.1	17.7	15.5	mA	161	141	μA/MHz
1				Fibonacci	16.6	15.1		151	138	
				While	15.9	16.5		145	150	
				Reduced code	511	484		255	242	
I== // DD		6.0 6.0. 0.1	11	Coremark	577	550		289	275	
IDD(LPR un)	Supply current in Low-power run	fHCLK = fMSI = 2 MH disable		Dhrystone2.1	599	551	μΑ	299	275	μΑ/MHz
, 	•			Fibonacci	470	462		235	231	
				While	416	398		208	199	

Table 54. Typical current consumption in Run mode with internal SMPS, with different codes running from Flash, ICACHE disabled

Symbol	Parameter		Conditions		TYP Single Bank Mode	TYP Dual Bank Mode	Unit	TYP Single Bank Mode	TYP Dual Bank Mode	Unit
		-	Voltage scaling	Code	25°C	25°C		25°C	25°C	
				Reduced code	2.38	2.41		92	93	
			Range2, SMPS	Coremark	2.59	2.44		100	94	
			LP	Dhrystone2.1	2.67	2.55	mA	103	98	μΑ/MHz
			fHCLK=26 MHz	Fibonacci	2.13	2.07		82	79	
				While	1.80	1.86		69	72	
				Reduced code	8.7	8.5		109	107	
		fHCLK=fHSE up to 48 MHZ included, bypass	Range 1, SMPS	Coremark	8.4	7.5		106	93	
IDD (Run)	Supply current in Run mode	mode PLL ON above	HP fHCLK=80	Dhrystone2.1	8.6	7.7	mA	107	96	μΑ/MHz
(* *****)		48 MHz all peripherals disabled	MHz	Fibonacci	7.5	7.0		93	87	
				While	6.8	7.0		84	87	
				Reduced code	12.9	11.6		117	105	
			Range 0, SMPS	Coremark	11.9	10.1		109	92	
			HP fHCLK=	Dhrystone2.1	12.0	10.4	mA	109	94	μΑ/MHz
			110 MHz	Fibonacci	11.3	10.1		102	92	
				While	10.7	11.1		97	101	

Table 55. Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1

Symbol	Parameter	Conditions			TYP	Unit	TYP	Unit
		-	Voltage scaling	Code	25°C	Oille	25°C	
IDD (Run)	Supply current in Run mode	fHCLK=fHSE up to 48 MHZ included, bypass mode PLL ON above 48 MHz all peripherals disabled	Range2 fHCLK=26 MHz	Reduced code	3.26	mA	125	μΑ/MHz
				Coremark	3.41		131	
				Dhrystone2.1	3.35		129	
				Fibonacci	3.50		134	
				While	3.82		147	
			Range 1 fHCLK=80 MHz	Reduced code	11.6	mA	145	μΑ/MHz
				Coremark	12.22		153	
				Dhrystone2.1	11.9		149	
				Fibonacci	12.5		157	
				While	13.93		174	
			Range 0 fHCLK= 110 MHz	Reduced code	17.0	mA	154	μΑ/MHz
				Coremark	17.88		163	
				Dhrystone2.1	17.4		159	
				Fibonacci	18.3		166	
				While	20.4		186	
IDD(LPRun)	Supply current in Low-power run	fHCLK = fMSI = 2 MHz all peripherals disabled		Reduced code	385	μΑ	193	μΑ/MHz
				Coremark	421		211	
				Dhrystone2.1	384		192	
				Fibonacci	409		204	
				While	442		221	

Table 56. Typical current consumption in Run mode with internal SMPS, with different codes running from SRAM1

Counch a!	Dawanatan	C	Conditions		TYP	11:4	TYP	l l mi4
Symbol	Parameter	fHCLK=fHSE up to 48 MHZ included, bypass mode PLL ON above 48 MHz all peripherals disabled	Voltage scaling	Code	25°C	Unit	25°C	Unit
				Reduced code	1.89		73	
				Coremark	1.9		73	
			Range2, LP fhctk=26 MHz	Dhrystone2.1	1.94	mA	75	μΑ/MHz
				Fibonacci	2.01		77	
	DD (Run) Supply current in Run mode included, bypass mode PLL ON above 48 MHz all		While	2.22		85		
			Reduced code	7.1		89		
			Coremark	7.25		91		
IDD (Run)		Range 1, HP fHCLK=80 MHz	Dhrystone2.1	7.3	mA	91	μΑ/MHz	
			II IOLIX-00 IVII IZ	Fibonacci	7.6		95	1
				While	8.51		106	
				Reduced code	11.3		103	
			D O. HD	Coremark	11.32		103	
			Range 0, HP fHCLK= 110 MHz	Dhrystone2.1	11.7	mA	107	μΑ/MHz
			fHCLK= 110 MHz	Fibonacci	12.3		112	7
				While	13.9		126	

Table 57. Typical current consumption in Run and Low-power run modes, with different codes running from SRAM2

Symbol	Parameter		Conditions		TYP	Unit	TYP	Unit
Symbol	Parameter	-	Voltage scaling	Code	25°C	Oilit	25°C	Onit
				Reduced code	3.20		123	
				Coremark	3.33		128	
			Range2 fhctk=26 MHz	Dhrystone2.1	3.20	mA	123	μΑ/MHz
				Fibonacci	3.34		129	
				While	3.66		141	
	Supply current in Dun included bypass made DLI		Reduced code	11.4		143		
		fHCLK=fHSE up to 48 MHZ		Coremark	11.92		149	
IDD (Run)	Supply current in Run mode	ON above 48 MHz all	Range 1 fHCLK=80 MHz	Dhrystone2.1	11.4	mA	142	μΑ/MHz
		peripherals disabled		Fibonacci	12.0		149	
		peripherals disabled		While	13.24		165	
				Reduced code	16.7		152	
			D	Coremark	17.44		159	
			Range 0 fhclk= 110 MHz	Dhrystone2.1	16.6	mA	151	μΑ/MHz
			lineth in the initial	Fibonacci	17.5		159	
				While	19.5		177	
				Reduced code	386		193	
1	IDD Supply current in Low-power run fHCLK = fMSI = 2 MHz all peri		Coremark	414		207		
		pherals disabled	Dhrystone2.1	373	μΑ	187	μΑ/MHz	
(2. (3.1)			Fibonacci	393		196		
				While	436		218	

Table 58. Typical current consumption in Run mode with internal SMPS, with different codes running from SRAM2

Cumbal	Damamatan		Conditions		TYP	l lmi4	TYP	llm:4
	Parameter	-	Voltage scaling	Code	25°C	Unit	25°C	Unit
				Reduced code	1.90		73	
				Coremark	2.08		80	-
			Range2, LP fhctk=26 MHz	Dhrystone2.1	1.90	mA	73	µA/MHz
				Fibonacci	1.98		76	-
				While	2.14		82	
				Reduced code	7.0		88	
		fHCLK=fHSE up to 48 MHZ		Coremark	7.0		88	
IDD (Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all	Range 1,HP fHCLK=80 MHz	Dhrystone2.1	7.0	mA	87	μΑ/MHz
		peripherals disabled	IIIOEIX-00 IVIIIZ	Fibonacci	7.3		92	1
				While	8.05		101	
				Reduced code	11.0		100	
			D	Coremark	11.1		101	
			Range 0, HP fHCLK= 110 MHz	Dhrystone2.1	11.2	mA	102	μA/MHz
			IHCLK= ITO MHZ	Fibonacci	11.8		108	
				While	13.1		119	

Table 59. Current consumption in Sleep and Low-power sleep mode, Flash ON

		Col	nditions				TYP					MAX					
Symbol	Parameter	-	Voltage scaling	fhcLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit		
				26 MHz	1.04	1.37	2.36	3.88	6.62	2.25	4.69	9.93	16.57	27.36			
				16 MHz	0.72	1.04	2.04	3.55	6.30	1.93	4.36	9.60	16.23	27.00			
				8 MHz	0.46	0.79	1.78	3.29	6.01	1.67	4.10	9.33	15.95	26.70			
			Range 2	4 MHz	0.33	0.65	1.65	3.14	5.85	1.54	3.97	9.19	15.80	26.55			
		fHCLK = fHSE		2 MHz	0.27	0.58	1.58	3.07	5.78	1.48	3.90	9.12	15.73	26.48			
	Cumple	up to 48 MHz		1 MHz	0.24	0.55	1.55	3.03	5.73	1.46	3.88	9.11	15.72	26.46			
	Supply	included, bypass mode		100 KHz	0.211	0.52	1.52	3.01	5.72	1.42	3.84	9.06	15.67	26.41			
IDD (Sleep)	current in Sleep mode	ent in PLL ON	Range 0	110 MHz	4.73	5.23	6.62	8.65	12.21	7.00	11.02	19.15	28.98	44.29	mA		
(сісор)			peripherals	80 MHz	3.31	3.74	5.01	6.88	10.19	5.20	8.71	15.92	24.74	38.70			
		peripherals		72 MHz	3.01	3.44	4.71	6.56	9.86	4.90	8.40	15.61	24.42	38.36			
		disabled		64 MHz	2.71	3.14	4.41	6.26	9.56	4.60	8.10	15.29	24.10	38.03			
			Range 1	48 MHz	2.10	2.53	3.79	5.62	8.92	3.98	7.47	14.66	23.45	37.38			
				32 MHz	1.49	1.91	3.17	4.98	8.27	3.37	6.84	14.00	22.78	36.67			
						24 MHz	1.18	1.60	2.84	4.67	7.93	3.06	6.52	13.68	22.44	36.32	
				16 MHz	0.88	1.29	2.53	4.34	7.60	2.75	6.21	13.35	22.10	35.96			
	Supply			2 MHz	205.22	584.41	1712	3383	6283	1843	4745	12643	19003	31504			
IDD(LPSI	Supply current in	fHCLK = f	MSI	1 MHz	192.80	547.20	1678	3343	6248	1815	4665	12037	18615	31391	μA		
eep)	Low-power sleep mode		all peripherals disa	disabled	400 KHz	143.73	520.85	1655	3313	6222	1793	4567	11872	18346	30902	μA	
	sieep mode			100 KHz	137.82	519.15	1650	3308	6219	1786	4554	11814	18206	30849			

Table 60. Current consumption in Low-power sleep mode, Flash in power-down

			Conditio	ns			TYP					MAX				
Symbol	Parameter	1	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit	
	Supply			2 MHz	197.64	567.40	1699	3374	6136	1839	4641	12810	20855	31559		
IDD	current in		K = fMSI	1 MHz	165.99	540.66	1672	3313	6109	1805	4599	12189	20334	31071		
(LPSleep)	Low-power sleep	-	eripherals sabled	400 KHz	145.78	510.80	1640	3312	6084	1785	4578	10816	17908	30945	μA	
	mode				100 KHz	143.34	506.41	1629	3288	6062	1423	3848	9087	15694	26452	

Table 61. Current consumption in Sleep mode, Flash ON and power supplied by internal SMPS step down converter

		Con	ditions				TYP					MAX			
Symbol	Parameter	-	Voltage scaling	fHCLK	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
				26 MHz	0.69	0.82	1.27	1.99	3.22	0.8	1.57	3.47	5.93	9.88	
				16 MHz	0.50	0.64	1.09	1.80	3.05	0.62	1.39	3.27	5.73	9.67	
			Range 2	8 MHz	0.35	0.48	0.93	1.65	2.88	0.47	1.23	3.11	5.57	9.5	
			SMPS LP	4 MHz	0.27	0.40	0.85	1.55	2.81	0.39	1.16	3.03	5.48	9.42	
			mode	2 MHz	0.23	0.37	0.82	1.52	2.77	0.35	1.12	2.99	5.44	9.37	
		fHCLK = fHSE up		1 MHz	0.21	0.35	0.79	1.50	2.73	0.34	1.11	2.98	5.43	9.36	
		to 48 MHz		100 KHz	0.20	0.33	0.78	1.48	2.73	0.32	1.08	2.95	5.4	9.33	
IDD (Sleep)	Supply current in Sleep mode	included, bypass mode PLL ON above 48 MHz all	Range 0 SMPS HP mode	110 MHz	3.22	3.49	4.24	5.40	7.70	3.81	5.39	9.01	12.92	19.03	mA
		peripherals		80 MHz	2.22	2.44	3.09	4.06	5.98	2.6	3.9	6.89	10.56	15.77	
		disabled		72 MHz	2.04	2.26	2.90	3.89	5.78	2.41	3.7	6.68	10.37	15.58	
			Range 1	64 MHz	1.85	2.07	2.71	3.70	5.53	2.22	3.51	6.48	10.19	15.38	
		Range 1	48 MHz	1.48	1.70	2.34	3.31	5.11	1.83	3.1	6.07	9.81	15		
			mode	32 MHz	1.10	1.32	1.94	2.91	4.62	1.44	2.69	5.64	9.39	14.58	
				24 MHz	0.91	1.12	1.74	2.71	4.40	1.24	2.48	5.42	9.18	14.38	
				16 MHz	0.72	0.93	1.55	2.52	4.18	1.04	2.28	5.2	8.97	14.17	

Table 62. Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 2-way and power supplied by external SMPS

Cumbal	Davisostav	Conditions	s ⁽¹⁾				TYP			l l m i 4
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit
			VDD12=1.2 V	110 MHz	6.69	6.93	7.5	8.23	9.5	
				80 MHz	4.1	4.77	5.28	5.94	7.1	
				72 MHz	3.7	4.33	4.83	5.49	6.65	
				64 MHz	3.31	3.88	4.38	5.04	6.18	
				48 MHz	2.51	2.98	3.47	4.12	5.27	
		fHCLK = fHSE up to 48 MHz		32 MHz	1.7	2.08	2.55	3.2	4.32	
Idd(Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all peripherals		26 KHz	1.76	1.91	2.31	2.9	3.89	mA
		disabled	VDD12=1.1 V	16 MHz	1.14	1.29	1.69	2.25	3.26	
				8 MHz	0.62	0.76	1.15	1.72	2.7	
				4 MHz	0.35	0.49	0.88	1.45	2.44	
				2 MHz	0.22	0.36	0.75	1.32	2.29	
				1 MHz	0.16	0.29	0.69	1.25	2.23	
				100 KHz	0.1	0.23	0.63	1.19	2.16	

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 63. Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by external SMPS

Cumbal	Danamatan	Conditions ⁽¹⁾					TYP			Unit
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Onne
			VDD12=1.2 V	110 MHz	6.47	6.71	7.28	8.03	9.28	
				80 MHz	3.97	4.15	4.6	5.2	6.23	
				72 MHz	3.58	3.76	4.21	4.81	5.82	
		fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals		64 MHz	3.2	3.37	3.82	4.41	5.43	
				48 MHz	2.43	2.59	3.02	3.61	4.62	
				32 MHz	1.65	1.81	2.24	2.81	3.81	
Idd(Run)	Supply current in Run mode		VDD12=1.1 V	26 KHz	1.337	1.484	1.885	2.455	3.455	mA
		disabled	VDD12-1.1 V	16 MHz	0.863	1.001	1.393	1.963	2.959	
				8 MHz	0.479	0.613	1.005	1.57	2.558	
				4 MHz	0.285	0.423	0.807	1.376	2.364	
				2 MHz	0.185	0.324	0.712	1.281	2.26	
				1 MHz	0.138	0.272	0.66	1.229	2.2	
			100 KHz	0.095	0.229	0.617	1.186	2.161		

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 64. Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE disabled and power supplied by external SMPS

Oh al	Danamatan	Conditions ⁽¹⁾					TYP			11!4
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit
			VDD12=1.2 V	110 MHz	7.55	7.8	8.37	9.13	10.39	
				80 MHz	5.07	5.26	5.72	6.34	7.36	-
				72 MHz	4.58	4.77	5.22	5.83	6.87	
				64 MHz	4.24	4.42	4.87	5.48	6.5	
				48 MHz	3.19	3.37	3.82	4.42	5.43	
		fHCLK = fHSE up to 48 MHz		32 MHz	2.2	2.37	2.8	3.39	4.4	
Idd(Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all peripherals	VDD12=1.1 V	26 KHz	1.76	1.911	2.312	2.899	3.891	mA
		disabled	VDD12=1.1 V	16 MHz	1.143	1.285	1.687	2.252	3.257	
				8 MHz	0.617	0.759	1.152	1.721	2.7	
				4 MHz	0.354	0.492	0.884	1.449	2.437	
				2 MHz	0.22	0.358	0.755	1.316	2.291	-
				1 MHz	0.155	0.293	0.686	1.247	2.226	
				100 KHz	0.099	0.233	0.625	1.191	2.157	

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 65. Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 2-way and power supplied by external SMPS

Oh a l	Donous de la	Conditions ⁽¹⁾)				TYP			1114
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit
			VDD12=1.2 V	110 MHz	6.69	6.93	7.56	8.41	9.93	
				80 MHz	4.09	4.28	4.78	5.47	6.72	
				72 MHz	3.7	3.88	4.37	5.06	6.3	
	fi			64 MHz	3.3	3.48	3.97	4.65	5.88	
		fHCLK = fHSE up to 48 MHz		48 MHz	2.5	2.67	3.15	3.82	5.04	
					32 MHz	1.7	1.86	2.33	2.99	4.2
IDD(Run)	D(Run) Supply current in Run included, bypa mode above 48 Mi	included, bypass mode PLL ON above 48 MHz all peripherals	VDD12=1.1 V	26 KHz	1.147	1.269	1.643	2.189	3.189	mA
		disabled	VDD12=1.1 V	16 MHz	0.737	0.856	1.226	1.765	2.761	
				8 MHz	0.406	0.521	0.888	1.424	2.412	
				4 MHz	0.241	0.356	0.715	1.255	2.24	
				2 MHz	0.158	0.273	0.633	1.168	2.15	=
				1 MHz	0.115	0.23	0.586	1.129	2.103	
			100 KHz	0.079	0.191	0.554	1.078	2.067		

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 66. Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 1-way and power supplied by external SMPS

O. wash ad	Danier de la	Conditions ⁽¹⁾		-			TYP			11!4
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit
			VDD12=1.2 V	110 MHz	6.47	6.72	7.34	8.02	9.68	
				80 MHz	3.97	4.15	4.64	5.33	6.55	
				72 MHz	3.58	3.76	4.25	4.94	6.15	
				64 MHz	3.2	3.38	3.86	4.54	5.75	
				48 MHz	2.42	2.59	3.06	3.74	4.95	
		fHCLK = fHSE up to 48 MHz		32 MHz	1.65	1.81	2.27	2.95	4.13	
Idd(Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all peripherals	\/DD40_4_4_\/	26 KHz	1.114	1.237	1.603	2.157	3.153	mA
		disabled	VDD12=1.1 V	16 MHz	0.719	0.834	1.201	1.74	2.732	
				8 MHz	0.399	0.514	0.877	1.416	2.401	
				4 MHz	0.237	0.352	0.708	1.251	2.229	
				2 MHz	0.155	0.273	0.629	1.165	2.15	
				1 MHz	0.115	0.23	0.586	1.129	2.103	
				100 KHz	0.079	0.194	0.55	1.086	2.067	

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 67. Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE disabled and power supplied by external SMPS

O make al	Danamatan	Conditions ⁽¹⁾	ı				TYP			11		
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit		
			VDD12=1.2 V	110 MHz	6.9	7.15	7.76	8.61	10.1			
				80 MHz	5.01	5.21	5.7	6.4	7.63			
				72 MHz	4.53	4.72	5.22	5.91	7.14			
	Supply ourrent in Bun included bypass made DLL			64 MHz	4.25	4.44	4.94	5.63	6.85			
				48 MHz	3.21	3.39	3.88	4.57	5.78			
		fHCLK = fHSE up to 48 MHz				32 MHz	2.25	2.42	2.89	3.57	4.77	
Idd(Run)			VDD12=1.1 V	26 KHz	1.499	1.625	1.999	2.552	3.544	mA		
			VDD12=1.1 V	16 MHz	0.985	1.107	1.474	2.024	3.02			
				8 MHz	0.532	0.647	1.01	1.557	2.538			
				4 MHz	0.302	0.421	0.776	1.316	2.301			
				2 MHz	0.187	0.302	0.665	1.197	2.178	1		
				1 MHz	0.133	0.248	0.604	1.147	2.117			
			100 KHz	0.079	0.194	0.554	1.089	2.063				

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 68. Current consumption in Run mode, code with data processing running from SRAM1, and power supplied by external SMPS

Comple of	Danamatan	Conditions ⁽¹⁾					TYP			11:4									
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit									
			VDD12=1.2 V	110 MHz	6.81	7.05	7.66	8.51	10										
				80 MHz	4.18	4.36	4.85	5.53	6.75										
				72 MHz	3.78	3.95	4.43	5.12	6.34										
				64 MHz	3.37	3.54	4.02	4.7	5.91										
				48 MHz	2.55	2.72	3.19	3.86	5.07										
		fHCLK = fHSE up to 48 MHz		32 MHz	1.74	1.89	2.35	3.02	4.21										
Idd(Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all peripherals	VDD12=1.1 V	26 KHz	1.172	1.294	1.661	2.204	3.21	mA									
		abassa 40 Miller all manifelameta			VDD12=1.1 V	16 MHz	0.751	0.87	1.233	1.776	2.764								
				8 MHz	0.413	0.532	0.892	1.427	2.419										
													4 MHz	0.244	0.359	0.719	1.262	2.243	
						2 MHz	0.158	0.273	0.633	1.168	2.15								
				1 MHz	0.119	0.23	0.593	1.129	2.11										
				100 KHz	0.079	0.194	0.55	1.093	2.071										

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 69. Current consumption in Run mode, code with data processing running from SRAM2, and power supplied by external SMPS

Oh a l	Bananatan	Conditions ⁽¹⁾					TYP			11!4	
Symbol	Parameter	-	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit	
			VDD12=1.2 V	110 MHz	6.7	6.95	7.56	8.41	9.89		
				80 MHz	4.11	4.29	4.78	5.47	6.7		
				72 MHz	3.71	3.89	4.37	5.06	6.28		
				64 MHz	3.31	3.49	3.97	4.65	5.87		
				48 MHz	2.51	2.68	3.16	3.82	5.03		
		fHCLK = fHSE up to 48 MHz		32 MHz	1.71	1.87	2.33	3	4.19		
IDD(Run)	Supply current in Run mode	included, bypass mode PLL ON above 48 MHz all peripherals	VDD12=1.1 V	26 KHz	1.15	1.273	1.639	2.186	3.185	mA	
		disabled	VDD12=1.1 V	16 MHz	0.741	0.856	1.222	1.761	2.757		
				8 MHz	0.41	0.525	0.888	1.427	2.412		
					4 MHz	0.241	0.356	0.715	1.251	2.236	
							2 MHz	0.158	0.273	0.629	1.168
				1 MHz	0.115	0.23	0.59	1.129	2.11		
				100 KHz	0.079	0.194	0.55	1.086	2.067		

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

-

Table 70. Current consumption in Sleep mode, Flash ON and power supplied by external SMPS

Cumphal	Douguestou	Conditions ⁽¹⁾				-	TYP			l l m i 4					
Symbol	Parameter	•	VDD12	fHCLK	25°C	55°C	85°C	105°C	125°C	Unit					
			VDD12=1.20 V	110 MHz	1.90	2.10	2.66	3.47	4.90						
				80 MHz	1.19	1.35	1.80	2.47	3.67						
				72 MHz	1.08	1.24	1.70	2.36	3.54						
				64 MHz	0.98	1.13	1.59	2.25	3.44						
				48 MHz	0.76	0.91	1.36	2.02	3.21						
	Supply current in	fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON		32 MHz	0.54	0.69	1.14	1.79	2.97						
IDD(Sleep)	Sleep mode	above 40 Mills all social and a	VDD12=1.10	26 MHz	0.453	0.591	1.022	1.678	2.860	mA					
			V	16 MHz	0.315	0.453	0.880	1.531	2.718						
				8 MHZ	0.203	0.341	0.768	1.424	2.593						
									4 MHz	0.147	0.285	0.712	1.355	2.528	
					2MHz	0.116	0.255	0.682	1.329	2.498					
				1 MHz	0.104	0.242	0.669	1.307	2.476						
				100 Khz	0.091	0.229	0.656	1.298	2.472						

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 71. Current consumption in Run mode, code with data processing running from Flash, ICACHE on (2-way) and power supplied by external SMPS

Symbol	Parameter		Conditions	(1)		TYP single bank mode	TYP single bank mode	Unit	TYP single bank mode	TYP single bank mode	Unit		
		-	VDD12	fHCLK	code	25°C	25°C		25°C	25°C			
					Reduced code	1.2	1.2		46.15	46.15			
					Coremark	1.29	1.29		49.62	49.62			
			VDD12=1.00 V	fHCLK=26 MHz	Dhrystone2.1	1.37	1.37	mA	52.69	52.69	µA/MHz		
					Fibonacci	1.15	1.14		44.23	43.85			
					While ⁽¹⁾	1.04	1.04		40	40			
					Reduced code	1.45	1.45		55.77	55.77			
			VDD12=1.10 V		Coremark	1.56	1.56		60	60			
				fHCLK=26 MHz	Dhrystone2.1	1.66	1.65	mA	63.85	63.46	μΑ/MHz		
		fHCLK = fHSE up to				Fibonacci	1.39	1.38		53.46	53.08		
IDD(Run)	Supply current in	48MHz included, bypass mode PLL ON above		VDD12=1.10			While ⁽¹⁾	1.26	1.26		48.46	48.46	
IDD(IXIII)	Run mode	48 MHz all peripherals	V		Reduced code	4.1	4.09		51.25	51.13			
		disabled	L				Coremark	4.4	4.4		55	55	
				fHCLK=80 MHz	Dhrystone2.1	4.7	4.68	mA	58.75	58.5	μΑ/MHz		
					Fibonacci	3.88	3.88		48.5	48.5			
					While ⁽¹⁾	3.55	3.55		44.38	44.38			
					Reduced code	6.69	6.69		60.82	60.82			
		\/DD/6 / 5-5	# 101 14 440 - ···	Coremark	7.2	7.2		65.45	65.45				
		VDD12=1.20 V		1.20 fHCLK=110 MH z	Dhrystone2.1	7.66	7.62	mA	69.64	69.27	μΑ/MHz		
			Fibonacci 6.32 6.32		V 2	z	57.45	57.45					
					While ⁽¹⁾	5.8	5.8		52.73	52.73			

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 72. Current consumption in Run mode, code with data processing running from Flash, ICACHE on (1-way) and power supplied by external SMPS

Symbol	Parameter		Conditions	(1)		TYP Single Bank mode	TYP Single Bank mode	Unit	TYP Single Bank mode	TYP Single Bank mode	Unit	
		-	VDD12	fHCLK	code	25°C	25°C		25°C	25°C		
					Reduced code	1.16	1.16		44.62	44.62		
					Coremark	1.22	1.22		46.92	46.92		
			VDD12=1.00 V	fHCLK=26 MHz	Dhrystone2.1	1.31	1.3	mA	50.38	50	μΑ/MHz	
					Fibonacci	1.11	1.11		42.69	42.69		
					While ⁽¹⁾	1.02	1.02		39.23	39.23		
					Reduced code	1.41	1.41		54.23	54.23		
					Coremark	1.48	1.48		56.92	56.92		
				fH	fHCLK=26 MHz	Dhrystone2.1	1.58	1.58	mA	60.77	60.77	μΑ/MHz
		fHCLK = fHSE up to			Fibonacci	1.34	1.34		51.54	51.54		
IDD(Run)	Supply current in	48MHz included, bypass mode PLL ON above			While ⁽¹⁾	1.24	1.24		47.69	47.69		
IBB(Itali)	Run mode	48 MHz all peripherals	V		Reduced code	3.97	3.97		49.63	49.63		
		disabled	VDD12=1.10		Coremark	4.16	4.16		52	52		
				fHCLK=80 MHz	Dhrystone2.1	4.47	4.45	mA 55.88	55.88	55.63	μΑ/MHz	
					Fibonacci	3.73	3.73		46.63	46.63		
					While ⁽¹⁾	3.49	3.49		43.63	43.63		
					Reduced code	6.47	6.47		58.82	58.82		
			\/DD40_4_0_	# 101 K 440 * ***	Coremark	6.81	6.81		61.91	61.91		
			VDD12=1.20 fHCLK=110 MH v	Dhrystone2.1	7.28	7.25	mA	66.18	65.91	μΑ/MHz		
			V Z	z	Z	Fibonacci	6.09	6.09		55.36	55.36	
					While ⁽¹⁾	5.71	5.7		51.91	51.82		

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

198/341

Table 73. Current consumption in Run mode, code with data processing running from Flash, ICACHE disabled and power supplied by external SMPS

Symbol	Parameter		Conditions	(1)		TYP Single Bank mode	TYP Single Bank mode	Unit	TYP Single Bank mode	TYP Single Bank mode	Unit			
		-	VDD12	fHCLK	code	25°C	25°C		25°C	25°C				
					Reduced code	1.53	1.56		58.85	60				
					Coremark	1.66	1.58		63.85	60.77				
			VDD12=1.00 V	fHCLK=26 MHz	Dhrystone2.1	1.71	1.65	mA	65.77	63.46	μΑ/MHz			
					Fibonacci	1.36	1.33		52.31	51.15				
					While ⁽¹⁾	1.14	1.18		43.85	45.38				
					Reduced code	1.85	1.89		71.15	72.69				
					Coremark	2.01	1.92		77.31	73.85				
			SS VDD12=1 10			fHCLK=26 MHz	Dhrystone2.1	2.07	2	mA	79.62	76.92	μΑ/MHz	
		fHCLK = fHSE up to	S VDD12=1.10 V				Fibonacci	1.64	1.61		63.08	61.92		
IDD(Run)	Supply current in	48 MHz included, bypass mode PLL ON above	VDD12=1.10	_		While ⁽¹⁾	1.38	1.43		53.08	55			
IDD(Kull)	Run mode	48 MHz all peripherals	VDD12=1.10	V	V			Reduced code	5.07	5.01		63.38	62.63	
		disabled			Coremark	4.91	4.37		61.38	54.63				
				fHCLK=80 MHz	Dhrystone2.1	4.49	4.49	mA	56.13	56.13	μΑ/MHz			
					Fibonacci	4.34	4.07		54.25	50.88				
			VDD12=1.20 fl		While ⁽¹⁾	3.9	4.04		48.75	50.5				
					Reduced code	7.55	6.9		68.64	62.73				
					Coremark	7.03	6.09		63.91	55.36	1			
					fHCLK=110 MH z	Dhrystone2.1	7.08	6.2	mA	64.36	56.36	μΑ/MHz		
					Fibonacci	6.64	6.07		60.36	55.18				
					While ⁽¹⁾	6.39	6.63		58.09	60.27				

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 74. Current consumption in Run mode, code with data processing running from SRAM1, and power supplied by external SMPS

0	Barrandara		Conditions ⁽¹⁾			TYP	1114	TYP	1114			
Symbol	Parameter	-	VDD12	fHCLK	code	25°C	Unit	25°C	Unit			
					Reduced code	1.22		46.92				
					Coremark	0.57		21.92				
			VDD12=1.00 V	fHCLK=26 MHz	Dhrystone2.1	1.26	mA	48.46	μΑ/MHz			
					Fibonacci	1.31		50.38				
					While ⁽¹⁾	1.43		55]			
					Reduced code	1.48		56.92				
		fHCLK = fHSE up to 48 MHz			Coremark	0.69	mA	26.54]			
		included, bypass mode PLL ON above 48 MHz all peripherals		fHCLK=26MHz	Dhrystone2.1	1.52		58.46	μΑ/MHz			
		included, bypass mode PLL ON			Fibonacci	1.59		61.15				
IDD/Bun)	Supply ourrent in Dun mode		VDD12=1.10		While ⁽¹⁾	1.73		66.54]			
IDD(Kull)	Supply current in Run mode		V		Reduced code	4.18		52.25				
		oply current in Run mode included, bypass mode PLL ON above 48 MHz all peripherals			Coremark	1.84		23				
				fHCLK=80MHz	Dhrystone2.1	4.29	mA	53.63	μΑ/MHz			
					Fibonacci	4.5		56.25				
					While ⁽¹⁾	5.01		62.63				
					Reduced code	6.81		61.91				
				DD12=1.20 V fHCLK=110MHz Dhrystor	Coremark	2.97		27				
					Dhrystone2.1	7	mA	63.64	μΑ/MHz			
			V		v		'	v	v	Fibonacci	7.34	
ı					While ⁽¹⁾	8.19		74.45				

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 75. Current consumption in Run mode, code with data processing running from SRAM2, and power supplied by external SMPS

	Cumbal	Downwater	Cor	nditions ⁽¹⁾			TYP	Unit	TYP	Unit
	Symbol	Parameter	-	VDD12	fhcLk	code	25°C	Unit	25°C	Unit
						Reduced code	1.20		46.15	
				VDD12=1.00		Coremark	0.57		21.92	
				V	fHCLK=26 MHz	Dhrystone2.1	1.20	mA	46.15	μA/MHz
						Fibonacci	1.25		48.08	
						While ⁽¹⁾	1.37		52.69	
						Reduced code	1.45		55.77	
	IDD(Run) Supply current in Run mode			fHCLK=26 MHz	Coremark	0.69		26.54		
78.1					Dhrystone2.1	1.45	mA	55.77	μA/MHz	
273					Fibonacci	1.52		58.46		
DS12736 Rev 5		Run mode fHCLK = fHSE up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disabled			While ⁽¹⁾	1.66		63.85		
יל. ל					Reduced code	4.11		51.38		
						Coremark	1.84		23.00	μΑ/MHz
					fHCLK=80 MHz	Dhrystone2.1	4.09	mA	51.13	
						Fibonacci	4.30		53.75	
						While ⁽¹⁾	4.76		59.50	
						Reduced code	6.70		60.91	
				VDD12=1.20	fHCLK=110 MH	Coremark	2.97		27.00	
			VE	VDD12=1.20 V	I.20 fHCLK=110 MH z	Dhrystone2.1	6.67	mA	60.64	µA/MHz
						Fibonacci	7.01		63.73	
						While ⁽¹⁾	7.80		70.91	

^{1.} All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%.

Table 76. Current consumption in Stop 2 mode

Cymah al	Parameter	Conditions				TYP					MAX			Unit	
Symbol	Parameter	-	VDD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C		
			1.8 V	3.07	16.61	68.35	158.43	332.53	19.03	67.19	202.18	407.53	797.08		
IDD	Supply current in Stop 2 mode,		2.4 V	3.09	16.86	69.13	160.32	335.88	19.08	67.43	201.94	409.7	802.29		
(Stop 2)	RTC disabled	-	3 V	3.13	17.24	69.5	161.75	341.1	19.18	67.79	203.72	412.34	812.99		
			3.6 V	3.2	17.42	71.15	164.99	349.3	19.39	68.67	205.04	415.22	816.69		
			1.8 V	3.66	17.32	68.52	159.57	333.56	19.7	67.81	202.19	408.09	797.2		
		PTC clocked by LSI	2.4 V	3.88	17.74	69.73	160.86	338.16	20.07	68.34	202.52	410.27	802.48		
		RTC clocked by LSI	3 V	4.2	17.94	70.57	163.39	342.82	20.37	68.62	205.35	413.58	813.45		
			3.6 V	4.42	18.71	72.31	166.43	348.19	20.79	69.72	205.83	416.46	818.3		
			1.8 V	3.5	17.14	69.36	159.76	332.52	ı	ı	-	ı	-		
		RTC clocked by LSI with LPCAL = 1,	2.4 V	3.62	17.68	70.03	161.58	336.53	-	-	-	•	1	μA	
		with LPCAL = 1, ULPEN = 1	3 V	3.82	18.2	71	163.7	343.17	ı	ı	-	ı	i	μ	
IDD (Stop 2	Supply current in Stop 2 mode,		3.6 V	4.06	18.8	72.72	168.58	351.22	ı	ı	-	ı	i		
with RTC)	RTC enabled	DTC alcohol by LSE	1.8 V	3.44	17.15	68.39	159.57	333.37	-	-	-	•	1		
,			C enabled RTC clocked by LSE - bypassed at 32768 Hz	2.4 V	3.58	17.35	69.8	161.86	336.47	-	-	-	-	-	
		with LPCAL = 0,	3 V	3.79	17.77	70.33	163.41	342.2	ı	ı	-	ı	i		
	ULPEN = 0	3.6 V	4.59	18.34	72.03	166.18	350.97	-	-	-	-	-			
	RTC clocked by LSE bypassed at 32768 Hz with LPCAL = 1, ULPEN = 1	PTC clocked by LSE	1.8 V	3.18	16.98	69.4	160.31	335.07	-	-	-	-	-		
		2.4 V	3.27	17.29	69.65	161.79	339.1	-	-	-	-	-			
		3 V	3.41	17.91	71.21	163.77	343.27	ı	-	-	ı	-			
		OLI LIV - I	3.6 V	4.16	18.5	72.62	167.08	350.59	-	-	-	-	-		

Table 76. Current consumption in Stop 2 mode (continued)

	1		o. Guire				- p =	(00)					-	
Cumbal	Parameter	Conditions				TYP					MAX			Unit
Symbol	Parameter	-	V DD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
			1.8 V	3.48	16.53	66.1	151.2	295.85	-	-	-	-	-	
		RTC clocked by LSE quartz in low drive	2.4 V	3.58	16.86	66.79	153.07	299.45	-	-	-	-	-	
IDD	Cupply ourront	mode	3 V	3.71	17.18	67.57	155.09	302.75	-	-	-	-	-	
(Stop 2	Supply current in Stop 2 mode,		3.6 V	3.91	17.74	68.97	158.26	309.93	-	-	-	-	-	^
with RTC)	, ,,	RTC clocked by LSE	1.8 V	3.16	16.68	66.32	151.87	296.04	-	-	-	-	-	μA
(continued)	(continued)	quartz in low drive	2.4 V	3.21	16.99	66.91	153.42	299.34	-	-	-	-	-	
		mode with LPCAL = 1, ULPEN = 1	3 V	3.27	17.39	68.27	155.45	304.73	-	-	-	-	-	
		OLI LIV = 1	3.6 V	3.42	17.93	69.41	158.77	310.4	-	-	-	-	-	
ldd		Wakeup clock is MSI = 48 MHz, voltage Range 1	3 V	1.96	-	-	-	-	-	-	-	-	-	
(wakeup from Stop 2)	Supply current during wakeup from Stop 2 mode	Wakeup clock is MSI = 4 MHz, voltage Range 2	3 V	1.09	-	-	-	-	-	-	-	-	-	mA
0.00 2)		Wakeup clock is HSI = 16 MHz, voltage Range 1	3 V	1.72	-	-	-	-	-	-	-	-	-	

Table 77. Current consumption in Stop 1 mode

O	D	Condition	ıs			TYP	·	<u> </u>			MAX			11!4
Symbol	Parameter	-	VDD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
	Supply		1.8 V	91.47	372.36	1243	2527	4611	1196	3403	8100	13853	22830	
IDD	current in Stop 1		2.4 V	91.94	375.16	1251	2531	4652	1199	3418	8133	13906	22920	
(Stop 1)	mode,	-	3 V	92.51	375.46	1249	2549	4675	1204	3427	8174	13988	23189	
	RTC disabled		3.6 V	93.26	380.59	1270	2567	4721	1215	3433	8158	14083	23335	
			1.8 V	92.46	373.25	1248	2518	4617	1196	3405	8103	13874	22793	
		RTC clocked	2.4 V	92.48	372.19	1250	2528	4643	1201	3433	8135	13924	22927	
		by LSI	3 V	93.34	374.54	1253	2541	4683	1206	3424	8185	13994	23140	
			3.6 V	93.38	378.64	1267	2559	4712	1213	3434	8176	14091	23336	μΑ
	Supply current in	DTC alaskad	1.8 V	92.35	371.81	1248	2518	4605	-	-	-	-	-	Par 1
IDD (Stop 1	Stop 1	RTC clocked by LSE	2.4 V	92.31	374.21	1245	2521	4640	-	-	-	-	-	
with RTC)	mode, RTC	bypassed at 32768 Hz	3 V	93.59	375.92	1256	2534	4673	-	-	-	-	-	
,	enabled	32700112	3.6 V	93.19	377.07	1262	2551	4713	-	-	-	-	-	
		DTC alaakad	1.8 V	100.67	381.08	1214	2442	-	-	-	-	-	-	
		RTC clocked by LSE quartz	2.4 V	101.20	380.64	1224	2447	-	-	-	-	-	-	
	by Lot quartz	3 V	102.04	378.49	1228	2466	-	-	-	-	-	-		
		mode	3.6 V	103.34	387.73	1239	2480	-	-	-	-	-	_	

Table 77. Current consumption in Stop 1 mode (continued)

0	D	Condition	s			TYP					MAX			11!4
Symbol	Parameter	-	V DD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
IDD (wakeup from Stop 1)	Supply	Wakeup clock is MSI = 48 MHz, voltage Range 1	3 V	2.02	-	-	-	-	-	-	-	-	-	
	current during wakeup from Stop	Wakeup clock is MSI = 4 MHz, voltage Range 2	3 V	0.58	-	-	-	-	-	-	-	-	-	mA
	1 mode	Wakeup clock is HSI = 16 MHz, voltage Range 1	3 V	1.27	-	-	-	-	-	-	-	-	-	

Table 78. Current consumption in Stop 0 mode

									•					
Symbol	Parameter	Cond	ditions			TYP					MAX			Unit
Cymbol	Parameter	-	VDD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
	Supply	-	1.8 V	192.69	494.92	1425	2797	5106	1395	3797	8974	15426	25827	
IDD	current in Stop 0	-	2.4 V	194.69	495.31	1430	2804	5108	1396	3798	8953	15440	25851	
(Stop 0)	mode,	-	3 V	196.09	495.47	1431	2812	5124	1397	3799	8996	15465	25967	μA
	RTC disabled	-	3.6 V	197.54	497.36	1434	2814	5155	1399	3802	8967	15488	26025	

Table 79. Current consumption in Standby mode

Symbol	Doromotor	Conditio	ns			TYP					MAX			llmit
Symbol	Parameter	-	V DD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
			1.8 V	108	382	2374	7132	19259	237	2269	6948	12467	31340	
		No	2.4 V	119	476	2795	8332	22151	361	2497	7770	14021	40505	
	Supply current in	independent watchdog	3 V	134	591	3215	9665	26746	411	2716	8919	15987	45394	
IDD	Standby mode (backup registers		3.6 V	183	827	4232	12128	31763	558	3214	9577	17816	50551	nA
(Standby)	retained),		1.8 V	347	-	-	-	-	572	2578	7079	12599	31388] "
	RTC disabled	With independent	2.4 V	405	-	-	-	-	708	2832	7868	14061	39741	
		watchdog	3 V	483	-	-	-	-	609	2913	8597	16110	44085	
			3.6 V	596	-	-	-	-	999	3466	10069	18212	48579	

Table 79. Current consumption in Standby mode (continued)

Comple al	Downwater	Conditio	ons			TYP					MAX			Un
Symbol	Parameter	-	V DD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	0
		RTC clocked	1.8 V	717	971	2924	7693	19714	930	2760	7456	12882	31665	
		by LSI, no	2.4 V	887	1266	3589	9054	22856	1224	3096	8393	14557	40166	
		independent watchdog	3 V	1113	1584	4206	10666	27521	1303	3509	9212	16779	44936	
		wateridog	3.6 V	1394	2059	5515	13394	32693	1828	3889	10504	18898	48363	
		RTC clocked	1.8 V	457	779	3075	8179	20106	-	-	-	-	-	
		by LSI, no independent	2.4 V	582	1080	4082	9786	23298	-	-	-	-	-	
		watchdog with	3 V	740	1425	5195	11380	28044	-	-	-	-	-	
		LPCAL = 1, ULPEN = 1	3.6 V	955	1905	6884	14210	33407	-	-	-	-	-	
	Supply current in	DTC algalia d	1.8 V	766	-	-	-	-	847	2549	7430	12888	31689	
IDD (Standby	Standby mode (backup registers	RTC clocked by LSI, with	2.4 V	948	-	-	-	-	1267	3171	8250	14679	40296	
(Standby with RTC)	retained),	independent watchdog	3 V	1196	-	-	-	-	1561	3610	9492	16773	44760	
·	RTC enabled	wateridog	3.6 V	1492	-	-	-	-	1896	4136	10423	19143	48559	
		RTC clocked	1.8 V	435	711	2650	7592	19645	-	-	-	-	-	
		by LSE	2.4 V	569	954	3254	8972	22787	-	-	-	-	-	
		bypassed at 32768 Hz	3 V	768	1247	3963	10303	27154	-	-	-	-	-	
		02700712	3.6 V	1024	1686	5174	13141	32293	-	-	-	-	-	
		RTC clocked	1.8 V	166	-	-	-	-	-	-	-	-	-	
		by LSE bypassed at	2.4 V	236	-	-	-	-	-	-	-	-	-	
		32768 Hz with	3 V	356	-	-	-	-	-	-	_	-	-	
		LPCAL = 1, ULPEN = 1	3.6 V	575	-	-	-	-	-	-	-	-	-	

Table 79. Current consumption in Standby mode (continued)

Complete	Donomoton	Conditio	ns			TYP					MAX			11:4
Symbol	Parameter	-	V DD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
		RTC clocked	1.8 V	491	-	-	-	-	-	-	-	-	-	
		by LSE	2.4 V	574	-	-	ı	-	ı	-	-	-	-	
	Supply current in	quartz in low drive mode	3 V	696	-	-	-			-	-	-	-	
IDD	Standby mode	drive mode	3.6 V	870	-	-	ı	-	ı	-	-	-	-	
(Standby with RTC)	(backup registers retained),	RTC clocked	1.8 V	222	-	-	ı	-	ı	-	-	-	-	
(continued)	RTC enabled	by LSE quartz in low	2.4 V	250	-	-	ı	ı	i	-	-	1	-	
	(continued)	drive mode	3 V	297	-	-	ı	-	ı	-	-	-	-	
		with LPCAL = 1, ULPEN = 1	3.6 V	403	-	-	-	-	-	-	-	-	-	nA
	Supply current to		1.8 V	668	3089	13834	34240	75362	1834	8192	28470	36317	135595	
IDD	be added in Standby mode		2.4 V	704	3193	14412	35468	78515	1859	8376	28905	36890	140894	
(SRAM2)	when Full SRAM2	-	3 V	739	3283	14722	36843	82664	1907	8514	29857	37533	144576	
	(64 KB) is retained		3.6 V	840	3571	15867	38708	88150	1973	8919	30509	38460	149487	
	Supply current to		1.8 V	164	658	3378	9485	23856	518	2685	8359	8164	39054	
IDD	be added in Standby mode		2.4 V	201	764	3853	10707	26844	585	2758	9134	8842	47739	
(SRAM)	when partial	-	3 V	231	871	4319	12043	31160	606	3243	9975	9601	51857	
	SRAM2 (4 KB) is retained		3.6 V	326	1128	5250	14470	36553	723	3570	10872	10707	55419	
IDD (wakeup from Standby)	Supply current during wakeup from Standby mode	Wakeup clock is MSI = 4 MHz	3 V	1.11	-	-	-	-	-	-	-	-	-	mA

Table 80. Current consumption in Shutdown mode

O wash at	D	Conditio	ns			TYP					MAX			11!4
Symbol	Parameter	-	V DD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
	Supply		1.8 V	17.0	198	1533	5195	15336	99	590	3169	9252	26038	
	current in Shutdown		2.4 V	18.0	269	1803	6166	17522	115	679	3610	10477	29468	
IDD	mode	-	3 V	44.0	361	2314	7212	21381	141	800	4108	11860	32843	
(Shutdown)	(backup registers retained) RTC disabled		3.6 V	127.0	587	3159	9534	26115	196	990	4877	13734	37480	
		RTC clocked	1.8 V	307	525	1905	5592	15801	-	-	-	-	-	
		by LSE bypassed at	2.4 V	485	746	2363	6676	18041	-	-	-	-	-	
		32768 Hz	3 V	689	1015	2905	7919	22214	-	-	-	-	-	
		with LPCAL = 0	3.6 V	974	1435	4082	10392	26856	-	-	-	-	-	
		RTC clocked	1.8 V	116	325	1711	5423	15551	-	-	-	-	-	
	Supply	by LSE bypassed at	2.4 V	221	491	2100	6395	17909	-	-	-	-	-	nA
	current in	32768 Hz with	3 V	339	656	2636	7450	21753	ı	-	-	-	-	
IDD (Shutdown	Shutdown mode	LPCAL = 1	3.6 V	535	996	3645	9998	26420	-	-	-	-	-	
with RTC)	(backup registers	RTC clocked	1.8 V	405	-	-	-	-	-	-	-	-	-	
,	retained)	by LSE quartz in low	2.4 V	486	-	-	-	-	-	-	-	-	-	
	RTC enabled	drive mode	3 V	604	-	-	-	-	ı	-	-	-	-	
		with LPCAL = 0	3.6 V	768	-	-	-	-	-	-	-	-	-	
		RTC clocked	1.8 V	207	-	-	-	-	-	-	-	-	-	
		by LSE quartz in low	2.4 V	232	-	-	-	-	-	-	-	-	-	
		drive mode	3 V	272	-	-	-	-	ı	-	-	-	-	
		with LPCAL = 1	3.6 V	345	-	-	-	-	-	-	-	-	-	

Table 80. Current consumption in Shutdown mode (continued)

						•			•					
Symbol	Parameter	Condition	ns			TYP					MAX			Unit
Symbol	Parameter	-	V DD	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Offic
IDD (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz	3 V	0.53	-	-	-	-	-	-	-	-	-	mA

Table 81. Current consumption in VBAT mode

Cumahal	Davamatav	Conditions				TYP					MAX			Unit
Symbol	Parameter	-	V BAT	25°C	55°C	85°C	105°C	125°C	25°C	55°C	85°C	105°C	125°C	Unit
			1.8 V	3.4	45	307	966	2699	-	ı	-	-	-	
		RTC disabled	2.4 V	3.9	55	358	1097	2995	-	ı	-	-	-	
		Ter o disabled	3 V	5.9	73	447	1350	3699	-	ı	-	-	-	
			3.6 V	13.4	136	786	2303	6528	-	ı	-	-	-	
		RTC enabled and	1.8 V	330	369	654	1303	-	-	-	-	-	-	
		clocked by LSE bypassed at	2.4 V	446	528	843	1595	-	-	-	-	-	-	
		32768 Hz with	3 V	632	727	1119	2045	-	-	-	-	-	-	
		LPCAL = 0	3.6 V	867	996	1680	3247	-	-	-	-	-	-	
	Backup	RTC enabled and	1.8 V	130	381	692	1369	-	-	-	-	-	-	
IDD	domain	clocked by LSE bypassed at	2.4 V	183	406	738	1499	-	-	-	-	-	-	nA
(VBAT)	supply current	32768 Hz with	3 V	288	441	841	1761	-	-	-	-	-	-	IIA
	Current	LPCAL=1	3.6 V	392	518	1163	2707	-	-	-	-	-	-	
		DTC anabled and	1.8 V	387	-	-	-	-	-	-	-	-	-	
		RTC enabled and clocked by LSE	2.4 V	461	-	-	-	-	-	-	-	-	-	
		quartz with LPCAL = 0	3 V	568	-	-	-	-	-	-	-	-	-	
		LFCAL - 0	3.6 V	700	-	-	-	-	-	-	-	-	-	
		RTC enabled and	1.8 V	187	-	-	-	-	-	-	-	-	-	
		clocked by LSE	2.4 V	202	-	-	-	-	-	-	-	-	-	
		quartz with LPCAL = 1	3 V	229	-	-	-	-	-	-	-	-	-	
		LI CAL - I	3.6 V	275	-	-	-	-	-	-	-	-	-	

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull resistors generate current consumption when the pin is externally held to the opposite level. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 102: I/O static characteristics*.

For the output pins, any internal or external pull-up or pull-down and external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load internal and external connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT} + C_{S}$

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 82*. The MCU is placed under the following conditions:

- All I/O pins are in Analog mode
- The given value is calculated by measuring the difference of the current consumptions:
 - When the peripheral is clocked on
 - When the peripheral is clocked off
- Ambient operating temperature and supply voltage conditions summarized in Table 24:
 Voltage characteristics
- The power consumption of the digital part of the on-chip peripherals is given in *Table 82*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

Table 82. Peripheral current consumption

	Peripheral	Range 0	Range 1	Range 2	Low-power run and sleep	Unit
	Bus matrix	5.85	5.47	4.09	5.36	
	DMA1	3.67	3.38	2.54	3.16	
	DMA2	3.71	3.43	2.56	3.20	
	DMAMUX1	7.11	6.64	4.96	6.16	
	FLASH	5.32	4.95	3.69	4.59	
	SRAM1	2.03	1.90	1.43	1.75	
	CRC	1.05	0.99	0.76	0.95	
	TSC	1.77	1.67	1.24	1.49	
	GTZC	0.38	0.36	0.27	0.35	
	ICACHE	0.38	0.38	0.27	1.00	
AHB	GPIOA	0.40	0.41	0.30	0.32	μΑ/MHz
	GPIOB	0.25	0.23	0.17	0.22	
	GPIOC	0.31	0.27	0.21	0.37	
	GPIOD	0.30	0.26	0.21	0.26	
	GPIOE	0.19	0.17	0.16	0.21	
	GPIOF	0.21	0.18	0.14	0.19	
	GPIOG	0.32	0.26	0.22	0.31	
	GPIOH	0.29	0.27	0.21	0.25	
	SRAM2	3.32	3.08	2.34	2.90	
	ADC AHB clock domain	5.92	5.49	4.16	5.11	
	ADC independent clock domain	0.15	0.14	0.08	0.14	
AHB	AES	4.05	3.83	2.85	3.50	μΑ/MHz

212/341 DS12736 Rev 5

Table 82. Peripheral current consumption (continued)

	Peripheral	Range 0	Range 1	Range 2	Low-power run and sleep	Unit
	HASH	3.91	3.64	2.74	3.44	
	RNG AHB clock domain	2.44	2.27	NA	NA	μΑ/MHz
	RNG independent clock domain	4.55	6.12	NA	NA	
	PKA	0.02	0.01	0.02	4.50	μΑ/MHz
	OTFDEC1	2.42	2.30	1.69	2.50	μΑνίνιπΖ
AHB (Cont)	SDMMC1 AHB clock domain	20.52	19.07	NA	NA	
(Gont)	SDMMC1 independent clock domain	4.92	6.63	NA	NA	
	FMC	11.17	10.39	7.82	9.90	A /N /L L I
	OSPI1 AHB clock domain	10.77	10.00	7.61	9.57	µA/MHz
	OPSPI1 independent clock domain	0.12	0.11	0.04	1.00	
	ALL AHB peripherals	47.58	47.47	55.06	350.76	
	AHB to APB1 bridge	0.41	0.43	0.36	0.61	
	TIM2	6.65	6.19	4.67	5.81	
	TIM3	5.46	5.08	3.82	4.75	
	TIM4	5.38	5.02	3.78	4.73	
	TIM5	6.92	6.47	4.86	6.08	
	TIM6	1.12	1.04	0.79	0.98	
	TIM7	1.24	1.16	0.86	0.98	
	RTCAPB	3.50	3.32	2.50	3.08	
APB1	WWDG	0.58	0.52	0.40	0.48	μΑ/MHz
AFDI	SPI2	2.52	2.34	1.78	2.25	μΑνίνιπΖ
	SPI3	2.39	2.22	1.69	2.16	
	USART2 APB clock domain	3.40	3.14	2.39	3.03	
	USART2 independent clock domain	6.41	5.99	4.50	5.53	
	USART3 APB clock domain	2.96	2.73	2.12	2.57	
	USART3 independent clock domain	6.96	6.49	4.86	6.09	
	UART4 APB clock domain	2.81	2.60	1.99	2.48	
	UART4 independent clock domain	5.59	5.26	3.95	4.85	
	UART5 APB clock domain	2.75	2.58	1.99	2.45	

Electrical characteristics STM32L562xx

Table 82. Peripheral current consumption (continued)

	Peripheral	Range 0	Range 1	Range 2	Low-power run and sleep	Unit
	UART5 independent clock domain	5.59	5.19	3.90	4.79	
	I2C1 APB clock domain	1.42	1.34	1.00	1.22	
	I2C1 independent clock domain	3.47	3.22	2.46	3.12	
	I2C2 APB clock domain	1.32	1.24	0.93	1.10	
	I2C2 independent clock domain	3.33	3.11	2.37	3.06	
	I2C3 APB clock domain	1.14	1.05	0.81	0.90	
	I2C3 independent clock domain	2.75	2.58	1.97	2.61	
	CRS	0.35	0.30	0.22	0.50	
	PWR	1.54	1.44	1.03	1.22	
	DAC1	2.89	2.69	2.03	2.43	
	OPAMP	0.34	0.36	0.23	1.00	
	LPTIM1 APB clock domain	1.10	1.01	0.78	0.87	
APB1	LPTIM1 independent clock domain	3.37	3.18	2.39	3.07	μΑ/MHz
(Cont)	LPUART1 APB clock domain	1.66	1.54	1.19	1.61	μΑνινιπΖ
	LPUART1 independent clock domain	3.43	3.24	2.44	2.99	
	I2C4 APB clock domain	1.40	1.28	0.97	1.24	
	I2C4 independent clock domain	3.31	3.11	2.34	2.90	
	LPTIM2 APB clock domain	1.36	1.26	0.96	1.15	
	LPTIM2 independent clock domain	3.80	3.58	2.66	3.35	
	LPTIM3 APB clock domain	1.02	0.93	0.74	0.94	
	LPTIM3 independent clock domain	3.16	2.98	2.21	2.80	
	FDCAN APB clock domain	7.99	7.41	5.56	6.70	
	FDCAN independent clock domain	0.16	0.22	3.20	4.05	
	USBFS APB clock domain	3.51	3.25	NA	NA	
	USBFS independent clock domain	4.53	6.08	NA	NA	
	UCPD1	2.67	2.46	1.84	NA ⁽¹⁾	
	AHB to APB2 bridge	6.64	6.16	4.68	8.43	
	SYSCFG	0.75	0.71	0.54	0.67	
APB2	TIM1	9.40	8.74	6.57	8.33	μΑ/MHz
71.02	SPI1	2.69	2.51	1.90	2.43	μενίνιι ιζ
	TIM8	8.94	8.34	6.29	8.06	
	USART1 APB clock domain	3.16	2.92	2.23	3.09	

214/341 DS12736 Rev 5

Table 82. Peripheral current consumption (continued)

	Peripheral	Range 0	Range 1	Range 2	Low-power run and sleep	Unit
	USART1 independent clock domain	7.01	6.54	4.91	6.01	
	TIM15	4.93	4.60	3.45	4.45	
	TIM16	3.27	3.05	2.29	2.83	
	TIM17	3.76	3.49	2.62	3.40	
APB2 (Cont)	SAI1 APB clock domain	3.04	2.84	2.12	0.50	μΑ/MHz
(Gorit)	SAI1 independent clock domain	2.20	2.92	2.85	2.5	μΑνινιπΖ
	SAI2 APB clock domain	3.32	3.07	2.30	2.99	
	SAI2 independent clock domain	2.14	2.94	3	3	
	DFSDM1	8.18	7.61	5.73	7.42	
ALL	-	275.73	256.25	188.42	233	

^{1.} The UCPD1 is always clocked by the HSI16.

Electrical characteristics STM32L562xx

5.3.7 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 83* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (wait for event) instruction.

Table 83. Low-power mode wakeup timings⁽¹⁾

-	Parameter	Conditions		Тур	Max	Unit
Sleep	Wakeup time from Sleep mode to Run mode	-		14	17	Number of CPU cycles
	Wakeup time from Low- power sleep mode to Low- power run mode	Sleep Power Down (SLEEP_PD=1 in FLASH_ACR) and with clock MSI = 2 MHz		14	17	
Stop 0	Flash	Range 1	MSI48	5.83	6.26	μs
			HSI16	5.23	5.46	
		Range 2	MSI24	18.48	18.96	
			HSI16	17.56	17.94	
			MSI4	23.36	24.59	
	SRAM1	Range 1	MSI48	1.79	2.16	
			HSI16	2.79	3.01	
		Range 2	MSI24	2.43	2.82	
			HSI16	2.80	3.03	
			MSI4	9.66	10.88	
Stop 1	Flash	Range 1	MSI48	9.74	10.22	
			HSI16	9.22	9.67	
		Range 2	MSI24	21.84	22.63	
			HSI16	20.98	21.81	
			MSI4	25.48	26.34	
	SRAM1	Range 1	MSI48	5.58	5.95	
			HSI16	6.68	7.06	
		Range 2	MSI24	5.69	6.24	
			HSI16	6.18	6.88	
			MSI4	11.04	11.99	
	Flash	Low Power	MSI2	81.2	82.5	
	SRAM1	Run (LPR=1)		17.8	19	

216/341 DS12736 Rev 5

Standby

Shutdown

Unit **Parameter Conditions** Тур Max MSI48 11.20 11.64 Range 1 HSI16 10.35 10.77 Flash MSI24 23.76 24.15 HSI16 22.62 Range 2 22.24 MSI4 27.81 28.46 Stop 2 MSI48 6.19 6.61 Range 1 HSI16 7.33 7.75 SRAM1 MSI24 6.31 6.64 μs HSI16 7.22 Range 2 6.89 MSI4 12.36 11.69 55.73 MSI8 52.5 Flash Range 2

Table 83. Low-power mode wakeup timings⁽¹⁾ (continued)

Flash with

SRAM2

Flash

Range 2

Range 2

Table 84. Regulator modes transition times⁽¹⁾

MSI4

MSI8

MSI4

MSI4

52.58

52.5

52.60

276.48

55.78

55.74

55.73

292.42

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low- power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2 ⁽³⁾	Code run with MSI 24 MHz	20	40	μs

- 1. Guaranteed by characterization results.
- 2. Time until REGLPF flag is cleared in PWR_SR2.
- 3. Time until VOSF flag is cleared in PWR_SR2.

Table 85. Wakeup time using USART/LPUART⁽¹⁾

		_			
Symbol	Parameter	Conditions	Тур	Max	Unit
Wakeup time needed to calculate	Stop mode 0	-	1.7		
twuusart twulpuart	the maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI	Stop mode 1/2	-	8.5	μs

^{1.} Guaranteed by design.

^{1.} Guaranteed by characterization results.

5.3.8 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

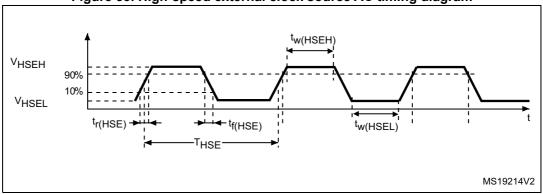

The external clock signal has to respect the I/O characteristics in *Section 5.3.15*. However, the recommended clock input waveform is shown in *Figure 33: High-speed external clock source AC timing diagram*.

Table 86. High-speed external user clock characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f	User external clock	Voltage scaling Range 0 and 1	-	8	48	MHz	
	source frequency	Voltage scaling Range 2	-	8	26	IVI⊓Z	
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V_{DDIOx}	V	
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	V	
t _{w(HSEH)}	OSC_IN high or low time	Voltage scaling Range 0 and 1	7	-	-	ns	
t _{w(HSEL)}		Voltage scaling Range 2	18	-	-	115	

^{1.} Guaranteed by design.

Figure 33. High-speed external clock source AC timing diagram

218/341 DS12736 Rev 5

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

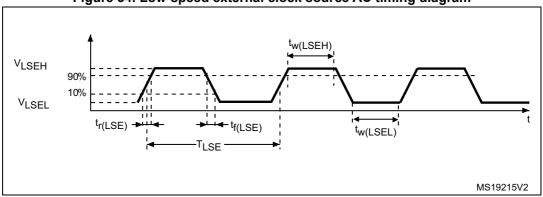

The external clock signal has to respect the I/O characteristics in *Section 5.3.15*. However, the recommended clock input waveform is shown in *Figure 34*.

Table 87. Low-speed external user clock characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	-
t _{w(LSEH)}	OSC32_IN high or low time	-	250	-	-	ns

^{1.} Guaranteed by design.

Figure 34. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 88*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 88. HSE oscillator characteristics ⁽¹⁾									
Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit			
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz			
R_{F}	Feedback resistor	-	-	200	-	kΩ			
		During startup ⁽³⁾	-	-	5.5				
		$V_{DD} = 3 \text{ V},$ $Rm = 30 \Omega,$ $CL = 10 \text{ pF}@8 \text{ MHz}$	-	0.44	-				
	HSE current consumption	V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-				
I _{DD(HSE)}		$V_{DD} = 3 \text{ V},$ $Rm = 30 \Omega,$ CL = 5 pF@48 MHz	-	0.68	-	mA			
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	-	0.94	-				
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-				
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V			
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms			

Table 88. HSE oscillator characteristics⁽¹⁾

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 35*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

220/341 DS12736 Rev 5

^{1.} Guaranteed by design.

^{2.} Resonator characteristics given by the crystal/ceramic resonator manufacturer.

^{3.} This consumption level occurs during the first 2/3 of the $t_{SU(\mbox{\scriptsize HSE})}$ startup time.

^{4.} t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

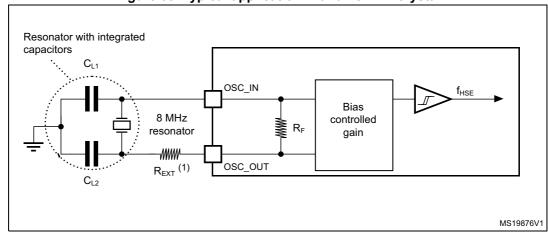


Figure 35. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 89*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 89. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
I _{DD(LSE)}		LSEDRV[1:0] = 00 Low drive capability	-	250	-	
	LSE current consumption	LSEDRV[1:0] = 01 Medium low drive capability	-	315	-	nA
	LOC current consumption	LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	IIA
		LSEDRV[1:0] = 11 High drive capability	-	630	-	
	Maximum critical crystal gm	LSEDRV[1:0] = 00 Low drive capability	-	-	0.5	
Cm		LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	
Gm _{critmax}		LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7	μΑ/V
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	ı	S

- 1. Guaranteed by design.
- Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- $t_{SU(LSE)}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Resonator with integrated capacitors C_{L1} OSC32_IN Drive 32.768 kHz programmable resonator amplifier OSC32_OUT C_{L2} MS30253V2

Figure 36. Typical application with a 32.768 kHz crystal

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

DS12736 Rev 5 222/341

5.3.9 Internal clock source characteristics

The parameters given in *Table 90* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 27: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Table 90. HSI16 oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30°C	15.88	-	16.08	MHz
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%
	HSI16 user trimming step	Trimming code is a multiple of 64	-4	-6	-8	70
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
A (HCI46)	HSI16 oscillator frequency drift over temperature	T _A = 0 to 85°C	-1	-	1	%
$\Delta_{Temp}(HSI16)$		T _A = -40 to 125°C	-2	-	1.5	%
Δ _{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μΑ

^{1.} Guaranteed by characterization results.

^{2.} Guaranteed by design.

Figure 37. HSI16 frequency versus temperature

Multi-speed internal (MSI) RC oscillator

Table 91. MSI oscillator characteristics⁽¹⁾

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
			Range 0	98.7	100	101.3	
			Range 1	197.4	200	202.6	kHz
			Range 2	394.8	400	405.2	KHZ
			Range 3	7896	800	810.4	
		Range 4	0.987	1	1.013		
	MSI mode	Range 5	1.974	2	2.026		
		IVISI IIIOGE	Range 6	3.948	4	4.052	
			Range 7	7.896	8	8.104	MHz
			Range 8	15.79	16	16.21	IVIITZ
			Range 9	23.69	24	24.31	
	MSI frequency after factory calibration, done		Range 10	31.58	32	32.42	-
			Range 11	47.38	48	48.62	
f _{MSI}	at V _{DD} =3 V and		Range 0	-	98.304	-	- kHz
	T _A =30°C		Range 1	-	196.608	-	
			Range 2	-	393.216	-	
			Range 3	-	786.432	-	
			Range 4	-	1.016	-	
		PLL mode XTAL=	Range 5	-	1.999	-	
		32.768 kHz	Range 6	-	3.998	-	
			Range 7	-	7.995	-	NALIS
			Range 8	-	15.991	-	MHz
			Range 9	-	23.986	-	
			Range 10	-	32.014	-	
			Range 11	-	48.005	-	
	MSI oscillator		T _A = -0 to 85°C	-3.5	-	3	
$\Delta_{TEMP}(MSI)^{(2)}$	frequency drift over temperature	MSI mode	T _A = -40 to 125°C	-8	-	6	%

Table 91. MSI oscillator characteristics⁽¹⁾ (continued)

Symbol	Parameter		Conditions		Min	Тур	Max	Unit
			Range 0 to 3	V _{DD} =1.62 V to 3.6 V	-1.2	-	0.5	
			Range 0 to 3	V _{DD} =2.4 V to 3.6 V	-0.5	-	0.0	
$\Delta_{\text{VDD}}(\text{MSI})^{(2)}$	MSI oscillator frequency drift over V _{DD}	MSI mode	Range 4 to 7	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	%
ΔΛDD(INIQI).	(reference is 3 V)	WSI Mode		V _{DD} =2.4 V to 3.6 V	-0.8	-	0.7	/0
			Range 8 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	1	
			$ V_{D} $	V _{DD} =2.4 V to 3.6 V	-1.6	-	'	
	Frequency		T_A = -40 to 85°C		ı	1	2	
ΔF _{SAMPLING} (MSI) ⁽²⁾⁽⁴⁾	variation in sampling mode ⁽³⁾	MSI mode T_A = -40 to 125°C		-	2	4	%	
CC jitter(MSI) ⁽⁴⁾	RMS cycle-to- cycle jitter	PLL mode R	ange 11	-	-	60	-	ps
P jitter(MSI) ⁽⁴⁾	RMS Period jitter	PLL mode R	ange 11	-	-	50	-	ps
		Range 0		-	-	10	20	
		Range 1		-	-	5	10	
4 (0.401)(4)	MSI oscillator	Range 2		-	-	4	8	
t _{SU} (MSI) ⁽⁴⁾	start-up time	Range 3		-	-	3	7	us
		Range 4 to 7	7	-	-	3	6	
		Range 8 to 1	1	-	-	2.5	6	
	, ,		10% of final frequency	-	-	0.25	0.5	
t _{STAB} (MSI) ⁽⁴⁾		PLL mode Range 11	5% of final frequency	-	ı	0.5	1.25	ms
			1% of final frequency	-	-	-	2.5	

155

190

Symbol Parameter Conditions Min Тур Max Unit Range 0 0.6 1 Range 1 1.2 8.0 Range 2 1.2 1.7 Range 3 2.5 1.9 Range 4 4.7 6 MSI oscillator Range 5 6.5 9 MSI and $I_{DD}(MSI)^{(4)}$ μΑ power PLL mode Range 6 11 15 consumption Range 7 18.5 25 Range 8 --62 80 Range 9 85 110 Range 10 110 130

Range 11

Table 91. MSI oscillator characteristics⁽¹⁾ (continued)

- 1. Guaranteed by characterization results.
- 2. This is a deviation for an individual part once the initial frequency has been measured.
- 3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
- Guaranteed by design.

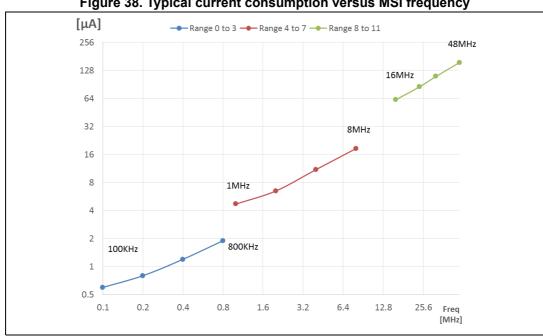


Figure 38. Typical current consumption versus MSI frequency

High-speed internal 48 MHz (HSI48) RC oscillator

Table 92. HSI48 oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	HSI48 Frequency	V _{DD} =3.0V, T _A =30°C	-	48	-	MHz
TRIM	HSI48 user trimming step	-	-	0.11 ⁽²⁾	0.18 ⁽²⁾	%
USER TRIM COVERAGE	HSI48 user trimming coverage	±32 steps	±3 ⁽³⁾	±3.5 ⁽³⁾	-	%
DuCy(HSI48)	Duty Cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
ACC _{HSI48_REL}	Accuracy of the HSI48 oscillator over temperature (factory calibrated)	V _{DD} = 3.0 V to 3.6 V, T _A = -15 to 85°C	-	-	±3 ⁽³⁾	%
		V _{DD} = 1.65 V to 3.6 V, T _A = -40 to 125°C	-	-	±4.5 ⁽³⁾	70
D (HSIV8)	HSI48 oscillator frequency drift with V _{DD}	V _{DD} = 3 V to 3.6 V	-	0.025 ⁽³⁾	0.05 ⁽³⁾	%
D _{VDD} (HSI48)		V _{DD} = 1.65 V to 3.6 V	-	0.05 ⁽³⁾	0.1 ⁽³⁾	/0
t _{su} (HSI48)	HSI48 oscillator start-up time	-	-	2.5 ⁽²⁾	6 ⁽²⁾	μs
I _{DD} (HSI48)	HSI48 oscillator power consumption	-	-	340 ⁽²⁾	380 ⁽²⁾	μA
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	+/-0.15 ⁽²⁾	-	ns
P _T jitter	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁴⁾	-	-	+/-0.25 ⁽²⁾	-	ns

^{1.} V_{DD} = 3 V, T_A = -40 to 125°C unless otherwise specified.

228/341 DS12736 Rev 5

^{2.} Guaranteed by design.

^{3.} Guaranteed by characterization results.

^{4.} Jitter measurement are performed without clock source activated in parallel.

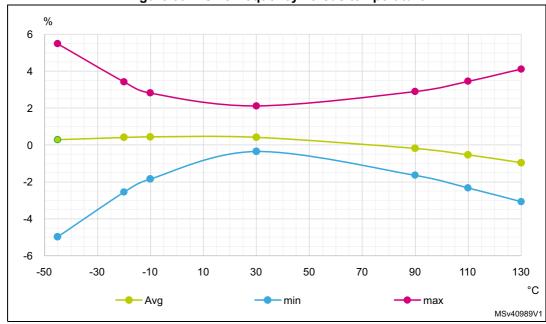


Figure 39. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Table 93. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	LSI Frequency	V _{DD} = 3.0 V, T _A = 30°C	31.04	-	32.96	kHz
		V_{DD} = 1.62 to 3.6 V, T_A = -40 to 125°C	29.5	-	34	KIIZ
t _{SU} (LSI) ⁽²⁾	LSI oscillator start-up time	-	-	80	130	μs
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA

^{1.} Guaranteed by characterization results.

^{2.} Guaranteed by design.

5.3.10 PLL characteristics

The parameters given in *Table 94* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 27: General operating conditions*.

Table 94. PLL, PLLSAI1, PLLSAI2 characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	PLL input clock ⁽²⁾	-	2.66	-	16	MHz
f _{PLL_IN}	PLL input clock duty cycle	-	45	-	55	%
		Voltage scaling Range 1	2.0645	-	80	
f _{PLL_P_OUT}	PLL multiplier output clock P	Voltage scaling Range 0	2.0645	-	110	
		Voltage scaling Range 2	2.0645	-	26	
f _{PLL_Q_OUT}		Voltage scaling Range 1	8	-	80	
	PLL multiplier output clock Q	Voltage scaling Range 0	8	-	110	
		Voltage scaling Range 2	8	-	26	MHz
f _{PLL_R_OUT}	PLL multiplier output clock R	Voltage scaling Range 1	8	-	80	
		Voltage scaling Range 0	8	-	110	
		Voltage scaling Range 2	8	-	26	
f	PLL VCO output	Voltage scaling Range 1	64	-	344	
f _{VCO_OUT}	FLE VCO output	Voltage scaling Range 2	64	-	128	
t _{LOCK}	PLL lock time	-	-	15	40	μs
Jitter	RMS cycle-to-cycle jitter	System clock 80 MHz	-	40	-	±nc
Jillei	RMS period jitter	System clock oo wiriz	-	30	-	±ps
		VCO freq = 64 MHz	-	150	200	
I (DII)	PLL power consumption on	VCO freq = 96 MHz	-	200	260	μΑ
I _{DD} (PLL)	$V_{DD}^{(1)}$	VCO freq = 192 MHz	-	300	380	
		VCO freq = 344 MHz	-	520	650	

^{1.} Guaranteed by design.

230/341 DS12736 Rev 5

^{2.} Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the 3 PLLs.

5.3.11 Flash memory characteristics

Table 95. Flash memory characteristics⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{prog}	64-bit programming time	-	81.69	83.35	μs
+	One row (64 double	Normal programming	2.61	2.67	
^T prog_row	word) programming time	Fast programming	NA	NA	
+	One page (4 Kbytes)	Normal programming	20.91	21.34	ms
t _{prog_page}	programming time	Fast programming	NA	NA	
t _{ERASE}	Page (4 Kbytes) erase time	-	22.02	24.47	-
	One bank (1 Mbyte) programming time	Normal programming	2.68	2.73	
t _{prog_bank}		Fast programming	NA	NA	S
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms
	Average consumption	Write mode	3.1	NA	
	from V _{DD}	Erase mode	3.1	NA	m^
I _{DD}	Maximum ourrant (neek)	Write mode	NA	NA	mA
	Maximum current (peak)	Erase mode	NA	NA	

^{1.} Guaranteed by design.

Table 96. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	$T_A = -40 \text{ to } +105^{\circ}\text{C}$	10	kcycles	
		1 kcycle ⁽²⁾ at T _A = 85°C	30		
	Data retention	1 kcycle ⁽²⁾ at T _A = 105°C	15		
4		1 kcycle ⁽²⁾ at T _A = 125°C	7	V	
t _{RET}		10 kcycles ⁽²⁾ at T _A = 55°C	30	Years	
		10 kcycles ⁽²⁾ at	10 kcycles ⁽²⁾ at T _A = 85°C	15	
		10 kcycles ⁽²⁾ at T _A = 105°C	10		

^{1.} Guaranteed by characterization results.

^{2.} Cycling performed over the whole temperature range.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 97*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_{A} = +25°C, f_{HCLK} = 110 MHz, conforming to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, T _A = +25°C, f _{HCLK} = 110 MHz, conforming to IEC 61000-4-4	5A

Table 97. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset

232/341

Critical Data corruption (control registers...)

DS12736 Rev 5

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

HSE THE HOLK							
Symbol	Parameter	Conditions	Monitored frequency band	Value	Unit		
			0.1 MHz to 30 MHz	4			
	Peak ⁽¹⁾	V _{DD} = 3.6 V, T _{A =} 25°C,	30 MHz to 130 MHz	0	dBuV		
S _{EMI}		LQFP144 package compliant with IEC 61967-2	130 MHz to 1 GHz	16	ивμν		
			1 GHz to 2 GHz	11			
	Level ⁽²⁾		0.1 MHz to 2 GHz	3.5	-		

Table 98. EMI characteristics for f_{HSE} = 8 MHz and f_{HCLK} = 110 MHz

5.3.13 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Table 99. ESD absolute maximum ratings

Symbol	Ratings	Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25°C, conforming to ANSI/ESDA/JEDEC JS-001		2	2000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device	T _A = +25°C, conforming to	LQFP144, LQFP100, WLCSP81	C1	250	V
VESD(CDM)	model)	ANSI/ESDA/JEDEC JS-002	Other packages	C2a	500	

^{1.} Guaranteed by characterization results.

^{1.} Refer to AN1709 "EMI radiated test" chapter.

^{2.} Refer to AN1709 "EMI level classification" chapter.

Static latch-up

Two complementary static tests are required on three parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78E IC latch-up standard.

Table 100. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105°C conforming to JESD78E	Class II level A

5.3.14 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table 101*.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Table 101. I/O current injection susceptibility

Symbol	Description	Functional susceptibility		Unit
Symbol	Description -		Positive injection	Oilit
(1)	Injected current on all pins except TT_a, PB0, PB15, PE9, PG0	-5	NA	
I _{INJ} ⁽¹⁾	Injected current on pins PB0, PB15, PE9, PG0	0	NA	mA
	Injected current on TT_a pins	-5	0	

^{1.} Guaranteed by characterization.

Note:

5.3.15 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 102* are derived from tests performed under the conditions summarized in *Table 27: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant.

For information on GPIO configuration, refer to the application note AN4899 "STM32 GPIO configuration for hardware settings and low-power consumption" available from the ST website www.st.com.

Table 102. I/O static characteristics

Sym bol	Parameter		Conditions	Min	Тур	Max	Unit	
			1.62 V < V _{DDIOx} < 3.6 V	-	-	0.3×V _{DDIOx} (2)		
		All IOs except FT_c	1.62 V < V _{DDIOX} < 3.6 V	-	-	0.39×V _{DDIOx} -0.06 ⁽²⁾		
V _{IL} ⁽¹⁾	I/O input low level		1.08 V < V _{DDIOx} < 1.62 V	-	-	0.43×V _{DDIOx} -0.1 ⁽²⁾	V	
AIT, ,	voltage		1.62 V < V _{DDIOX} < 3.6 V	-	-	0.3×V _{DDIOX} ⁽²⁾]	
		FT_c	1.62 V < V _{DDIOx} < 3.6 V	-	-	0.25×V _{DDIOX} ⁽²⁾]	
			1.08 V < V _{DDIOx} < 1.62 V	-	-	0.2×V _{DDIOX} ⁽²⁾]	
			1.62 V < V _{DDIOx} < 3.6 V	0.7×V _{DDIOx} ⁽²⁾	-	-		
			All IOs except FT_c	1.62 V < V _{DDIOx} < 3.6 V	0.49×V _{DDIOX} +0.26 ⁽²⁾	-	-]
$V_{IH}^{(1)}$	I/O input high level voltage		1.08 V < V _{DDIOx} < 1.62 V	0.61×V _{DDIOX} +0.05 ⁽²⁾	-	-	V	
	vollage	ET o	1.62 V < V _{DDIOx} < 3.6 V	0.7×V _{DDIOX} ⁽²⁾	-	5]	
		FT_c	1.08 V < V _{DDIOx} < 1.62 V	0.7×V _{DDIOX} ⁽²⁾	-	5]	
V _{hys} ⁽²⁾	Input hysteresis	TT_xx, FT_xx and NRST	1.62 V < V _{DDIOX} < 3.6 V	-	200	-	mV	
		FT_sx	1.08 V < V _{DDIOx} < 1.62 V	-	150	-]	

Table 102. I/O static characteristics (continued)

Sym bol	Parameter		Conditions	Min	Тур	Max	Unit
			$0 < V_{IN} \le Max(V_{DDXXX})^{(4)(5)}$	-	-	±100	
		FT_xx ⁽³⁾	$Max(V_{DDXXX}) \le V_{IN} \le Max(V_{DDXXX}) + 1 V^{(4)(5)}$	-	-	650	
			$Max(V_{DDXXX}) + 1 V < V_{IN} \le 5.5 V^{(4)(5)}$	-	-	200	
			$0 < V_{IN} \le Max(V_{DDXXX})^{(4)(5)}$	-	-	±150	
		FT_u	$Max(V_{DDXXX}) \le V_{IN} \le Max(V_{DDXXX}) + 1 V^{(4)(5)}$	-	-	2500 ⁽⁶⁾	
	Input leakage current		$Max(V_{DDXXX}) + 1 V < VIN \le 5.5 V^{(4)(5)(7)}$	-	-	250 ⁽⁶⁾	
I _{lkg}		-	$V_{IN} \le Max(V_{DDXXX})^{(5)}$	-	-	±150	nA
			$Max(V_{DDXXX}) \le V_{IN} < 3.6 V^{(5)}$	-	-	2000 ⁽²⁾	
		OPAMPx_VINM(x=1,2)	-	-	-	(8)	
		ET -	$0 < V_{IN} \le Max(V_{DDXXX})^{(3)}$	-	-	2000	
		FT_c	$Max(V_{DDXXX}) < V_{IN} \le 5 V^{(3)(5)(6)}$	-	-	3000	
		ET 4	$0 < V_{IN} \le Max(V_{DDXXX})^{(5)}$	-	-	4500	
		FT_d	$Max(V_{DDXXX}) < V_{IN} \le 5.5 V^{(3)(4)(5)}$	-	-	9000	
R _{PU}	Weak pull-up equiv	alent resistor	$V_{IN} = V_{SS}$	25	40	55	kΩ
R _{PD}	Weak pull-down eq	uivalent resistor	$V_{IN} = V_{DDIOX}$	25	40	55	kΩ
C _{IO}	I/O pin capacitance)	-	-	5	-	pF

- 1. Refer to Figure 40: I/O input characteristics.
- 2. Guaranteed by design.
- 3. All FT_xx IO except FT_u and FT_c.
- 4. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: $I_{Total_Ileak_max} = 10 \mu A + [number of IOs where V_{IN}]$ is applied on the pad] × $I_{Ikg}(Max)$.
- 5. Max(V_{DDXXX}) is the maximum value of all the I/O supplies. Refer to *Table: Legend/Abbreviations used in the pinout table*.
- 6. To sustain a voltage higher than MIN(V_{DD}, V_{DDA}, V_{DDIO2} and V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- 7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).
- 8. Refer to I_{bias} in Table 119: OPAMP characteristics for the values of the OPAMP dedicated input leakage current.

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 40* for standard I/Os, and in *Figure 40* for 5 V tolerant I/Os.

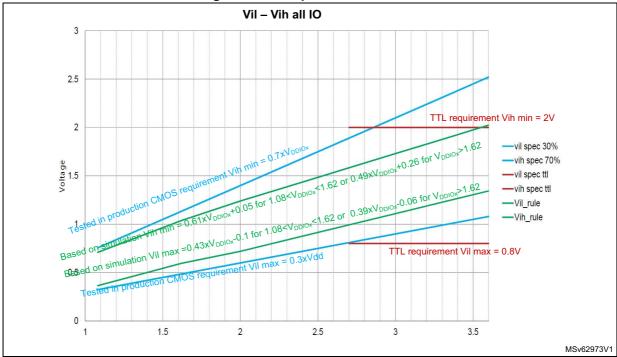


Figure 40. I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 24: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see Table 24: Voltage characteristics).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 27: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT OR TT unless otherwise specified).

DS12736 Rev 5 237/341

Table 103. Output voltage characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾ I _{IO} = 2 mA for FT_c	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA for other I/Os V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾ I _{IO} = 2 mA for FT_c	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = 8 mA for other I/Os V _{DDIOx} ≥ 2.7 V	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	All I/Os except FT_c I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin		-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.62 V ≤ V _{DDIOx} ≤ 3.6 V	V _{DDIOx} -0.45	-	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 1 mA for FT_c I _{IO} = 2 mA for other I/Os	-	0.35 _x V _{DDIOx}	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.08 V ≤ V _{DDIOx} < 1.62 V	0.65 _x V _{DDIOx}	-	
		$ I_{IO} = 20 \text{ mA}$ $V_{DDIOX} \ge 2.7 \text{ V}$	-	0.4	
$V_{\begin{subarray}{c} V_{OLFM+} \\ (3) \end{subarray}}$	Output low level voltage for an FT I/O pin in FM+ mode (FT I/O with "f" option)	I _{IO} = 10 mA 1.62 V ≤ V _{DDIOx} ≤ 3.6 V	-	0.4	
	(F1 I/O with "T" option)	I _{IO} = 2 mA 1.08 V ≤ V _{DDIOx} < 1.62 V	-	0.4	

The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 24:
 Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 41* and *Table 104*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 27: General operating conditions*.

238/341 DS12736 Rev 5

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

^{3.} Guaranteed by design.

Table 104. I/O AC characteristics (All I/Os except FT_c)⁽¹⁾⁽²⁾

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1	
	Fmax	Maximum	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	MHz
	FIIIAX	frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10	IVITZ
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5	
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52	
	Tr/Tf	Output rise and	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	no
	11711	fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	ns
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37	
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110	
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V -	-	25	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10	MHz
	Fmax	Maximum	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	
	Fillax	frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50	IVII IZ
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15	
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16	
	Tr/Tf	Output rise and	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40	no
	11/11	fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	ns
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9	
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21	

Table 104. I/O AC characteristics (All I/Os except FT_c)⁽¹⁾⁽²⁾ (continued)

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	25	
	Fmax	Maximum	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	MHz
	Fillax	frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	100	IVITZ
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37.5	
10			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	
10			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5.8	
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	11	
	Tr/Tf	Output rise and	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	28	
	11711	fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	2.5	ns
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	5	
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	12	
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	110	MHz
			C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	50	
	Fmax	Maximum	C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10	
	FIIIAX	frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	180 ⁽³⁾	
11			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	75	
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10	
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	3.3	
	Tr/Tf	Output rise and fall time	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	6	ns
			C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	16	
Fm+	Fmax	Maximum frequency	C-50 pE 16 V/sV/ <3 6 V	-	1	MHz
FILIT	Tf	Output fall time ⁽⁴⁾	C=50 pF, 1.6 V≤V _{DDIOx} ≤3.6 V	-	5	ns

The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0438 reference manual for a description of GPIO Port configuration register.

240/341 DS12736 Rev 5

^{2.} Guaranteed by design.

^{3.} This value represents the I/O capability but the maximum system frequency is limited to 110 MHz.

^{4.} The fall time is defined between 70% and 30% of the output waveform accordingly to I^2C specification.

Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	- 2		
	Fmax	Maximum frequency	C=50 pF, 1.6 V≤V _{DDIOx} ≤2.7 V	-	1	MHz	
0			C=50 pF, 1.08 V≤V _{DDIOx} ≤3.6 V	-	0.1		
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	170		
	Tr/Tf	Output rise and fall time	C=50 pF, 1.6 V≤V _{DDIOx} ≤2.7 V	-	330	ns	
			C=50 pF, 1.08 V≤V _{DDIOx} ≤3.6 V	-	3300		
		Maximum frequency	C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10		
	Fmax		C=50 pF, 1.6 V≤V _{DDIOx} ≤2.7 V	-	5	MHz	
1			C=50 pF, 1.08 V≤V _{DDIOx} ≤3.6 V	-	0.7		
'			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	35		
	Tr/Tf	Output rise and fall time	C=50 pF, 1.6 V≤V _{DDIOx} ≤2.7 V	-	65	ns	
			C=50 pF, 1.08 V≤V _{DDIOx} ≤3.6 V	-	400		

Table 105. FT c I/O AC characteristics⁽¹⁾⁽²⁾

^{2.} Guaranteed by design.

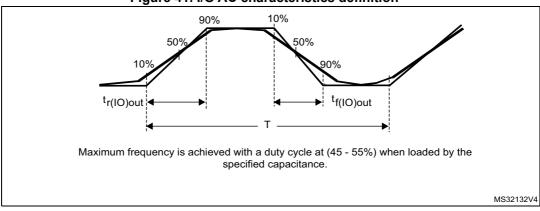


Figure 41. I/O AC characteristics definition⁽¹⁾

1. Refer to Table 104: I/O AC characteristics (All I/Os except FT_c).

5.3.16 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} .

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 27: General operating conditions*.

The I/O speed is configured using the OSPEEDRy[0] bit. Refer to the RM0438 reference manual for a description of GPIO Port configuration register.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	V
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

Table 106. NRST pin characteristics⁽¹⁾

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

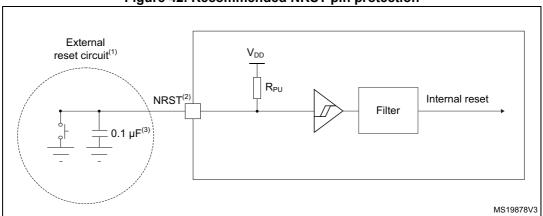


Figure 42. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- 2. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in *Table 106: NRST pin characteristics*. Otherwise the reset is not taken into account by the device.
- 3. The external capacitor on NRST must be placed as close as possible to the device.

5.3.17 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length in order to guarantee that it is detected by the event controller.

Table 107. EXTI input characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

1. Guaranteed by design.

^{1.} Guaranteed by design.

5.3.18 Analog switches booster

Table 108. Analog switches booster characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
V _{DD}	Supply voltage	1.62	-	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	240	μs
I _{DD(BOOST)}	Booster consumption for 1.62 V ≤ V _{DD} ≤ 2.0 V	-	-	250	
	Booster consumption for 2.0 V ≤ V _{DD} ≤ 2.7 V	-	-	500	μΑ
	Booster consumption for $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	-	900	

^{1.} Guaranteed by design.

5.3.19 Analog-to-digital converter characteristics

Unless otherwise specified, the parameters given in *Table 109* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 27: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 109. ADC characteristics⁽¹⁾ (2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{DDA}	Analog supply voltage	-	1.62	-	3.6	V		
	Positive	V _{DDA} ≥ 2 V	2	-	V_{DDA}	V		
V _{REF+}	reference voltage	V _{DDA} < 2 V		V_{DDA}		V		
V _{REF-}	Negative reference voltage	-	V _{SSA}		V_{SSA}			
f	ADC clock	Range 0 and 1	-	-	80	MHz		
f _{ADC}	frequency	Range 2	-	-	26	IVITIZ		
		Resolution = 12 bits	-	-	5.33			
	Sampling rate	Resolution = 10 bits	-	-	6.15			
	for FAST channels	Resolution = 8 bits	-	-	7.27			
£		Resolution = 6 bits	-	-	8.88	N.4		
f _s	Sampling rate for SLOW channels	Resolution = 12 bits	-	-	4.21	Msps		
		Resolution = 10 bits	-	-	4.71			
		Resolution = 8 bits	-	-	5.33			
		Resolution = 6 bits	-	-	6.15			
f _{TRIG}	External trigger	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz		
11410	frequency	Resolution = 12 bits	-	-	15	1/f _{ADC}		
V _{AIN} (3)	Conversion voltage range(2)	-	0	-	V _{REF+}	V		
R _{AIN}	External input impedance	-	-	-	50	kΩ		
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF		
t _{STAB}	Power-up time	-	1		conversi on cycle			
+.	Calibration time	f _{ADC} = 80 MHz	1.45			μs		
t _{CAL}	Calibration time	-		116		1/f _{ADC}		

Table 109. ADC characteristics^{(1) (2)} (continued)

			`	lilaca,			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Trigger .	CKMODE = 00	1.5	2	2.5		
	conversion latency Regular	CKMODE = 01	-	-	2.0		
t _{LATR}	and injected	CKMODE = 10	-	-	2.25	1/f _{ADC}	
Z.iii	channels without conversion abort	CKMODE = 11	-	-	2.125	7.00	
	Trigger	CKMODE = 00	2.5	3	3.5		
	conversion latency Injected	CKMODE = 01	-	-	3.0		
t _{LATRINJ}	channels	CKMODE = 10	-	-	3.25	1/f _{ADC}	
	aborting a regular conversion	CKMODE = 11	-	-	3.125		
	Commission times	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs	
t _s	Sampling time	-	2.5	-	640.5	1/f _{ADC}	
t _{ADCVREG_STU}	ADC voltage regulator start-up time	-			20	μs	
	Total conversion time	f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs	
t _{CONV}	(including sampling time)	Resolution = 12 bits	successi	ts + 12.5 cycles for successive approximation = 15 to 653			
	ADC	fs = 5 Msps	-	730	830		
I _{DDA} (ADC)	consumption from the V _{DDA}	fs = 1 Msps	-	160	220	μA	
	supply	fs = 10 ksps	-	16	50		
	ADC	fs = 5 Msps	-	130	160		
I _{DDV_S} (ADC)	consumption from the V _{REF+}	fs = 1 Msps	-	30	40	μA	
DDV_3(:)	single ended mode	fs = 10 ksps	-	0.6	2	ing a	
	ADC	fs = 5 Msps	-	260	310		
I _{DDV_D} (ADC)	consumption from the V _{REF+}	fs = 1 Msps	-	60	70	μΑ	
	differential mode	fs = 10 ksps	-	1.3	3		

^{1.} Guaranteed by design

^{2.} The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when $V_{DDA} \ge 2.4$ V.

V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package.
 Refer to Section 4: Pinouts and pin description for further details.

The maximum value of R_{AIN} can be found in *Table 110: Maximum ADC RAIN*.

Table 110. Maximum ADC R_{AIN}⁽¹⁾⁽²⁾

Dan alastina	Sampling cycle	Sampling time	R _{AIN} n	nax (Ω)
Resolution	@80 MHz	[ns] @80 MHz	Fast channels ⁽³⁾	Slow channels ⁽⁴⁾
	2.5	31.25	100	N/A
	6.5	81.25	330	100
	12.5	156.25	680	470
12 bits	24.5	306.25	1500	1200
12 bits	47.5	593.75	2200	1800
	92.5	1156.25	4700	3900
	247.5	3093.75	12000	10000
	640.5	8006.75	39000	33000
	2.5	31.25	120	N/A
	6.5	81.25	390	180
	12.5	156.25	820	560
40 hit-	24.5	306.25	1500	1200
10 bits	47.5	593.75	2200	1800
	92.5	1156.25	5600	4700
	247.5	3093.75	12000	10000
	640.5	8006.75	47000	39000
	2.5	31.25	180	N/A
	6.5	81.25	470	270
	12.5	156.25	1000	680
0.1.7	24.5	306.25	1800	1500
8 bits	47.5	593.75	2700	2200
	92.5	1156.25	6800	5600
	247.5	3093.75	15000	12000
	640.5	8006.75	50000	50000
	2.5	31.25	220	N/A
	6.5	81.25	560	330
	12.5	156.25	1200	1000
G hita	24.5	306.25	2700	2200
6 bits	47.5	593.75	3900	3300
	92.5	1156.25	8200	6800
	247.5	3093.75	18000	15000
	640.5	8006.75	50000	50000

- 1. Guaranteed by design.
- 2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when $V_{DDA} \ge 2.4$ V.
- 3. Fast channels are: PC0, PC1, PC2, PC3, PA0.
- 4. Slow channels are: all ADC inputs except the fast channels.

DS12736 Rev 5 247/341

Table 111. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$

Sym- bol	Parameter		Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
	Total		ended	Slow channel (max speed)	-	4	5	
ET	unadjusted error		Differential	Fast channel (max speed)	-	3.5	4.5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
EO	Offset		ended	Slow channel (max speed)	-	1	2.5	
	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Dillerential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	2.5	4.5	LSB
LG	Gairrenoi		Differential	Fast channel (max speed)	-	2.5	3.5	LOB
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
	D		Single ended	Fast channel (max speed)	-	1	3.5	-
ED Differential linearity error	Differential	ADC clock frequency ≤		Slow channel (max speed)	-	1	3.5	
	-	80 MHz,	Differential	Fast channel (max speed)	-	1	2	
		Sampling rate ≤ 5.33 Msps,	Dillerential	Slow channel (max speed)	-	1	2	
		V _{DDA} = VREF+ = 3 V, TA = 25°C (ADC clock frequency ≤	Single ended	Fast channel (max speed)	-	1.5	2.5	-
EL	Integral linearity			Slow channel (max speed)	-	1.5	2.5	
EL	error	58 MHz for LQFP144)	Differential	Fast channel (max speed)	-	1	2	
			Dillerential	Slow channel (max speed)	-	1	2	1
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.4	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.8	10.9	-	טונס
			Dillerential	Slow channel (max speed)	10.8	10.9	-	
	Cianal to		Single	Fast channel (max speed)	64.4	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	64.4	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66.8	67.4	-	-
	ratio		Dillerential	Slow channel (max speed)	66.8	67.4	-	
			Single	Fast channel (max speed)	65	66	-	dB
SNR	Signal-to-	- I	ended	Slow channel (max speed)	65	66	-]
SINK	noise ratio		Differential	Fast channel (max speed)	67	68	1	
			ninei ei iliai	Slow channel (max speed)	67	68	-	

Table 111. ADC accuracy - limited test conditions 1⁽¹⁾⁽²⁾⁽³⁾ (continued)

Sym- bol	Parameter	C	Min	Тур	Max	Unit		
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-73	
	Total	80 MHz, Sampling rate ≤ 5.33 Msps, – V _{DDA} = V _{REF+} = 3 V,	ended	Slow channel (max speed)	-	-74	-73	
THD	harmonic		Differential	Fast channel (max speed)	-	-79	-76	dB
	distortion	TA = 25°C (ADC clock frequency ≤ 58 MHz for LQFP144)		Slow channel (max speed)	-	-79	-76	

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

Table 112. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	6.5	
ET	Total		ended	Slow channel (max speed)	-	4	6.5	
E1	unadjusted error		Differential	Fast channel (max speed)	-	3.5	5.5	
			Dillerential	Slow channel (max speed)	-	3.5	5.5	
			Single	Fast channel (max speed)	-	1	4.5	
EO	Offset		ended	Slow channel (max speed)	-	1	5	
	error		Differential	Fast channel (max speed)	-	1.5	3	
			Differential -	Slow channel (max speed)	-	1.5	3	
			Single	Fast channel (max speed)	-	2.5	6	
EG	Gain error		ended	Slow channel (max speed)	-	2.5	6	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	2.5	3.5	LOD
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
			Single	Fast channel (max speed)	-	1	3.5	
ED Differer linearity error	Differential		ended	Slow channel (max speed)	-	1	3.5	
	_	ADC clock frequency ≤ 80 MHz,	Differential	Fast channel (max speed)	-	1	2	
		Sampling rate ≤ 5.33 Msps, 2 V ≤ V _{DDA} (ADC clock frequency ≤ 58 MHz for LQFP144)	Sincional	Slow channel (max speed)	-	1	2	
			Single ended	Fast channel (max speed)	-	2.5	4.5	
EL	Integral			Slow channel (max speed)	-	2.5	4.5	
	linearity error		D:#	Fast channel (max speed)	-	1	3	
			Differential	Slow channel (max speed)	-	1	2.5	
			Single	Fast channel (max speed)	10	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.7	10.9	-	טונס
			Dillerential	Slow channel (max speed)	10.7	10.9	-	
	Cianal to		Single	Fast channel (max speed)	62	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	62	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66	67.4	-	
ratio		Dillerential	Slow channel (max speed)	66	67.4	-	40	
			Single	Fast channel (max speed)	64	66	-	dB
SNR	Signal-to-	l e	ended	Slow channel (max speed)	64	66	-]
SINK	noise ratio		Differential	Fast channel (max speed)	66.5	68	-	
			ווים ופוווטו	Slow channel (max speed)	66.5	68	-	

Table 112. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Min	Тур	Max	Unit		
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-65	
	Total	80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	-	-74	-67	
THD	harmonic distortion	2 V ≤ V _{DDA}	0.00 Mops,	Fast channel (max speed)	-	-79	-70	dB
	uistortion	(ADC clock frequency ≤ 58 MHz for LQFP144)	Differential	Slow channel (max speed)	-	-79	-71	

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

251/341

Table 113. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5.5	7.5	
ET	Total unadjusted		ended	Slow channel (max speed)	-	4.5	6.5	
	error		Differential	Fast channel (max speed)	-	4.5	7.5	
			Dillerential	Slow channel (max speed)	-	4.5	5.5	
			Single	Fast channel (max speed)	-	2	5	
EO	Offset		ended	Slow channel (max speed)	-	2.5	5	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2.5	3	
			Single	Fast channel (max speed)	-	4.5	7	
EG	Gain error		ended	Slow channel (max speed)	-	3.5	6	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	3.5	4	LOD
			Dillerential	Slow channel (max speed)	-	3.5	5	
			Single	Fast channel (max speed)	-	1	3.5	
ED Differential linearity error	Differential	ADC clock frequency ≤	ended	Slow channel (max speed)	-	1	3.5	
	_	80 MHz, Sampling rate ≤ 5.33 Msps,	Differential	Fast channel (max speed)	-	1	2	
		1.65 V ≤ V _{DDA} = V _{REF+} ≤ 3.6 V, Voltage scaling Range 1 (ADC clock frequency ≤ 58 MHz for LQFP144)	Dillerential	Slow channel (max speed)	-	1	2	
			Single ended	Fast channel (max speed)	-	2.5	4.5	-
EL	Integral linearity			Slow channel (max speed)	-	2.5	4.5	
EL	error		Differential	Fast channel (max speed)	-	2	2.5	
			Dillerential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10	10.4	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.4	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.6	10.7	ı	Dita
			Dillerential	Slow channel (max speed)	10.6	10.7	-	
	Signal-to-		Single	Fast channel (max speed)	62	64	-	
SINAD	noise and		ended	Slow channel (max speed)	62	64	-	
SINAD	distortion		Differential	Fast channel (max speed)	65	66	-	- -
	ratio		Dillerential	Slow channel (max speed)	65	66	-	
			Single	Fast channel (max speed)	63	65	-	dB
SNR	Signal-to-		ended	Slow channel (max speed)	63	65	-]
SINK	noise ratio		Differential	Fast channel (max speed)	66	67	-	
	meles rade		Dinerential	Slow channel (max speed)	66	67	-	

Table 113. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾					Unit
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-69	-67	
		80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	-	-71	-67	
THD	Total harmonic	$1.65 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \le$		Fast channel (max speed)	-	-72	-71	dB
	distortion	3.6 V, Voltage scaling Range 1 (ADC clock frequency ≤ 58 MHz for LQFP144)	Differential	Slow channel (max speed)	1	-72	-71	uБ

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

Table 114. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$

Sym- bol	Parameter	(Conditions ⁽⁴⁾					Unit
			Single	Fast channel (max speed)	-	5	5.4	
	Total		ended	Slow channel (max speed)	-	4	5	
ET	unadjusted error		Differential	Fast channel (max speed)	-	4	5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
		Single		Fast channel (max speed)	-	2	4	
EO	Offset		ended	Slow channel (max speed)	-	2	4	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2	3.5	
			Single	Fast channel (max speed)	-	4	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	4	4.5	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	3	4	LOD
			Dillerential	Slow channel (max speed)	-	3	4	
			Single	Fast channel (max speed)	-	1	1.5	
ED	Differential		ended	Slow channel (max speed)	-	1	1.5	
	ED linearity error	ADC clock frequency ≤	Differential	Fast channel (max speed)	-	1	1.2	
	error	26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤	Dillerential	Slow channel (max speed)	-	1	1.2	
		3.6 V,	Single	Fast channel (max speed)	-	2.5	3	
EL	Integral	Voltage scaling Range 2	ended	Slow channel (max speed)	-	2.5	3	
EL	linearity error		Differential	Fast channel (max speed)	-	2	2.5	
			Dillerential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10.2	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.2	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.6	10.7	-	טונס
			Dillerential	Slow channel (max speed)	10.6	10.7	-	
	Cianal to		Single	Fast channel (max speed)	63	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	63	65	-	
SINAD	distortion ratio		Differential	Fast channel (max speed)	65	66	-	
	Tatio		Dillerential	Slow channel (max speed)	65	66	-	٩D
			Single	Fast channel (max speed)	64	65	-	dB
SNR	Signal-to-		ended	Slow channel (max speed)	64	65	-	
SINK	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Differential	Slow channel (max speed)	66	67	-	

Table 114. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾					
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69	
THD	Total harmonic	26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤	ended	Slow channel (max speed)	-	-71	-69	dB
טחו	distortion	3.6 V,	Differential	Fast channel (max speed)	-	-73	-72	иБ
		Voltage scaling Range 2	Dillerential	Slow channel (max speed)	-	-73	-72	

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

255/341

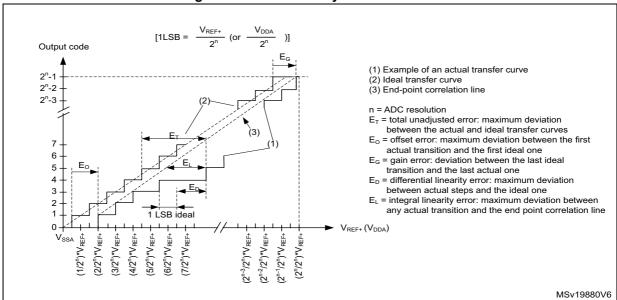
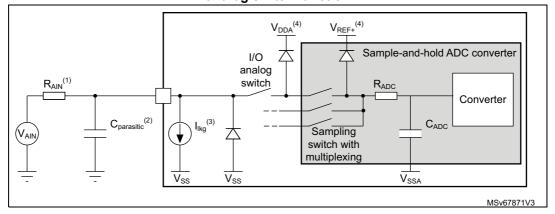



Figure 43. ADC accuracy characteristics

Figure 44. Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function

- Refer to Table 109: ADC characteristics for the values of R_{AIN} and C_{ADC}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 102: I/O static characteristics* for the value of the pad capacitance). A high C_{parasitic} value downgrades the conversion accuracy. To remedy this, f_{ADC} should be reduced.
- 3. Refer to Table 102: I/O static characteristics for the values of I_{lka}.
- 4. Refer to Section 5.1.6: Power supply scheme.

General PCB design guidelines

Power supply decoupling should be performed as shown in the corresponding power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

5.3.20 Digital-to-Analog converter characteristics

Table 115. DAC characteristics⁽¹⁾

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit	
V_{DDA}	Analog supply voltage for DAC ON	DAC output bu pin not connec connection onl		1.71	-	3.6		
		Other modes		1.80	-			
V _{REF+}	Positive reference voltage	DAC output bu pin not connec connection onl	`	1.71	-	V_{DDA}	٧	
		Other modes 1		1.80	-			
V _{REF-}	Negative reference voltage			V_{SSA}	1	-		
Б	Decistive lead	DAC output	connected to V _{SSA}	5	-	-	1.0	
R_L	Resistive load	buffer ON	connected to V _{DDA}	25	-	-	kΩ	
R _O	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ	
Б	Output impedance sample	V _{DD} = 2.7 V		-	-	2	1.0	
R_{BON}	and hold mode, output buffer ON	V _{DD} = 2.0 V	V _{DD} = 2.0 V		-	3.5	kΩ	
_	Output impedance sample	V _{DD} = 2.7 V		-	-	16.5		
R_{BOFF}	and hold mode, output buffer OFF	V _{DD} = 2.0 V			-	18.0	kΩ	
C _L	O iii l l	DAC output buffer ON		-	-	50	pF	
C _{SH}	- Capacitive load	Sample and ho	old mode	-	0.1	1	μF	
V _{DAC_OUT}	Voltage on DAC_OUT output	DAC output bu	ffer ON	0.2	-	V _{REF+} - 0.2	V	
_	σαιραι	DAC output bu	ffer OFF	0	-	V _{REF+}		
			±0.5 LSB	-	1.7	3		
	Settling time (full scale: for a 12-bit code transition	Normal mode DAC output	±1 LSB	-	1.6	2.9		
	between the lowest and the	buffer ON CL ≤ 50 pF,	±2 LSB	-	1.55	2.85		
t _{SETTLING}	highest input codes when DAC OUT reaches final	CL ≥ 50 pr, RL ≥ 5 kΩ	±4 LSB	-	1.48	2.8	μs	
	value ±0.5 LSB, ±1 LSB,	±8 LSB		-	1.4	2.75		
	±2 LSB, ±4 LSB, ±8 LSB)	Normal mode DAC output buffer OFF, ±1LSB, CL = 10 pF		-	2	2.5		
. (2)	Wakeup time from off state (setting the ENx bit in the		Normal mode DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		4.2	7.5		
t _{WAKEUP} ⁽²⁾	DAC Control register) until final value ±1 LSB	Normal mode I OFF, CL ≤ 10 p	DAC output buffer bF	-	- 2 5		μs	
PSRR	V _{DDA} supply rejection ratio	Normal mode I CL ≤ 50 pF, RL	DAC output buffer ON = 5 kΩ, DC	-	-80	-28	dB	

Table 115. DAC characteristics⁽¹⁾ (continued)

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
T _{W_to_W}	Minimal time between two consecutive writes into the DAC_DORx register to guarantee a correct DAC_OUT for a small variation of the input code (1 LSB) DAC_MCR:MODEx[2:0] = 000 or 001 DAC_MCR:MODEx[2:0] = 010 or 011	CL ≤ 50 pF, RL CL ≤ 10 pF	. ≥ 5 kΩ	1 1.4	-	-	μѕ
		DAC_OUT	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5	ms
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	1115
^t SAMP	lowest input code and the highest input code when DACOUT reaches final value ±1LSB)	DAC_OUT pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs
I _{leak}	Output leakage current	Sample and ho DAC_OUT pin		-	-	_(3)	nA
Cl _{int}	Internal sample and hold capacitor		-	5.2	7	8.8	pF
t _{TRIM}	Middle code offset trim time	DAC output bu	ffer ON	50	-	-	μs
V	Middle code offset for 1 trim	V _{REF+} = 3.6 V		-	1500	-	μV
V _{offset}	code step	V _{REF+} = 1.8 V		-	750	-	μν
		DAC output	No load, middle code (0x800)	-	315	500	
		buffer ON	No load, worst code (0xF1C)	-	450	670	
I _{DDA} (DAC)	DAC consumption from V _{DDA}	DAC output buffer OFF	No load, middle code (0x800)	-	-	0.2	μA
		Sample and ho	old mode, C _{SH} =	-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)	

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
		DAC output No		-	185	240	
		buffer ON No load, worst code (0xF1C)	340	400			
		DAC output buffer OFF	No load, middle code (0x800)	- 155	205		
I _{DDV} (DAC)	DAC consumption from V _{REF+}	Sample and hold mode, buffer ON, C _{SH} = 100 nF, worst case Sample and hold mode, buffer OFF,	185 _x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μА		
			-	155 _x Ton/(Ton +Toff) (4)	205 _x Ton/(Ton +Toff) (4)		

Table 115. DAC characteristics⁽¹⁾ (continued)

- Guaranteed by design.
- 2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
- 3. Refer to Table 102: I/O static characteristics.
- 4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0351 reference manual for more details.

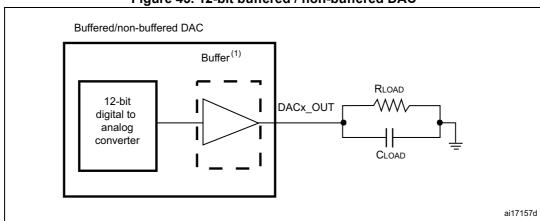


Figure 45. 12-bit buffered / non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Table 116. DAC accuracy ranges 0/1⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
DNL	Differential non	DAC output buffer ON		-	-	±2	
DINL	linearity (2)	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		(guarantee	d	
INL	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
INL	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4	
		DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±12	
Offset	Offset error at code 0x800 ⁽³⁾	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OfficetCol	Offset Error at code 0x800	DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±5	
OffsetCal	after calibration	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	
Coin	Gain error ⁽⁵⁾	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±0.5	%
Gain	Gain enor	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±0.5	70
TUE	Total	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±30	LSB
TOE	unadjusted error	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±12	LOD
TUECal	Total unadjusted error after calibration	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±23	LSB
SNR	Signal-to-noise	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ 1 kHz, BW 500 kHz		-	71.2	-	dD
SINK	ratio	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz BW 500 kHz		-	71.6	-	dB
THD	Total harmonic	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1	kHz	-	-78	-	dB
וחט	distortion	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz		-	-79	-	ub

Table 116. DAC accuracy ranges 0/1⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SINAD	Signal-to-noise and distortion	DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω , 1 kHz	-	70.4	-	dB
SINAD	ratio	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	71	-	ив
ENOB	Effective	DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω , 1 kHz	-	11.4	-	bits
ENUB	number of bits	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	11.5	-	DILS

- 1. Guaranteed by design.
- 2. Difference between two consecutive codes 1 LSB.
- 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 4. Difference between the value measured at Code (0x001) and the ideal value.
- Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and (V_{REF+} – 0.2) V when buffer is ON.

5.3.21 Voltage reference buffer characteristics

Table 117. VREFBUF characteristics⁽¹⁾

Symbol	Parameter	Condition	ons	Min	Тур	Max	Unit
		Normal made	V _{RS} = 0	2.4	-	3.6	
V	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6	
V_{DDA}	voltage	Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4	
		Degraded mode.	V _{RS} = 1	1.65	-	2.8	V
		Normal mode	V _{RS} = 0	2.044	2.048	2.052	V
V _{REFBUF} _	Voltage reference	I _{load} =100 μA/T=30°C	V _{RS} = 1	2.496	2.5	2.504	
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -250 mV	-	V_{DDA}	
		Degraded mode.	V _{RS} = 1	V _{DDA} -250 mV	-	V_{DDA}	
ΔV _{REFOUT} _	Voltage reference output spread	Normal mode	VRS=0	-	-	5	mV
VD D	over the main supply range	Normal mode	VRS=1	-	-	4	mV
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%
CL	Load capacitor	-	-	0.5	1	1.5	μF
esr	Equivalent Serial Resistor of Cload	-	-	-	1	2	Ω
I _{load}	Static load current	-	-	-	-	4	mA
1	Line regulation	2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 500 μA	-	-	2000	ppm/V
I _{line_reg}	Line regulation	2.0 V = V _{DDA} = 3.0 V	I _{load} = 4 mA	-	100	500	ρριτί/ ν
I _{load_reg}	Load regulation	500 μA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA
T _{Coeff}	Temperature	-40°C < TJ < +125°C		-	1	T _{coeff} _ vrefint + 50	ppm/ °C
Coeff	coefficient	0°C < TJ < +50°C	°C < TJ < +50°C		1	T _{coeff} vrefint + 50	ррпіі О
PSRR	Power supply	OC .		40	55	-	dB
1 OIXIX	rejection	100 kHz		25	40	-	
	CL = $0.5 \mu F^{(3)}$		-	300	350		
t _{START}	Start-up time	CL = 1.1 µF ⁽³⁾		-	500	650	μs
		$CL = 1.5 \mu F^{(3)}$		-	650	800	

Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit
Inrush	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (4)	-	-	-	8	-	mA
	VREFBUF	I _{load} = 0 μA	•	-	16	25	
I _{DDA} (VREF BUF)	consumption	I _{load} = 500 μA		-	18	30	μΑ
	from V _{DDA}	I _{load} = 4 mA		-	35	50	

Table 117. VREFBUF characteristics⁽¹⁾ (continued)

- 1. Guaranteed by design and characterization result, unless otherwise specified.
- In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which follows (V_{DDA} drop voltage).
- 3. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
- 4. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

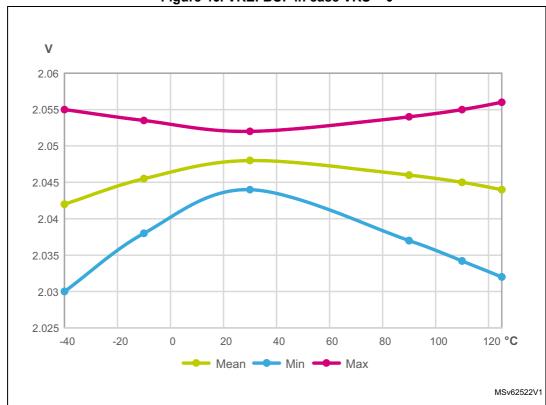


Figure 46. VREFBUF in case VRS = 0

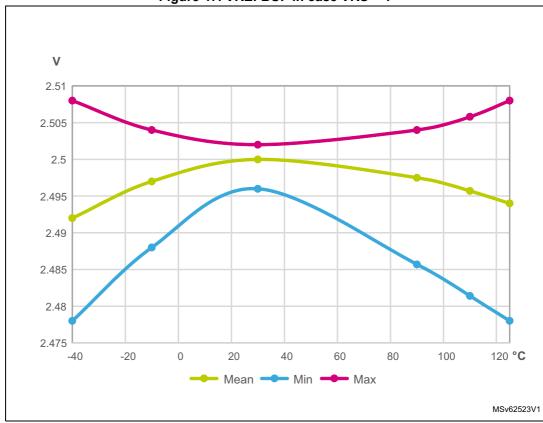


Figure 47. VREFBUF in case VRS = 1

5.3.22 Comparator characteristics

Table 118. COMP characteristics⁽¹⁾

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	1.62	-	3.6	
V _{IN}	Comparator input voltage range		-	0	-	V _{DDA}	V
V _{BG} ⁽²⁾	Scaler input voltage		-			•	
V _{SC}	Scaler offset voltage		-	-	±5	±10	mV
I _{DDA} (SCALER)	Scaler static consumption	BRG_EN=0 (br	ridge disable)	-	200	300	nA
IDDA(OCALLIN)	from V _{DDA}	BRG_EN=1 (bi	ridge enable)	-	8.0	1	μΑ
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs
		High-speed	V _{DDA} ≥ 2.7 V	-	-	5	
	Comparator startup time to	mode	V _{DDA} < 2.7 V	-	-	7	
t _{START}	' ' '	V _{DDA} ≥ 2.7 V	-	-	15	μs	
		Medium mode	V _{DDA} < 2.7 V	-	-	25	
		Ultra-low-powe	r mode	-	-	80	
		High-speed	V _{DDA} ≥ 2.7 V	-	55	80	no
	Propagation delay for	mode	V _{DDA} < 2.7 V	-	65	100	ns
t _D ⁽³⁾	200 mV step	Medium mode	V _{DDA} ≥ 2.7 V	-	0.55	0.9	
	with 100 mV overdrive	iviedium mode	V _{DDA} < 2.7 V	-	0.65	1	μs
		Ultra-low-powe	r mode	-	5	12	
V _{offset}	Comparator offset error	Full common mode range	-	-	±5	±20	mV
		No hysteresis		-	0	-	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Campagatas hyatagas:-	Low hysteresis		-	8	-	\
V_{hys}	Comparator hysteresis	Medium hysteresis		-	15	-	mV
		High hysteresis	High hysteresis		27	-	

Table 118. COMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
			Static	-	400	600	
		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	1200	-	nA
			Static	-	5	7	
I _{DDA} (COMP)	Comparator consumption from V _{DDA}	Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	-	μA
			Static	-	70	100	μΑ
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	ı	75	ı	
l _{bias}	Comparator input bias current		-	-	-	_(4)	nA

- 1. Guaranteed by design, unless otherwise specified.
- 2. Refer to Table 32: Embedded internal voltage reference.
- 3. Guaranteed by characterization results.
- 4. Mostly I/O leakage when used in analog mode. Refer to I_{lkg} parameter in *Table 102: I/O static characteristics*.

5.3.23 Operational amplifiers characteristics

Table 119. OPAMP characteristics⁽¹⁾

Symbol	Parameter	Conditions		Тур	Max	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	V
CMIR	Common mode input range	-	0	-	V_{DDA}	V
VI	Input offset	25°C, No Load on output.	-	-	±1.5	mV
VI _{OFFSET}	voltage	All voltage/Temp.	-	-	±3	IIIV
A	Input offset	Normal mode	-	±5	-	μV/°C
ΔVI _{OFFSET}	voltage drift	Low-power mode	-	±10	-	μν/ Ο
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 x V _{DDA})	-	-	0.8	1.1	mV
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 x V _{DDA})	-	-	1	1.35	IIIV

Table 119. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Cor	nditions	Min	Тур	Max	Unit
	B :	Normal mode	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	-	500	
I_{LOAD}	Drive current	Low-power mode	V _{DDA} ≥ 2 V	-	-	100	1
	Drive current in	Normal mode		-	-	450	μA
I _{LOAD_} PGA	PGA mode	Low-power mode	V _{DDA} ≥ 2 V	-	-	50	
D	Resistive load (connected to	Normal mode	V <2V	4	-	-	
R _{LOAD}	VSSA or to VDDA)	Low-power mode	- V _{DDA} < 2 V	20	-	-	kΩ
D	Resistive load in PGA mode (connected to	Normal mode	- V _{DDA} < 2 V	4.5	-	-	K12
R _{LOAD_PGA}	VSSA or to V _{DDA})	Low-power mode	VDDA < 2 V	40	-	-	
C_{LOAD}	Capacitive load		-	-	-	50	pF
CMRR	Common mode	Normal mode		-	-85	-	dB
OWNER	rejection ratio	Low-power mode		-	-90	-	uБ
PSRR	Power supply	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega \text{ DC}$	70	85	-	- dB
1 OKK	rejection ratio	Low-power mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 20 \text{ k}\Omega \text{ DC}$	72	90	-	
		Normal mode	V _{DDA} ≥ 2.4 V	550	1600	2200	- kHz
GBW	Gain Bandwidth	Low-power mode	(OPA_RANGE = 1)	100	420	600	
OBVV	Product	Normal mode	V _{DDA} < 2.4 V	250	700	950	
		Low-power mode	(OPA_RANGE = 0)	40	180	280	
	Claurata	Normal mode	V >24V	-	700	-	
SR ⁽²⁾	Slew rate (from 10 and	Low-power mode	- V _{DDA} ≥ 2.4 V	-	180	-	V/ms
SK\/	90% of output	Normal mode	V -24V	-	300	-	V/IIIS
	voltage)	Low-power mode	- V _{DDA} < 2.4 V	-	80	-	
40	Onen leen sein	Normal mode		55	110	-	40
AO	Open loop gain	Low-power mode		45	110	-	dB
Vaus :=(2)	High saturation	Normal mode	I _{load} = max or R _{load} =	V _{DDA} - 100	-	-	
V _{OHSAT} ⁽²⁾	voltage	Low-power mode	min Input at V _{DDA} .	V _{DDA} - 50	-	-	mV
V _{OLSAT} ⁽²⁾	Low saturation Normal mode I _{load} = max or R	I _{load} = max or R _{load} =	_	-	100		
VOLSAT` ′	voltage	Low-power mode	min Input at 0.	-	-	50	
(0)	Dhasa marain	Normal mode		-	74	-	0
ϕ_{m}	Phase margin	Low-power mode		-	66	-	

Table 119. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
ONA	O = i = = = i =	Normal mode		-	13	-	-10
GM	Gain margin	Low-power mode		-	20	-	dB
t _{WAKEUP}	Wake up time	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega$ follower configuration	-	5	10	
	from OFF state.	Low-power mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 20 \text{ k}\Omega$ follower configuration	-	10	30	- µs
		General purpose in except UFBGA132		-	-	(3)	
	OPAMP input		T _J ≤ 75°C	-	-	1	
l _{bias}	bias current	Dedicated input	T _J ≤ 85°C	-	-	3	nA
		(UFBGA132)	T _J ≤ 105°C	-	-	8	
			T _J ≤ 125°C	-	-	15	- - - -
				-	2	-	
PGA gain ⁽²⁾	Non inverting			-	4	-	_
PGA gain.	gain value		-	-	8	-	-
				-	16	-	
		PGA Gain = 2		-	80/80	-	
	R2/R1 internal	PGA Gain = 4		-	120/ 40	-	
R _{network}	resistance values in PGA mode ⁽⁴⁾	PGA Gain = 8		-	140/ 20	-	kΩ/kΩ
		PGA Gain = 16		-	150/ 10	-	%
Delta R	Resistance variation (R1 or R2)		-	-15	-	15	%
PGA gain error	PGA gain error		-	-1	-	1	%
		Gain = 2	-	-	GBW/ 2	-	
DOA BW	PGA bandwidth	Gain = 4	-	-	GBW/	-	NAL !-
PGA BW	for different non inverting gain	Gain = 8	-	-	GBW/ 8	-	MHz
		Gain = 16	-	-	GBW/ 16		

Table 119. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Con	Min	Тур	Max	Unit	
en		Normal mode	at 1 kHz, Output loaded with 4 kΩ	-	500	-	
	Voltage noise	Low-power mode	at 1 kHz, Output loaded with 20 kΩ	-	600	-	nV/√Hz
	density	Normal mode	at 10 kHz, Output loaded with 4 kΩ	-	180	-	110/ 1112
		Low-power mode	at 10 kHz, Output loaded with 20 kΩ	-	290	-	
I _{DDA} (OPAMP) ⁽²⁾	OPAMP	Normal mode	no Load, quiescent	-	120	260	
	consumption from V _{DDA}	Low-power mode	mode	-	45	100	μΑ

- 1. Guaranteed by design, unless otherwise specified.
- 2. Guaranteed by characterization results.
- 3. Mostly I/O leakage, when used in analog mode. Refer to I_{lkg} parameter in *Table 102: I/O static characteristics*.
- 4. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1.

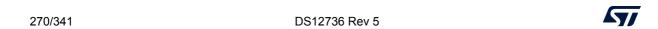
5.3.24 Temperature sensor characteristics

Table 120. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽²⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30°C (±5°C) ⁽³⁾	0.742	0.76	0.785	V
t _{START} (TS_BUF) ⁽¹⁾	Sensor Buffer Start-up time in continuous mode ⁽⁴⁾	-	8	15	μs
t _{START} (1)	Start-up time when entering in continuous mode ⁽⁴⁾	-	70	120	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	5	-	-	μs
I _{DD} (TS) ⁽¹⁾	Temperature sensor consumption from V_{DD} , when selected by ADC	-	4.7	7	μΑ

^{1.} Guaranteed by design.

5.3.25 V_{BAT} monitoring characteristics


Table 121. V_{BAT} monitoring characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	39	-	kΩ
Q	Ratio on V _{BAT} measurement	-	3	-	-
Er ⁽²⁾	Error on Q	-10	-	10	%
t _{S_vbat} ⁽²⁾	ADC sampling time when reading the VBAT	12	-	-	μs

^{1. 1.55} V < V_{BAT} < 3.6 V.

Table 122. V_{BAT} charging characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{BC}	Battery	VBRS = 0	-	5	-	
	charging resistor	VBRS = 1	-	1.5	-	kΩ

^{2.} Guaranteed by characterization results.

^{3.} Measured at V_{DDA} = 3.0 V ±10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 14: Temperature sensor calibration values.

Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

^{2.} Guaranteed by design.

5.3.26 Temperature and V_{DD} thresholds monitoring

Temperature and upper V_{DD} voltage monitoring characteristics for tamper detection are detailed in the table below:

3						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TEMP _{high}	High temperature threshold monitoring	-	115	123 ⁽¹⁾	130	°C
TEMP _{low}	Low temperature threshold monitoring	-	-45	-36 ⁽¹⁾	-30	C
VDD _{high}	High VDD supply monitoring	-	3.6	3.65 ⁽¹⁾	3.7	V
TPWM _{on}	Minimum PWM ON time in case of periodic monitoring	-	-	400 ⁽²⁾	-	μs

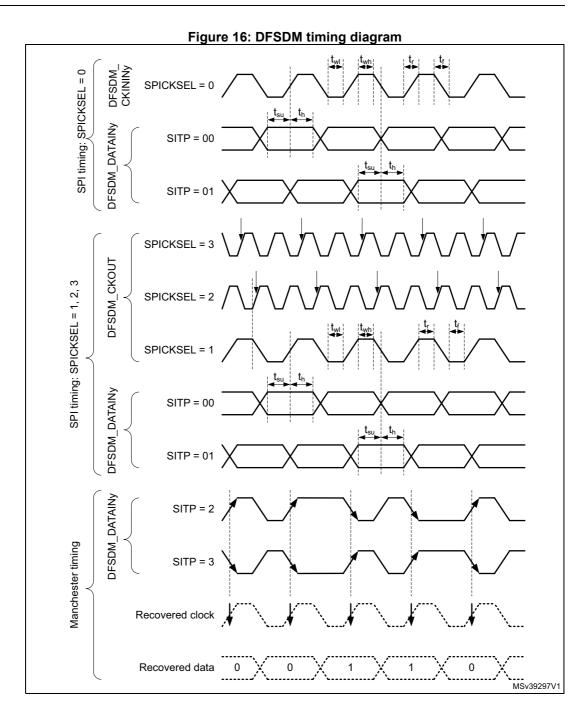
Table 123. Temp and V_{DD} monitoring characteristics

5.3.27 DFSDM characteristics

Unless otherwise specified, the parameters given in *Table 124* for DFSDM are derived from tests performed under the ambient temperature, f_{APB2} frequency and V_{DD} supply voltage conditions summarized in *Table 27: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDM1_CKINy, DFSDM1_DATINy, DFSDM1_CKOUT for DFSDM).


^{1.} Guaranteed by characterization results.

^{2.} Guaranteed by design.

Table 124. DFSDM measured timing 1.71 to 3.6 V⁽¹⁾

Symbol	Parameter	Cond	itions	Min	Тур	Max	Unit	
f _{DFSDMCLK}	DFSDM clock	1.71 < V _{DD} < 3.6 V		-	-	f _{SYSCLK}		
		SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1.71 < V _{DD} < 3.6 V	;EL[1:0]=0),		-	20		
f _{CKIN} Input clock frequency	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[12.7 < V _{DD} < 3.6 V	-	-	20				
	SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1 1.71 < V _{DD} < 3.6 V	:0]≠0),	-	-	20	MHz		
		SPI mode (SITP[1:0]=0,1), Internal clock mode (SPICKSEL[1 2.7 < V _{DD} < 3.6 V	-	-	20			
f _{CKOUT}	Output clock frequency	1.71 < V _{DD} < 3.6 V			-	20		
	Output clock frequency duty cycle	olook		Even division CKOUTDIV[7:0]=n1,3,5	45	50	55	
DuCy _{CKOUT}		frequency 1.71 < V _{DD} < 3.6 V	ODD division CKOUTDIV[7:0]=n2,4,6	(((n/2+1)/(n+ 1))*100)-5	((n/2+1)/(n+1))*100	(((n/2+1)/(n+ 1))*100)+5	%	
t _{wh(CKIN)}	Input clock high and low time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1.71 < V _{DD} < 3.6 V	1:0]=0),	TCKIN/2-0.5	T _{CKIN} /2	-		
t _{su}	Data input setup time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1.71 < V _{DD} < 3.6 V	1:0]=0),	3	-	-		
t _h	Data input hold time	SPI mode (SITP[1:0]=0,1), External clock mode (SPICKSEL[1:0]=0), 1.71 < V _{DD} < 3.6 V		2.5	-	-	ns	
T _{Manchester}	Manchester data period (recovered clock period)	Manchester mode (SITP[1:0]=2,3), Internal clock mode (SPICKSEL[1:0]≠0), 1.71 < V _{DD} < 3.6 V		(CKOUTDIV +1) * T _{DFSDMCLK}	-	(2*CKOUTDI V) * T _{DFSDMCLK}		

^{1.} Data based on characterization results, not tested in production.

5.3.28 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to *Section 5.3.15: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 125. TIMx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 110 MHz	8.33	-	t _{TIMXCLK} ns MHz MHz bit t _{TIMXCLK} μs t _{TIMXCLK}
	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 110 MHz	0	55	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2 and TIM5)	-	16	bit
		TIM2 and TIM5	-	32	
+	16-bit counter clock	-	1	65536	t _{TIMxCLK}
^t COUNTER	period	f _{TIMxCLK} = 110 MHz	0.009	595.78	μs
t _{MAX_COUNT}	Maximum possible	-	-	65536 × 65536	t _{TIMxCLK}
	count with 32-bit counter	f _{TIMxCLK} = 110 MHz	-	39.045	s

^{1.} TIMx is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

Table 126. IWDG min/max timeout period at 32 kHz (LSI)⁽¹⁾

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 127. WWDG min/max timeout value at 110 MHz (PCLK)

			, ,	
Prescaler	WDGTB	Min timeout value	timeout value Max timeout value	
1	0	0.037	2.368	
2	1	0.074	4.736	ma
4	2	0.149	9.536	ms
8	3	0.298	19.072	

5.3.29 Communication interfaces characteristics

I²C interface characteristics

The I2C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0351 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to Section 5.3.15: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to *Table 128* below for the analog filter characteristics:

Table 128. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{\text{AF}(\text{min})}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered.

SPI characteristics

Unless otherwise specified, the parameters given in *Table 129* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 27: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 129. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max ⁽²⁾	Unit
		Master mode 2.7 <v<sub>DD<3.6 Voltage ranges 0/1</v<sub>			55	
		Master mode 1.71 <v<sub>DD<3.6 Voltage ranges 0/1</v<sub>			44	
	f _{SCK} 1/tc(SCK) SPI clock frequency	Master transmitter mode 1.71 <v<sub>DD<3.6 Voltage ranges 0/1</v<sub>			55	
f _{SCK}		Slave receiver mode 1.71 <v<sub>DD<3.6 Voltage ranges 0/1</v<sub>			55	MHz
1/tc(SCK)		Slave mode transmitter/full duplex 2.7 <v<sub>DD<3.6 Voltage ranges 0/1</v<sub>	-	-	36	IVII IZ
		Slave mode transmitter/full duplex 1.71 <v<sub>DD<3.6 Voltage ranges 0/1</v<sub>			23	
	Slave mode transmitter/full duplex 1.71 <v<sub>DD<3.6 Voltage range 2</v<sub>			20		
		Slave mode transmitter/full duplex 1.08 <v<sub>DD<1.32⁽³⁾</v<sub>			12	
t _{su} (NSS)	NSS setup time	Slave mode, SPI presc = 2	4×Tpclk	ı	-	
t _h (NSS)	NSS hold time	Slave mode, SPI presc = 2	2TTpclk	ı	-	_
t _w (SCKH) t _w (SCKL)	SCK high and low time	Master mode	Tpclk-1	Tpclk	Tpclk+1	

Table 129. SPI characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max ⁽²⁾	Unit
t _{su} (MI)	Data input setup	Master mode	2	-	-	
t _{su} (SI)	time	Slave mode	1.5	-	-	
t _h (MI)	Data input hold time	Master mode	7.5	-	-	
t _h (SI)		Slave mode	3	-	-	
t _a (SO)	Data output access time	Slave mode	9	-	34	
t _{dis} (SO)	Data output disable time	Slave mode	9	-	16	
		Slave mode 2.7 <v<sub>DD<3.6 V Voltage ranges 0/1</v<sub>	-	9	13.75	
+ (80)		Slave mode 1.71 <v<sub>DD<3.6 V Voltage ranges 0/1</v<sub>	-	9	21.5	ns
t _v (SO)	Data output valid time	Slave mode 1.71 <v<sub>DD<3.6 V Voltage range 2</v<sub>	-	11.5	24.5	
		Slave mode ⁽³⁾ 1.08 <v<sub>DD<1.32 V</v<sub>	-	28.5	40.5	
t _v (MO)		Master mode	-	0	1	
+ (80)	Data output hold time	Slave mode 1.71 <v<sub>DD<3.6 V</v<sub>	7.5	-	-	
t _h (SO)		Slave mode ⁽³⁾ 1.08 <v<sub>DD<1.32 V</v<sub>	21	-	-	
t _h (MO)]	Master mode	0	-	-	

^{1.} Guaranteed by characterization results.

Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%.

^{3.} SPI mapped on GPIOG port which is supplied by VDDIO2 specified down to 1.08 V. SPI is tested in this voltage.

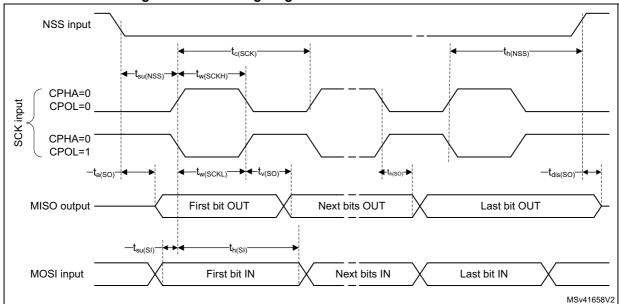
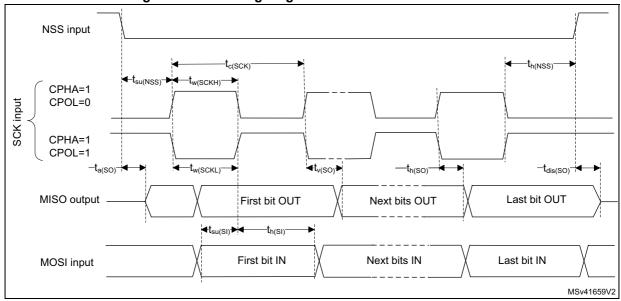



Figure 48. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: 0.3 $\rm V_{DD}$ and 0.7 $\rm V_{DD}$

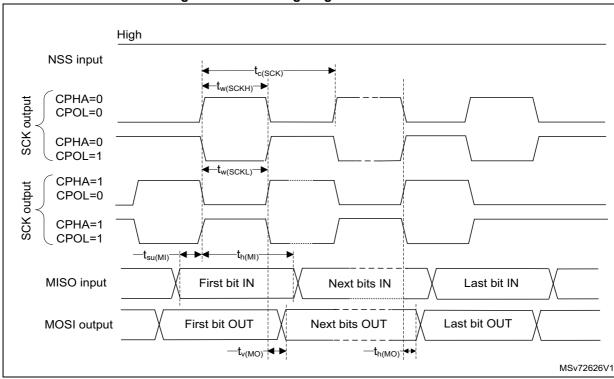


Figure 50. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: $0.3 V_{DD}$ and $0.7 V_{DD}$.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 130* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 27: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Table 130. SAI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	SAI Main clock output	-	-	50	
		Master Transmitter 2.7<=VDD<=3.6 Voltage ranges 0/1	-	23.5	
		Master Transmitter 1.71<=VDD<=3.6 Voltage ranges 0/1	-	16	
		Master Receiver Voltage ranges 0/1	-	16	MHz
f _{CK}	f _{CK} SAI clock frequency ⁽²⁾	Slave Transmitter 2.7<=VDD<=3.6 Voltage ranges 0/1	-	26	IVITIZ
		Slave Transmitter 1.71<=VDD<=3.6 Voltage ranges 0/1	-	20	
		Slave Receiver Voltage ranges 0/1	-	50	
		Voltage range 2	-	13	

Table 130. SAI characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Max	Unit
+	FS valid time	Master mode 2.7<=V _{DD} <=3.6	-	21	
t _{v(FS)}	ro valid tillie	Master mode 1.71<=V _{DD} <=3.6	-	25	
t _{h(FS)}	FS hold time	Master mode	10	-	
t _{su(FS)}	FS setup time	Slave mode	1.5	-	
t _{h(FS)}	FS hold time	Slave mode	2.5	-	
t _{su(SD_A_MR)}	Data input actus time	Master receiver	1	-	
t _{su(SD_B_SR)}	Data input setup time	Slave receiver	1.5	-	
t _{h(SD_A_MR)}	Data input hald time	Master receiver	5	-	
t _{h(SD_B_SR)}	Data input hold time	Slave receiver	0	-	ns
	Data output valid time	Slave transmitter (after enable edge) 2.7<=V _{DD} <=3.6	-	19	
t _{v(SD_B_ST)}	Data output valid time	Slave transmitter (after enable edge) 1.71<=V _{DD} <=3.6	-	25	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	10	-	
4	Data output valid time	Master transmitter (after enable edge) 2.7<=V _{DD} <=3.6	-	17	
t _{v(SD_A_MT)}	Data output valid time	Master transmitter (after enable edge) 1.71<=V _{DD} <=3.6	-	25	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	9	-	

- 1. Guaranteed by characterization results.
- 2. 2.APB clock frequency must be at least twice SAI clock frequency.

Figure 51. SAI master timing waveforms

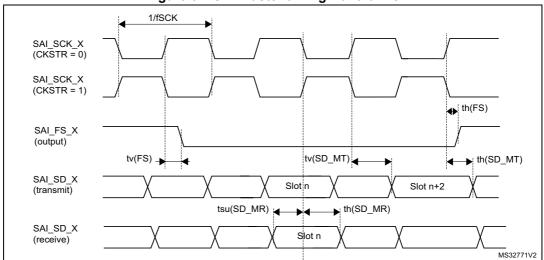


Figure 52. SAI slave timing waveforms

CAN (controller area network) interface

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (FDCAN_TX and FDCAN_RX).

USART characteristics

Unless otherwise specified, the parameters given in *Table 131* for USART are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 27: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	f _{CK} USART clock frequency	SPI Master mode 1.71 <v<sub>DD<3.6</v<sub>	-	-	13	
		SPI Slave receiver mode 1.71 <v<sub>DD<3.6</v<sub>	-	-	36	
f _{CK}		SPI Slave mode transmitter 2.7 <v<sub>DD<3.6</v<sub>	-	-	19	MHz
		SPI Slave mode transmitter 1.71 <v<sub>DD<3.6</v<sub>	-	-	26	

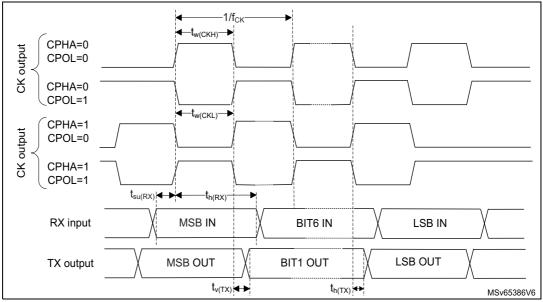

Table 131. USART (SPI mode) characteristics⁽¹⁾

Table 131. USART (SPI mode) characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{su} (NSS)	NSS setup time	SPI Slave mode	t _{ker} +4	-	-	
t _h (NSS)	NSS hold time	SPI Slave mode	1	-	-	_
t _w (SCKH) t _w (SCKL)	CK high and low time	SPI Master mode	1/f _{sck} /2-1	1/f _{sck} /2	1/f _{sck} /2+1	
t _{su} (MI)	Data input actus time	SPI Master mode	22.5	-	-	
t _{su} (SI)	Data input setup time	SPI Slave mode	1	-	-	
t _h (MI)	Data input hold time	SPI Master mode	0	-	-	
t _h (SI)		SPI Slave mode	3	-	-	
+ (80)	Data output valid time	SPI Slave mode 2.7 <v<sub>DD<3.6 V</v<sub>	-	14.5	19	ns
t _v (SO)		SPI Slave mode 1.71 <v<sub>DD<3.6 V</v<sub>	-	14.5	26	
t _v (MO)		SPI Master mode	-	1.5	3	
t _h (SO)	Data output hold time	SPI Slave mode 1.71 <v<sub>DD<3.6 V</v<sub>	12	-	-	
t _h (MO)		SPI Master mode	1	-	-	

^{1.} Guaranteed by characterization results, not tested in production.

Figure 53. USART timing diagram in SPI master mode

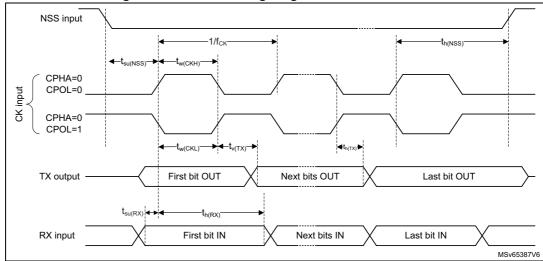


Figure 54. USART timing diagram in SPI slave mode

5.3.30 FSMC characteristics

Unless otherwise specified, the parameters given in *Table 132* to *Table 145* for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 27: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 55 through Figure 58 represent asynchronous waveforms and Table 132 through Table 139 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime (ADDSET) = 0x1
- AddressHoldTime (ADDHLD) = 0x1
- DataHoldTime = 0x1
- ByteLaneSetup (NBLSET) = 0x1
- DataSetupTime (DATAST) = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- DataHoldTime (DATAHLD) = 0x1 (1THCLK for read operations and 2THCLK for write operations)
- BusTurnAroundDuration = 0x0
- Capacitive load CL = 30 pF

In all timing tables, the THCLK is the HCLK clock period.

DS12736 Rev 5

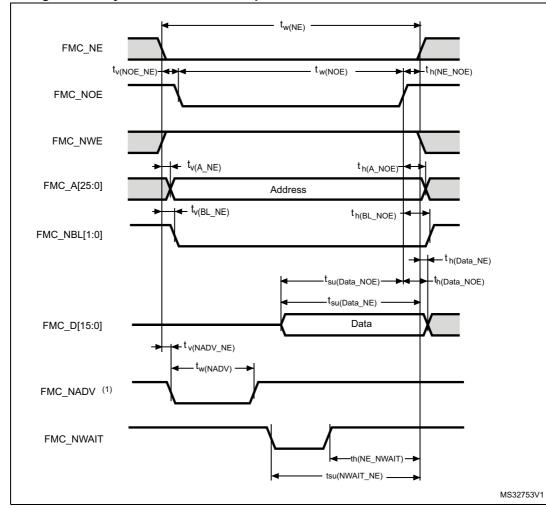


Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

Table 132. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
tw(NE)	FMC_NE low time	3THCLK- 0.5	3 THCLK+1	
tv(NOE_NE)	FMC_NEx low to FMC_NOE low	0	1	
tw(NOE)	FMC_NOE low time	2THCLK -0.5	2THCLK + 1	
th(NE_NOE)	FMC_NOE high to FMC_NE high hold time	THCLK	-	
tv(A_NE)	FMC_NEx low to FMC_A valid	-	1	
th(A_NOE)	Address hold time after FMC_NOE high	2THCLK-1	-	200
tsu(Data_NE)	Data to FMC_NEx high setup time	THCLK +14	-	— ns
tsu(Data_NOE)	Data to FMC_NOEx high setup time	14	-	
th(Data_NOE)	Data hold time after FMC_NOE high	0	-	
th(Data_NE)	Data hold time after FMC_NEx high	0	-	
tv(NADV_NE)	FMC_NEx low to FMC_NADV low	-	0	
tw(NADV)	FMC_NADV low time	-	THCLK+1.5	

^{1.} Guaranteed by characterization results, not tested in production.

Table 133. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings $^{(1)}$

Symbol	Parameter	Min	Max	Unit
tw(NE)	FMC_NE low time	8THCLK-0.5	8THCLK+1	
tw(NOE)	FMC_NWE low time	7THCLK -0.5	7THCLK +0.5	
tw(NWAIT)	FMC_NWAIT low time	THCLK	-	
tsu(NWAIT_NE)	FMC_NWAIT valid before FMC_NEx high	5THCLK +12.5	-	ns
th(NE_NWAIT)	FMC_NEx hold time after FMC_NWAIT invalid	4THCLK+12	-	

^{1.} Guaranteed by characterization results, not tested in production.

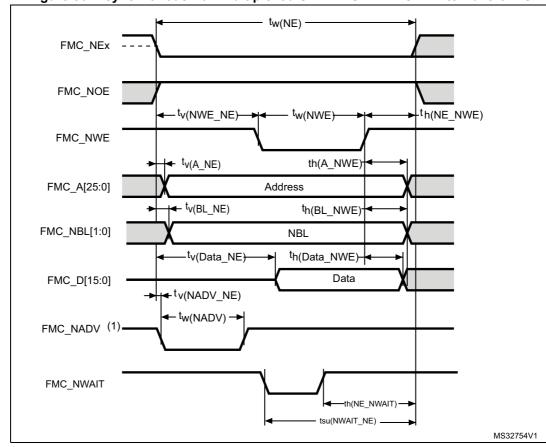


Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

Table 134. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
tw(NE)	FMC_NE low time	4THCLK-0.5	4THCLK+1	Ns
tv(NWE_NE)	FMC_NEx low to FMC_NWE low	THCLK-0.5	THCLK +1	
tw(NWE)	FMC_NWE low time	THCLK-0.5	THCLK+1	
th(NE_NWE)	FMC_NWE high to FMC_NE high hold time	2THCLK-0.5	-	
tv(A_NE)	FMC_NEx low to FMC_A valid	-	0	
th(A_NWE)	Address hold time after FMC_NWE high	2THCLK-1	-	
tv(BL_NE)	FMC_NEx low to FMC_BL valid	-	THCLK	-
th(BL_NWE)	FMC_BL hold time after FMC_NWE high	2THCLK-0.5	-	
tv(Data_NE)	FMC_NEx low to Data valid	-	THCLK+3	
th(Data_NWE)	Data hold time after FMC_NWE high	2THCLK+1	-	
tv(NADV_NE)	FMC_NEx low to FMC_NADV low	-	1	
tw(NADV)	FMC_NADV low time	-	THCLK+ 1.5	

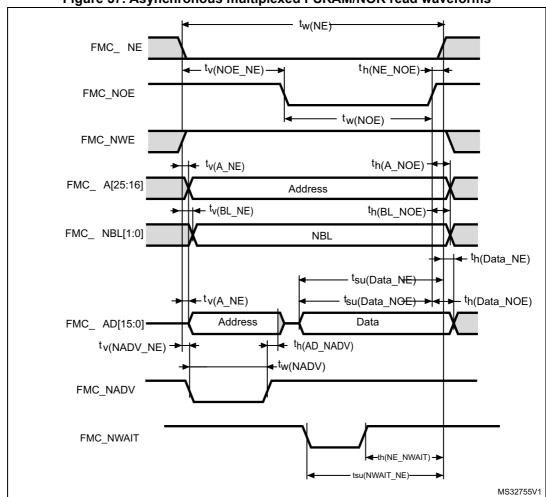

^{1.} Guaranteed by characterization results, not tested in production.

Table 135. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings⁽¹⁾

	<u> </u>			
Symbol	Parameter	Min	Max	Unit
tw(NE)	FMC_NE low time	9THCLK-0.5	9THCLK+1.5	
tw(NWE)	FMC_NWE low time	6THCLK-0.5	6THCLK+1	
tsu(NWAIT_ NE)	FMC_NWAIT valid before FMC_NEx high	7THCLK+13	-	ns
th(NE_NWA IT)	FMC_NEx hold time after FMC_NWAIT invalid	5THCLK+13	-	

^{1.} Guaranteed by characterization results, not tested in production.

Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms

DS12736 Rev 5

288/341

Table 136. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾

Symbol	Parameter Min		Max	Unit
tw(NE)	FMC_NE low time	4THCLK-0.5	4THCLK +1	
tv(NOE_NE)	FMC_NEx low to FMC_NOE low	2THCLK -0.5	2THCLK +1	
tw(NOE)	FMC_NOE low time	THCLK-0.5	THCLK+ 0.5	
th(NE_NOE)	FMC_NOE high to FMC_NE high hold time	THCLK-1	-	
tv(A_NE)	FMC_NEx low to FMC_A valid	-	3	
tv(NADV_NE)	FMC_NEx low to FMC_NADV low	0.5	1.5	
tw(NADV)	FMC_NADV low time	THCLK	THCLK+ 1.5	Ns
th(AD_NADV)	FMC_AD(address) valid hold time after FMC_NADV high)	THCLK-3	-	
th(A_NOE)	Address hold time after FMC_NOE high	Address holded until next read operation	-	
tsu(Data_NE)	Data to FMC_NEx high setup time	THCLK+14	-	
tsu(Data_NOE) Data to FMC_NOE high setup time		14	-	
th(Data_NE)	Data hold time after FMC_NEx high	0	-	
th(Data_NOE)	Data hold time after FMC_NOE high	0	-	

^{1.} Guaranteed by characterization results, not tested in production.

Table 137. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
tw(NE)	FMC_NE low time	8THCLK-0.5	9THCLK+1	
tw(NOE)	FMC_NOE low time	5THCLK -0.5	6THCLK +1	
tsu(NWAIT_NE)	FMC_NWAIT valid before FMC_NEx high	5THCLK+12	-	Ns
th(NE_NWAIT)	FMC_NEx hold time after FMC_NWAIT invalid	4THCLK+11	-	

^{1.} Guaranteed by characterization results, not tested in production.

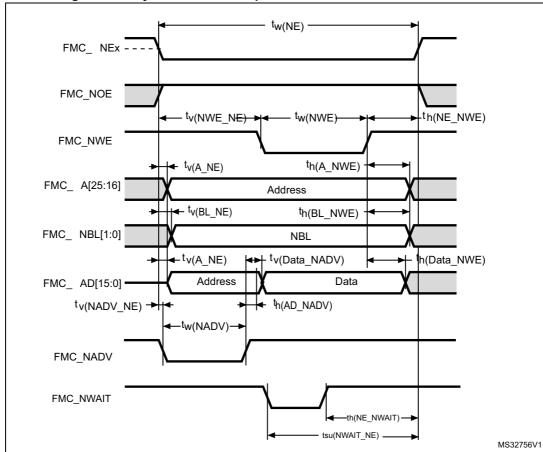


Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms

Symbol	Parameter	Min	Max	Unit
tw(NE)	FMC_NE low time	5THCLK-0.5	5THCLK+1	
tv(NWE_NE)	FMC_NEx low to FMC_NWE low	THCLK- 0.5	THCLK+ 1	
tw(NWE)	tw(NWE) FMC_NWE low time		2THCLK+0. 5	
th(NE_NWE)	FMC_NWE high to FMC_NE high hold time	2THCLK-0.5	-	
tv(A_NE)	FMC_NEx low to FMC_A valid	-	3	
tv(NADV_NE)	FMC_NEx low to FMC_NADV low	0	1	
tw(NADV)	FMC_NADV low time	THCLK+0.5	THCLK+1.5	
th(AD_NADV)	th(AD_NADV) FMC_AD(adress) valid hold time after FMC_NADV high)		-	ns
th(A_NWE)	Address hold time after FMC_NWE high	Address holded until next write operation	-	
th(BL_NWE)	FMC_BL hold time after FMC_NWE high	2THCLK-0.5	-	
tv(BL_NE)	tv(BL_NE) FMC_NEx low to FMC_BL valid		THCLK	
tv(Data_NADV)	FMC_NADV high to Data valid	-	THCLK+2	
th(Data_NWE)	Data hold time after FMC_NWE high	2THCLK+0.5	-	

Table 138. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

Table 139. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
tw(NE)	FMC_NE low time	10THCLK-0.5	10THCLK+1	
tw(NWE)	FMC_NWE low time	7THCLK-0.5	7THCLK+0.5	
tsu(NWAIT_NE)	FMC_NWAIT valid before FMC_NEx high	7THCLK+11.5	-	ns
th(NE_NWAIT)	FMC_NEx hold time after FMC_NWAIT invalid	5THCLK+12.5	-	

^{1.} Guaranteed by characterization results, not tested in production.

Synchronous waveforms and timings

Figure 59 through *Figure 62* represent synchronous waveforms and *Table 140* through *Table 143* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable
- MemoryType = FMC_MemoryType_CRAM
- WriteBurst = FMC_WriteBurst_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

DS12736 Rev 5 291/341

^{1.} Guaranteed by characterization results, not tested in production.

In all timing tables, the T_{HCLK} is the HCLK clock period.

- Maximum FMC_CLK =55MHz for CLKDIV=0x1 and 42MHz CLKDIV=0x0 for 2.7V<VDD<3.6V
- Maximum FMC_CLK =55MHz for CLKDIV=0x1 and 26MHz CLKDIV=0x0 for 1.71V<VDD<1.9V with CL=20pF

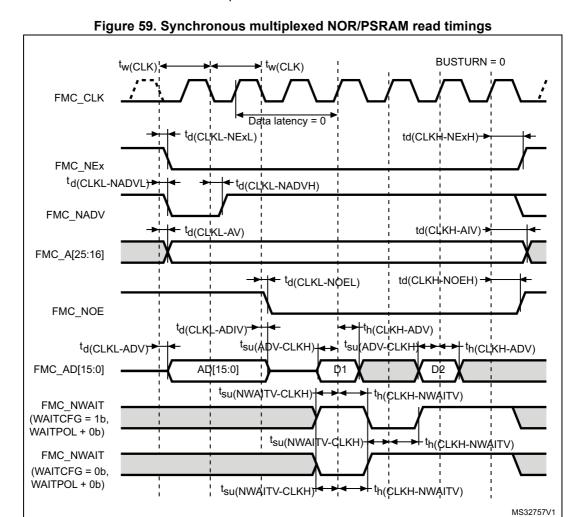


Table 140. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

0			11.4	
Symbol	Parameter	Min	Max	Unit
tw(CLK)	FMC_CLK period	R*THCLK-0.5 ⁽²⁾⁾	-	
td(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
td(CLKH_NExH)	FMC_CLK high to FMC_NEx high (x= 02)	R*THCLK/2+1 ⁽²⁾	-	
td(CLKL-NADVL)	FMC_CLK low to FMC_NADV low	-	2.5	
td(CLKL-NADVH)	FMC_CLK low to FMC_NADV high	2	-	
td(CLKL-AV)	FMC_CLK low to FMC_Ax valid (x=1625)	-	5.5	
td(CLKH-AIV)	FMC_CLK high to FMC_Ax invalid (x=1625)	R*THCLK/2 + 1 ⁽²⁾	-	
td(CLKL-NOEL)	FMC_CLK low to FMC_NOE low	-	2	
td(CLKH-NOEH)	FMC_CLK high to FMC_NOE high	R*THCLK/2+1 ⁽²⁾	-	ns
td(CLKL-ADV)	FMC_CLK low to FMC_AD[15:0] valid	-	3	
td(CLKL-ADIV)	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
tsu(ADV-CLKH)	ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high		-	
th(CLKH-ADV)	FMC_A/D[15:0] valid data after FMC_CLK high	4	-	
tsu(NWAIT- CLKH)	FMC_NWAIT valid before FMC_CLK high	1.5	-	
th(CLKH-NWAIT)	FMC_NWAIT valid after FMC_CLK high	4	-	

^{1.} Guaranteed by characterization results, not tested in production.

^{2.} Clock ratio R = (HCLK period /FMC_CLK period).

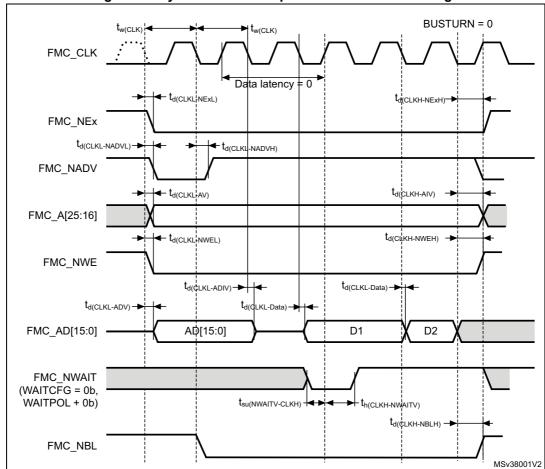


Figure 60. Synchronous multiplexed PSRAM write timings

Table 141. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
tw(CLK)	FMC_CLK period, VDD range= 2.7 to 3.6 V	R*THCLK-0.5 ⁽²⁾	-	
td(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
td(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	R*THCLK/2+1 ⁽²⁾	-	
td(CLKL-NADVL)	FMC_CLK low to FMC_NADV low	-	2.5	
td(CLKL-NADVH)	FMC_CLK low to FMC_NADV high	2	-	
td(CLKL-AV)	FMC_CLK low to FMC_Ax valid (x=1625)	-	5.75	
td(CLKH-AIV)	FMC_CLK high to FMC_Ax invalid (x=1625)	R*THCLK/2+1 ⁽²⁾	-	
td(CLKL-NWEL)	FMC_CLK low to FMC_NWE low	-	2	ns
td(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	R*THCLK/2+1 ⁽²⁾	-	115
td(CLKL-ADV)	FMC_CLK low to to FMC_AD[15:0] valid	-	3	
td(CLKL-ADIV)	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
td(CLKL-DATA)	td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low		3.5	
td(CLKL-NBLL)	FMC_CLK low to FMC_NBL low	1	-	
td(CLKH-NBLH)	FMC_CLK high to FMC_NBL high	R*THCLK/2+1.5 ⁽²⁾	-	
tsu(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	1.5	-	
th(CLKH-NWAIT)	FMC_NWAIT valid after FMC_CLK high	4	-	

^{1.} Guaranteed by characterization results, not tested in production.

^{2.} Clock ratio R = (HCLK period /FMC_CLK period).

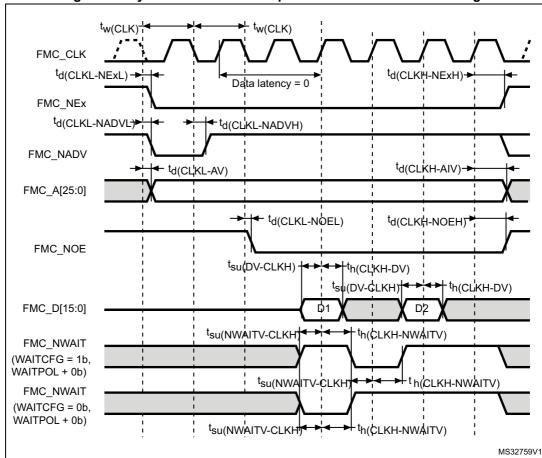


Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings

Table 142. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
tw(CLK)	FMC_CLK period	R*THCLK-0.5 ⁽²⁾	-	
td(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
td(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	R*THCLK/2+1 ⁽²⁾	-	
td(CLKL-NADVL)	FMC_CLK low to FMC_NADV low	-	2.5	
td(CLKL-NADVH)	FMC_CLK low to FMC_NADV high	2	-	
td(CLKL-AV)	FMC_CLK low to FMC_Ax valid (x=025)	-	5.5	
td(CLKH-AIV)	AIV) FMC_CLK high to FMC_Ax invalid (x=025) R*THCLK/2+0.5 ⁽²⁾		-	
td(CLKL-NOEL)	FMC_CLK low to FMC_NOE low	-	2	ns
td(CLKH-NOEH)	FMC_CLK high to FMC_NOE high	R*THCLK/2+1 ⁽²⁾	-	
tsu(DV-CLKH)	FMC_D[15:0] valid data before FMC_CLK high	2	-	
th(CLKH-DV)	H-DV) FMC_D[15:0] valid data after FMC_CLK high		-	
tsu(NWAIT- CLKH)	FMC_NWAIT valid before FMC_CLK high	1.5	-	
th(CLKH-NWAIT)	FMC_NWAIT valid after FMC_CLK high	4	-	

^{1.} Guaranteed by characterization results, not tested in production.

^{2.} Clock ratio R = (HCLK period /FMC_CLK period).

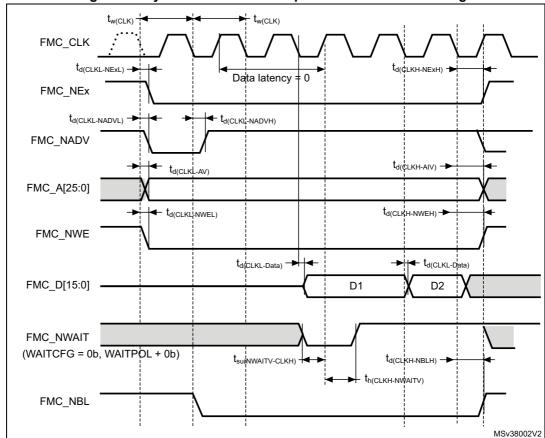


Figure 62. Synchronous non-multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
tw(CLK)	FMC_CLK period	R*THCLK-0.5 ⁽²⁾	-	
td(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	2.5	
td(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	R*THCLK/2 +1 ⁽²⁾	-	
td(CLKL-NADVL)	FMC_CLK low to FMC_NADV low	-	2.5	
td(CLKL-NADVH)	FMC_CLK low to FMC_NADV high	2	-	
td(CLKL-AV)	FMC_CLK low to FMC_Ax valid (x=025)	-	5.5	
td(CLKH-AIV)	td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=025)		-	ns
td(CLKL-NWEL)	FMC_CLK low to FMC_NWE low	-	2	
td(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	R*THCLK/2+1 ⁽²⁾	-	
td(CLKL-Data)	FMC_D[15:0] valid data after FMC_CLK low	-	3.5	
td(CLKL-NBLL)	FMC_CLK low to FMC_NBL low	1	-	
td(CLKH-NBLH)	FMC_CLK high to FMC_NBL high	R*THCLK/2+1.5 ⁽²⁾	-	
tsu(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	1.5	-	
th(CLKH-NWAIT)	FMC_NWAIT valid after FMC_CLK high	4	-	

Table 143. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

NAND controller waveforms and timings

Figure 63 through Figure 66 represent synchronous waveforms, and Table 144 and Table 145 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x01
- COM.FMC_WaitSetupTime = 0x03
- COM.FMC_HoldSetupTime = 0x02
- COM.FMC_HiZSetupTime = 0x01
- ATT.FMC_SetupTime = 0x01
- ATT.FMC_WaitSetupTime = 0x03
- ATT.FMC_HoldSetupTime = 0x02
- ATT.FMC_HiZSetupTime = 0x01
- Bank = FMC_Bank_NAND
- MemoryDataWidth = FMC_MemoryDataWidth_16b
- ECC = FMC ECC Enable
- ECCPageSize = FMC_ECCPageSize_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0

DS12736 Rev 5 299/341

^{1.} Guaranteed by characterization results, not tested in production.

^{2.} Clock ratio R = (HCLK period /FMC_CLK period).

In all timing tables, the $T_{\mbox{\scriptsize HCLK}}$ is the HCLK clock period.

FMC_NCEx ALE (FMC_A17) CLE (FMC_A16) t_{h(NOE-ALE)} - t_{d(ALE-NOE)} FMC_NWE $t_{w(\mathsf{NOE})}$ FMC_NOE (NRE) $t_{su(D\text{-NOE})} \longrightarrow t_{h(NOE\text{-}D)}$ FMC_D[y:0] -MSv73150V1

Figure 63. NAND controller waveforms for read access

1. y = 7 or 15 depending on the NAND flash memory interface.

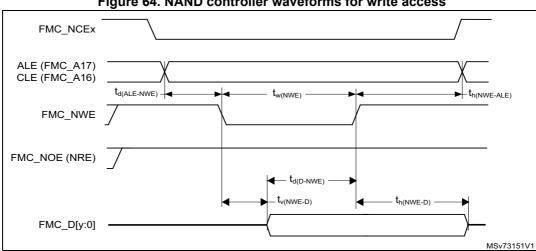


Figure 64. NAND controller waveforms for write access

1. y = 7 or 15 depending on the NAND flash memory interface.

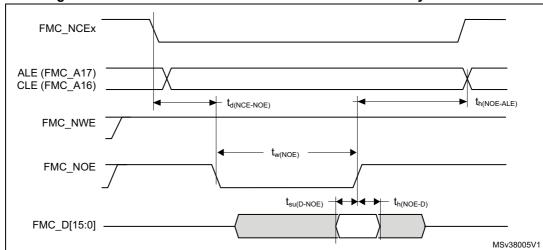


Figure 65. NAND controller waveforms for common memory read access

Figure 66. NAND controller waveforms for common memory write access

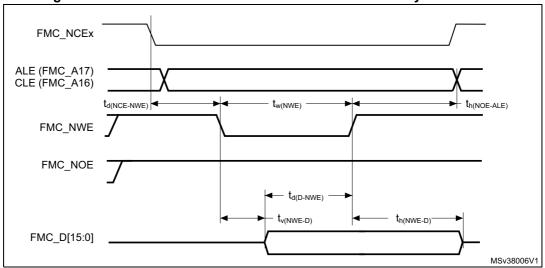


Table 144. Switching characteristics for NAND Flash read cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
Tw(N0E)	FMC_NOE low width	4THCLK - 0.5	4THCLK+0.5	
Tsu(D-NOE)	FMC_D[15-0] valid data before FMC_NOE high	14	-	
Th(NOE-D)	FMC_D[15-0] valid data after FMC_NOE high	FMC_D[15-0] valid data after FMC_NOE high 0		ns
Td(ALE-NOE)	FMC_ALE valid before FMC_NOE low	-	3THCLK-1	
Th(NOE-ALE)	FMC_NWE high to FMC_ALE invalid	3THCLK-0.5	-	

^{1.} Guaranteed by characterization results, not tested in production.

Table 145. Switching characteristics for NAND Flash write cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
Tw(NWE)	FMC_NWE low width	4THCLK - 0.5	4THCLK+0.5	
Tv(NWE-D)	FMC_NWE low to FMC_D[15-0] valid	0	-	
Th(NWE-D)	FMC_NWE high to FMC_D[15-0] invalid	2THCLK	-	
Td(D-NWE)	VE) FMC_D[15-0] valid before FMC_NWE 5THCLK - 1 -		-	ns
Td(ALE_NWE)	FMC_ALE valid before FMC_NWE low	-	3THCLK-1	
Th(NWE-ALE)	FMC_NWE high to FMC_ALE invalid	3THCLK-0.5	-	

^{1.} Guaranteed by characterization results, not tested in production.

5.3.31 OCTOSPI characteristics

Unless otherwise specified, the parameters given in *Table 146*, *Table 147* and *Table 148* for OCTOSPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 27: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- For DTR(with DQS)/HyperBus the delay resister is set to DLYCFGR[3:0]=4

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate function characteristics.

The following table summarizes the parameters measured in SDR mode.

Table 146. OCTOSPI⁽¹⁾ characteristics in SDR mode⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		1.71 <v<sub>DD<3.6 Voltage ranges 0/1 20 pF</v<sub>	-	-	54	
E(CLK)	OCTOSPI clock	2.7 <v<sub>DD<3.6 Voltage ranges 0/1 20 pF</v<sub>	-	-	90	MHz
F(CLK)	frequency	1.71 <v<sub>DD<3.6 Voltage ranges 0/1 15 pF</v<sub>	-	-	56	
		1.71 <v<sub>DD<3.6 Voltage range 2 CL=20 pF</v<sub>	-	-	26	
tw(CKH)	OCTOSPI clock high	PRESCALER[7:0] =	t(CK)/2 - 0.5	-	t(CK)/2	
tw(CKL)	and low time	n = 0,1,3,5	t(CK)/2 -0.5	-	t(CK)/2	
tw(CKH)	OCTOSPI clock high and low time	PRESCALER[7:0] =	(n/2)×t(CK)/ (n+1)- 0.5	-	(n/2)×t(CK) /(n+1)	
tw(CKL)	Odd division	n = 2,4,6,8	(n/2+1)×t(CK)/ (n+1) -0.5	-	(n/2+1)× t(CK)/(n+1)	
to (INI)	Data input actus time	Voltage ranges 0/1	1.5	-	-	
ts(IN)	Data input setup time	Voltage range 2	2	-	-	ns
th(IN)	Data input hold time	Voltage ranges 0/1	4	-	-	
ui(iiv)	Data iriput riolu time	Voltage range 2	5.25	-	-	
tv(OUT)	Data output valid time	Voltage ranges 0/1	-	0.5	2	
10(001)	Data Output valid tillle	Voltage range 2	-	0.5	1.5	
th(OUT)	Data output hold time	Voltage ranges 0/1	-0.5	-	-	
		Voltage range 2	-0.75	-	-	

^{1.} Values in the table applies to octal and quad SPI mode.

^{2.} Guaranteed by characterization results.

DS12736 Rev 5 303/341

The following table summarizes the parameters measured in DTR mode (no DQS).

Table 147. OCTOSPI⁽¹⁾ characteristics in DTR mode (no DQS)⁽²⁾

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
		1.71 <v<sub>DD Voltage ra 20 pF</v<sub>		-	-	56	
F(CLK)	OCTOSPI clock frequency	2.7 <v<sub>DDVoltage ra20 pF</v<sub>		-	-	60	MHz
	nequency	1.71 <v<sub>DD Voltage ra 15 pF</v<sub>		-	-	60	
		1.71 <v<sub>DD Voltage ra</v<sub>		-	-	26	
tw(CKH)	OCTOSPI clock	PRESCA	LER[7:0] =	t(CK)/2 -0.5	-	t(CK)/2+0.5	
tw(CKL)	high and low time	n = 0,1,3,	5	t(CK)/2 -0.5	-	t(CK)/2+0.5	
tw(CKH)	OCTOSPI clock high and low time	PRESCALER[7:0] =		(n/2)×t(CK)/(n+1)- 0.5	-	(n/2)×t(CK)/(n+1)+ 0.5	
tw(CKL)	Odd division	n = 2,4,6,	8	(n/2+1)×t(CK)/ (n+1) -0.5	-	(n/2+1)×t(CK)/ (n+1)+0.5	
tsr(IN), tsf(IN)	Data input setup	Voltage ra	anges 0/1	2.5	-	-	
(114), (31(114)	time	Voltage ra	ange 2	1.5	-	-	
thr(IN),thf(IN)	Data input hold	Voltage ra	anges 0/1	3	-	-	
	time	Voltage ra	ange 2	4	-	-	ns
		\/oltogo	DHQC=0	-	5.5	7.25	
tvr(OUT), tvf(OUT)	Data output valid time	Voltage ranges 0/1	DHQC=1 Pres=1,2	-	Tpclk /4 +0.5	Tpclk/4 +2	
		Voltage ra		-	8	10	
thr(OUT), thf(OUT)			DHQC=0	5	-	-	
	Data output hold time	Voltage ranges 0/1	DHQC=1 Pres=1,2	Tpclk/4 -0.25	-	-	
		Voltage ra	-	8	-	-	

^{1.} Values in the table applies to octal and quad SPI mode.

304/341 DS12736 Rev 5

^{2.} Guaranteed by characterization results.

The following table summarizes the parameters measured in DTR mode (with DQS) $\slash\hspace{-0.6em}$ HyperBus.

Table 148. OCTOSPI characteristics in DTR mode (with DQS)⁽¹⁾/Octal and HyperBus

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		1.71 <v<sub>DD<3.6 Voltage ranges 0/1 20 pF</v<sub>	-	-	58 ⁽²⁾		
F(CLK) OCTOSPI clock frequency		2.7 <v<sub>DD<3.6 Voltage ranges 0/1 20 pF</v<sub>	-	-	76 ⁽²⁾	MHz	
		1.71 <v<sub>DD<3.6 Voltage range 2 20 pF</v<sub>	-	-	26 ⁽²⁾		
tw(CKH)	OCTOSPI clock high and		t(CK)/2 -1	-	t(CK)/2 +0.5		
tw(CKL)	low time Even division	-	t(CK)/2 -0.5	-	t(CK)/2+0.5		
tw(CKH)	OCTOSPI clock high and		(n/2)×t(CK)/(n+1) -0.5	-	(n/2)×t(CK)/(n+1) +0.5	ns	
tw(CKL)	low time Odd division	-	(n/2+1)×t(CK)/ (n+1) - 0.5	-	(n/2+1)*×(CK)/ (n+1)+0.5	113	
tv(CK)	Clock valid time	-	-	-	t(CK) + 2		
th(CK)	Clock hold time	-	t(CK)/2 -0.5	-	-		
VODr(CK) ⁽³⁾	CK,CK# crossing level on CK rising edge	V _{DD} =1v8	832	-	1050	m\/	
VODf(CK) ⁽³⁾	CK,CK# crossing level on CK falling edge	V _{DD} =1v8	840	840 -		- mV	

Table 148. OCTOSPI characteristics in DTR mode (with DQS)⁽¹⁾/Octal and HyperBus (continued)

Symbol	Parameter	Conditi	ons	Min	Тур	Max	Unit
tw(CS)	Chip select high time	-		3×t(CK)	-	-	
tv(DQ)	Data input valid time			0			
tv(DS)	Data strobe input valid time	_				-	
th(DS)	Data strobe input hold time	-		0	-	-	
tv(RWDS)	Data strobe output valid time	-		-	-	3×t(CK)	
tsr(DQ),tsf(DQ)	Data input	Voltage ranges 0/1		-0.75	-	t(CK)/2 -5.75 ⁽⁴⁾	
(51(00),(51(00)	setup time	Voltage range	2	-2.25	-	t(CK)/2 -8 ⁽⁴⁾	
thr(DQ),thf(DQ)	Data input hold	Voltage range	Voltage ranges 0/1		-	-	
	time	Voltage range 2		4.75	-	-	ns
			DHQC=	-	5.75	7.75	
tvr(OUT), tvf(OUT)	Data output valid time	Voltage ranges 0/1	DHQC= 1 Pres=1, 2	-	Tpclk/4 +0.75	Tpclk/4 +2.5	
		Voltage range DHQC=0	2	-	8	11	
			DHQC=	3.25	-	-	
thr(OUT), thf(OUT)	Data output hold time	Voltage ranges 0/1	DHQC= 1 Pres=1, 2	Tpclk/4 -0.25	-	-	
		Voltage range DHQC=0	2	6.5	-	-	

^{1.} Guaranteed by characterization results.

306/341 DS12736 Rev 5

^{2.} Maximum frequency values are given for a RWDS to DQ skew of maximum ± 1.0 ns.

^{3. (}PA3/PF11), (PF10/PB12), (PF10/PB5), (PE10/PF11), (PA3/PE9) and (PE10/PB5) clk/clk# pair usage is recommended in order to respect HyperMemory AC differential crossing voltage margins.

^{4.} Data input setup time maximum does not take into account the data level switching duration.

 $t_{(CLK)}$ $t_{r(CLK)}$ $t_{w(CLKH)}$ $t_{w(CLKL)}$ $t_{f(CLK)}$ Clock $t_{\text{h}(\text{OUT})}$ $t_{v(OUT)}$ Data output D1 D0 D2 $t_{s(IN)}$ $t_{h(IN)}$ Data input D1 D2 D0 MSv36878V3

Figure 67. OCTOSPI timing diagram - SDR mode

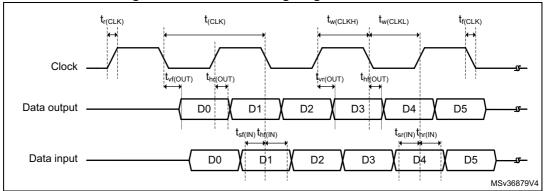
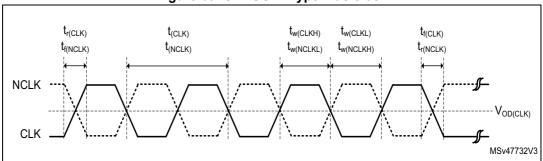
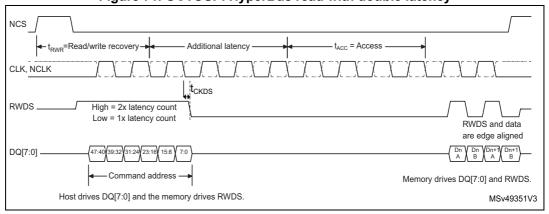
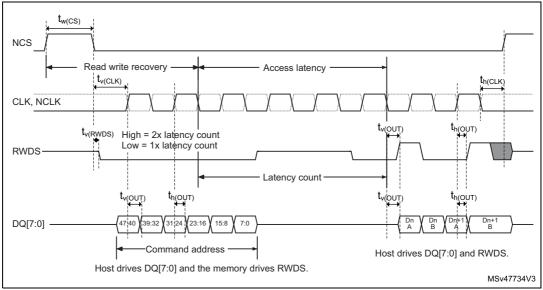



Figure 69. OCTOSPI HyperBus clock



 $t_{w(\text{CS})}$ NCS t_{ACC}= Initial access $t_{v(CLK)}$ th(CLK) CLK, NCLK $t_{v(RWDS)}$ $t_{h(DS)}$ **RWDS** $t_{v(OUT)}$ Latency count t_{h(DQ)} 31:24 23:16 DQ[7:0] Command address Memory drives DQ[7:0] and RWDS.


Figure 70. OCTOSPI HyperBus read

Host drives DQ[7:0] and the memory drives RWDS.

MSv47733V3

308/341 DS12736 Rev 5

Delay block

Unless otherwise specified, the parameters given in *Table 149* for delay block are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in *Table 27: General operating conditions* with the configuration shown in the figure below.

Table 149. Dynamics characteristics: delay block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{init}	Initial delay	-	1175	1375	1450	ps
t_Δ	Unit delay	-	250	500	750	ρs

5.3.32 SD/SDIO/MMC card host interfaces (SDMMC)

Unless otherwise specified, the parameters given in *Table 150* and *Table 151* for SDIO are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in *Table 27: General operating conditions* with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.15: I/O port characteristics for more details on the input/output characteristics.

Table 150. Dynamics characteristics: SD / eMMC characteristics, VDD=2.7V to 3.6 $V^{(1)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
fPP	Clock frequency in data transfer mode	-	0	-	70	MHz			
-	SDIO_CK/fPCLK2 frequency ratio -		-	-	8/3	-			
tW(CKL)	Clock low time	fpp =52MHz	8.5	9.5	-	ne			
tW(CKH)	Clock high time	fpp =52MHz	8.5	9.5	-	— ns			
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR ⁽²⁾ /DDR ⁽²⁾ mode									
tISU	Input setup time HS	-	2.5	-	-	ns			
tIHD	Input hold time HS	-	1	-	-	115			
CMD,	D outputs (referenced to CK) in eMM	C legacy/SDR/DDR	and SD	HS/SDR ⁽²⁾	/DDR ⁽²⁾ mode				
tOV	Output valid time HS	-	-	5	6	no			
tOH	Output hold time HS	-	4.5	-	-	ns			
	CMD, D inputs (referenced to CK) in SD default mode								
tISUD	Input setup time SD	-	2.5	-	-	ns			
tIHD	Input hold time SD	-	1	-	-	113			

309/341

Table 150. Dynamics characteristics: SD / eMMC characteristics, VDD=2.7V to 3.6 $V^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
	CMD, D outputs (referenced to CK) in SD default mode								
tOVD	Output valid default time SD	-	-	1	2.5	ne			
tOHD	Output hold default time SD	-	0.5	-	-	ns			

^{1.} Guaranteed by characterization results.

Table 151. Dynamics characteristics: eMMC characteristics VDD=1.71 V to 1.9 $V^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
fPP	Clock frequency in data transfer mode	-	0	-	52	MHz			
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-			
tW(CKL)	Clock low time fpp =52 MHz 8.5 9.5		-	- ns					
tW(CKH)	Clock high time fpp =52 MHz 8.5 9.5			-	115				
CMD, D inputs (referenced to CK) in eMMC mode									
tISU	Input setup time HS	-	2.5	-	-	ns ns			
tIH	Input hold time HS	-	2	-	-	113			
	CMD, D outputs (referenced to CK) in eMMC mode								
tOV	Output valid time HS	-	-	5.5	6.5	ne			
tOH	Output hold time HS	-	4	-	-	ns			

^{1.} Guaranteed by characterization results.

310/341 DS12736 Rev 5

^{2.} For SD 1.8 V support, an external voltage converter is needed.

^{2.} Cload=20 pF.

See the different SDMMC diagrams in Figure 73, Figure 74 and Figure 75 below.

Figure 73. SDIO high-speed mode

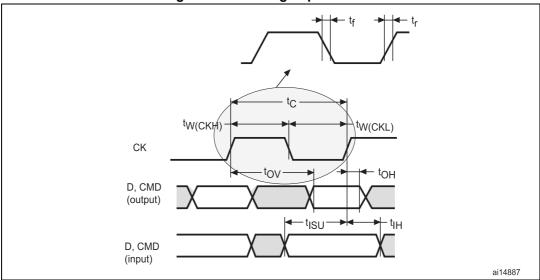


Figure 74. SD default mode

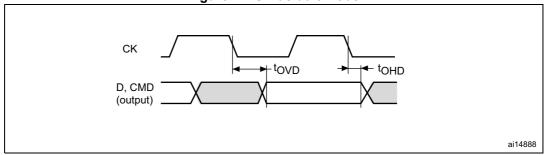
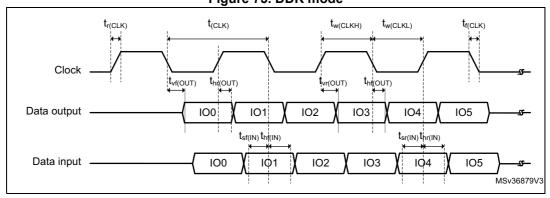



Figure 75. DDR mode

5.3.33 UCPD characteristics

UCPD controller complies with USB Type-C Rev 1.2 and USB Power Delivery Rev 3.0 specifications.

Table 152. UCPD characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	UCPD operating	Sink mode only	3.0	3.3	3.6	V
V _{DD} supply voltage	Sink and source mode	3.135	3.3	3.465		

5.3.34 USB_FS characteristics

Table 153. USB startup time

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{STARTUP} (1)	USB transceiver startup time	-	-	-	1	μs

^{1.} Guaranteed by design.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 Device marking

Refer to technical note "Reference device marking schematics for STM32 microcontrollers and microprocessors" (TN1433) available on *www.st.com*, for the location of pin 1 / ball A1 as well as the location and orientation of the marking areas versus pin 1 / ball A1.

Parts marked as "ES", "E" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use.

In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

A WLCSP simplified marking example (if any) is provided in the corresponding package information subsection.

6.2 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm, low-profile quad flat package.

DS12736 Rev 5 313/341

Figure 76. LQFP48 outline

1. Drawing is not to scale.

Table 154. LQFP48 mechanical data

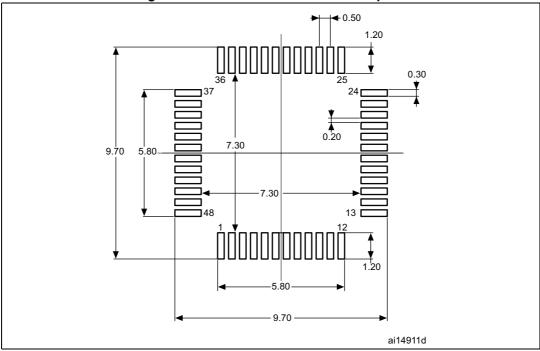

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-

Table 154	. LQFP48	mechanical	data	(continued)
-----------	----------	------------	------	-------------

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ccc	-	-	0.080	-	-	0.0031	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 77. LQFP48 recommended footprint

1. Dimensions are expressed in millimeters.

6.3 UFQFPN48 package information

UFQFPN48 is a 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.

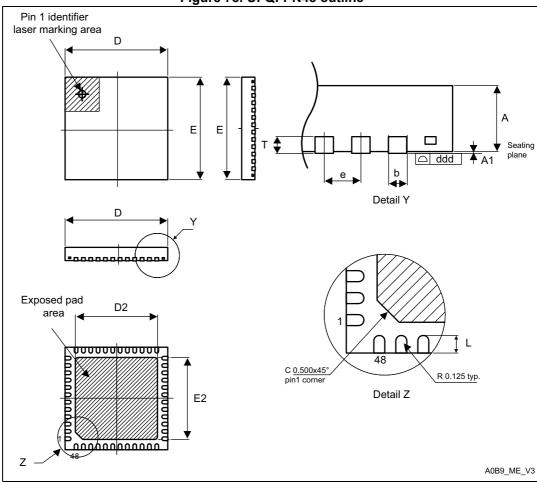


Figure 78. UFQFPN48 outline

- 1. Drawing is not to scale.
- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

inches⁽¹⁾ millimeters **Symbol** Min Тур Max Min Тур Max Α 0.500 0.550 0.600 0.0197 0.0217 0.0236 Α1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 Ε 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.600 5.700 0.2205 0.2244 5.500 0.2165 5.500 5.600 5.700 0.2165 0.2205 0.2244

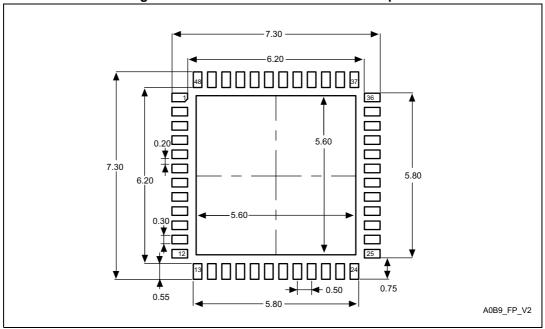

Table 155. UFQFPN48 mechanical data

Table 155. UFQFPN48 mechanical data (continued)

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 79. UFQFPN48 recommended footprint

1. Dimensions are expressed in millimeters.

6.4 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm, low-profile quad flat package.

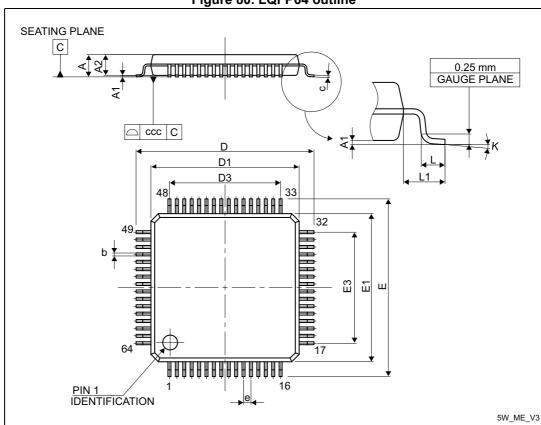


Figure 80. LQFP64 outline

1. Drawing is not to scale.

Table 156. LQFP64 mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
Е	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

inches⁽¹⁾ millimeters **Symbol** Min Тур Max Min Тур Max 7.500 0.2953 E3 0.500 0.0197 е 0° 7° 0° 7° K 3.5° 3.5° L 0.450 0.600 0.750 0.0177 0.0236 0.0295 1.000 L1 0.0394 0.080 0.0031 CCC

Table 156. LQFP64 mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

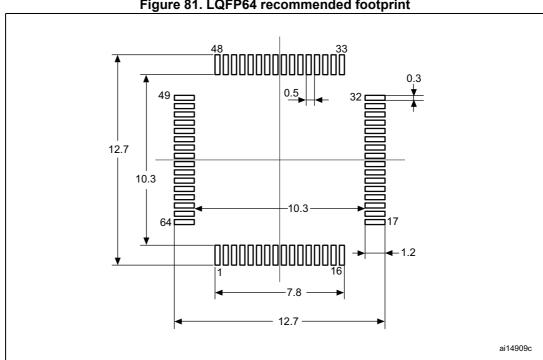


Figure 81. LQFP64 recommended footprint

1. Dimensions are expressed in millimeters.

6.5 WLCSP81 package information

WLCSP81 is a 81-ball, 4.36 x 4.07 mm, 0.4 mm pitch, wafer level chip scale package.

// bbb Z A1 BALL LOCATION (4x) G 0000000 00000000 DETAIL A 000000000 00000000 00000000 e2 00000000 00000000 00000000 ooooooo • e **←** D BOTTOM VIEW TOP VIEW SIDE VIEW BUMP FRONT VIEW øb(81x) SEATING PLANE DETAIL A ROTATED 90° B01H_WLCSP81_ME_V1

Figure 82. WLCSP81 outline

- 1. Drawing is not to scale.
- 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
- 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
- 4. Bump position designation per JESD 95-1, SPP-010.

Table 157. WLCSP81 mechanical data

Symbol		millimeters		inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
A ⁽²⁾	-	-	0.59	-	-	0.023
A1	-	0.18	-	-	0.007	-
A2	-	0.38	-	-	0.015	-
A3 ⁽³⁾	-	0.025	-	-	0.001	-
b	0.22	0.25	0.28	0.009	0.010	0.011
D	4.33	4.36	4.39	0.170	0.172	0.173
Е	4.05	4.07	4.09	0.159	0.160	0.161

				`	,	
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
е	-	0.40	-	-	0.016	-
e1	-	3.20	-	-	0.126	-
e2	-	3.20	-	-	0.126	-
F ⁽⁴⁾	-	0.580	-	-	0.023	-
G ⁽⁴⁾	-	0.435	-	-	0.017	-
aaa	-	0.10	-	-	0.004	-
bbb	-	0.10	-	-	0.004	-
ccc	-	0.10	-	-	0.004	-
ddd	-	0.05	-	-	0.002	-
eee	_	0.05	-	-	0.002	-

Table 157. WLCSP81 mechanical data (continued)

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal and tolerances values of A1 and A2.
- Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process capability.
- 4. Calculated dimensions are rounded to the 3rd decimal place.

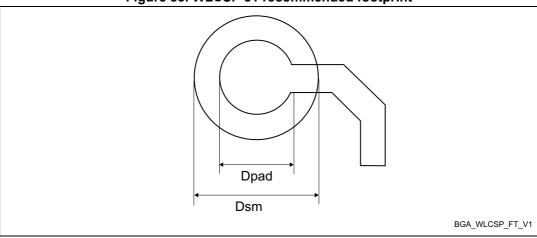
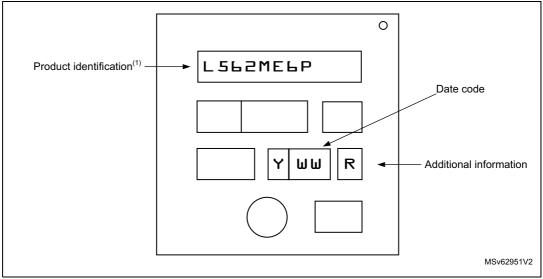


Figure 83. WLCSP 81 recommended footprint

1. Dimensions are expressed in millimeters.

Table 158. WLCSP81 recommended PCB design rules

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0,225 mm
Dsm	0.290 mm typ. (depends on soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm


Device marking for WLCSP81

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which also depend on supply chain operations, are not indicated below.

Figure 84. Example of WLCSP81 package marking (package top view

Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

LQFP100 package information 6.6

LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.

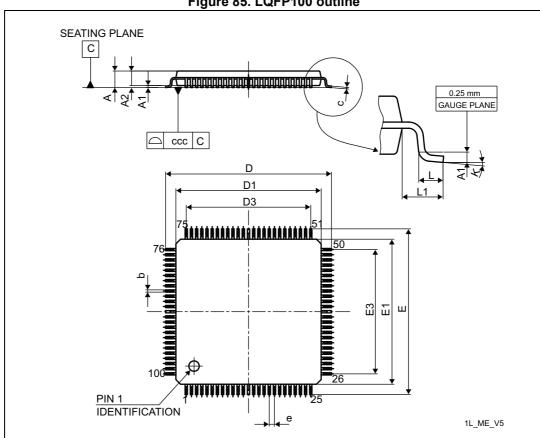
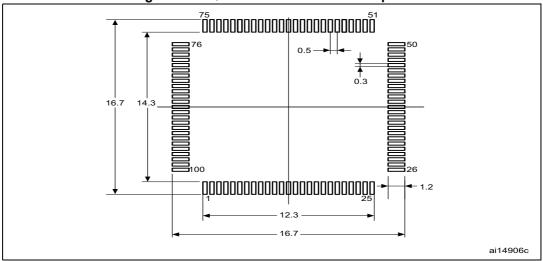


Figure 85. LQFP100 outline

1. Drawing is not to scale.


Table 159. LQPF100 mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 86. LQFP100 recommended footprint

1. Dimensions are expressed in millimeters.

6.7 UFBGA132 package information

UFBGA132 is a 132-pin, 7 x 7 mm, ultra thin fine pitch ball grid array package.

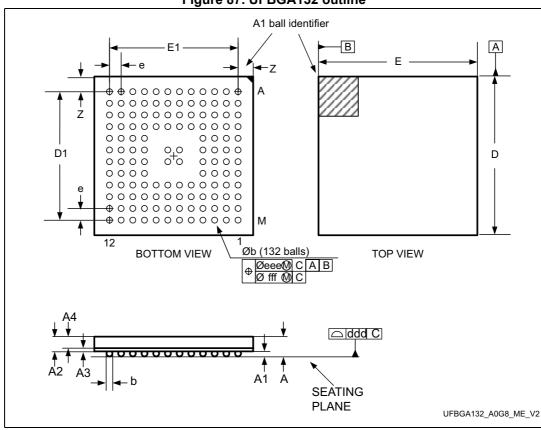


Figure 87. UFBGA132 outline

1. Drawing is not to scale.

Table 160. UFBGA132 mechanical data

Symbol	millimeters				inches ⁽¹⁾	
	Min	Тур	Max	Min	Тур	Max
Α	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	-
A4	-	0.320	-		0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	6.850	7.000	7.150	0.2697	0.2756	0.2815
D1	-	5.500	-	-	0.2165	-
E	6.850	7.000	7.150	0.2697	0.2756	0.2815
E1	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-

Table 160. UFBGA132 mechanical data (continued)

Cumbal	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Z	-	0.750	-	-	0.0295	-
ddd	-	0.080	-	-	0.0031	-
eee	-	0.150	-	-	0.0059	-
fff	-	0.050	-	-	0.0020	-

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 88. UFBGA132 recommended footprint

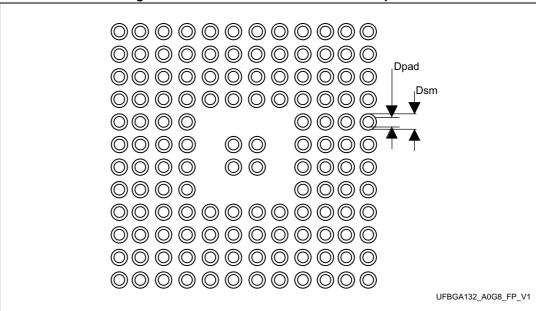


Table 161. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5 mm
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm
Ball diameter	0.280 mm

6.8 LQFP144 package information

LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.

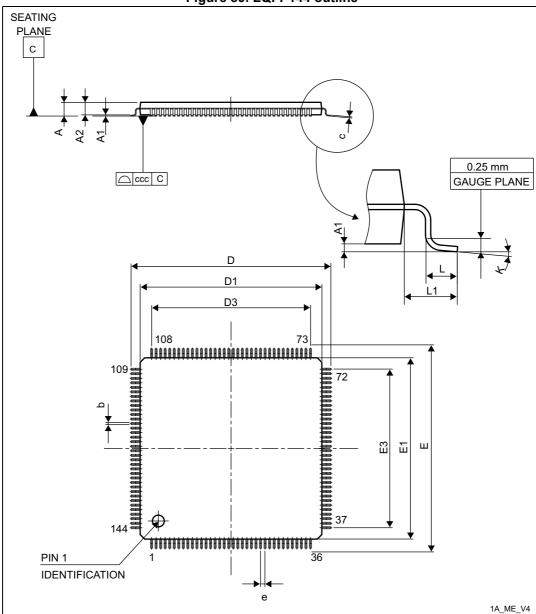


Figure 89. LQFP144 outline

1. Drawing is not to scale.

Table 162. LQFP144 mechanical data

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-		0.080	-		0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

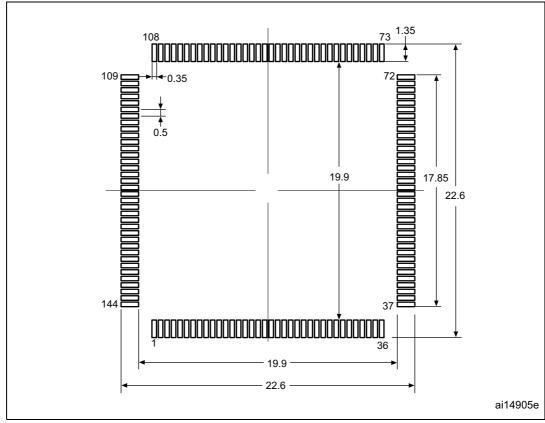


Figure 90. LQFP144 recommended footprint

1. Dimensions are expressed in millimeters.

6.9 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O}$$
 max = Σ ($V_{OL} \times I_{OL}$) + Σ (($V_{DDIOx} - V_{OH}$) × I_{OH}),

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 163. Package thermal characteristics

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP144 20 x 20 mm	47.4	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm	49.3	
	Thermal resistance junction-ambient LQFP64 10 x 10 mm	50.7	
Θ_{JA}	Thermal resistance junction-ambient LQFP48 7 x 7 mm	52.3	°C/W
	Thermal resistance junction-ambient UFQFPN48 7 x 7 mm	25.6	
	Thermal resistance junction-ambient UFBGA132 7 x 7 mm	39.6	
	Thermal resistance junction-ambient WLCSP81 4.36 x 4.07 mm	45	

330/341 DS12736 Rev 5

Table 163. Package thermal characteristics (continued)

Symbol	Parameter	Value	Unit
	Thermal resistance junction-case LQFP144 20 x 20 mm	13.5	
	Thermal resistance junction-case LQFP100 - 14 × 14 mm	14	
	Thermal resistance junction-case LQFP64 10 x 10 mm	14.2	
Θ_{JC}	Thermal resistance junction-case LQFP48 7 x 7 mm	14.4	°C/W
	Thermal resistance junction-case UFQFPN48 7 x 7 mm	1.5	
	Thermal resistance junction-case UFBGA132 7 x 7 mm	38.1	
	Thermal resistance junction-case WLCSP81 4.36 x 4.07 mm	1.5	
	Thermal resistance junction-board LQFP144 20 x 20 mm	43.3	
	Thermal resistance junction-board LQFP100 - 14 × 14 mm	41.5	
	Thermal resistance junction-board LQFP64 10 x 10 mm	39.5	
Θ_{JB}	Thermal resistance junction-board LQFP48 7 x 7 mm	37.4	°C/W
	Thermal resistance junction-board UFQFPN48 7 x 7 mm	13.5	
	Thermal resistance junction-board UFBGA132 7 x 7 mm	13.2	
	Thermal resistance junction-board WLCSP81 4.36 x 4.07 mm	27	

6.9.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

6.9.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 7: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32L562xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range is best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82°C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: $P_{INTmax} = 175 \text{ mW}$ and $P_{IOmax} = 272 \text{ mW}$:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Using the values obtained in T_{Jmax} is calculated as follows:

For LQFP100, 49.3°C/W

 $T_{Jmax} = 82^{\circ}C + (49.3^{\circ}C/W \times 447 \text{ mW}) = 82^{\circ}C + 22.04^{\circ}C = 104.04^{\circ}C$

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C) see *Section 7: Ordering information*.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 7: Ordering information).

Note:

With this given P_{Dmax} we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7).

```
Suffix 6: T_{Amax} = T_{Jmax} - (49.3°C/W × 447 mW) = 105 - 22.03 = 82.97°C
Suffix 3: T_{Amax} = T_{Jmax} - (49.3°C/W × 447 mW) = 130 - 22.03 = 107.97°C
```

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 100°C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V

 $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$

 $P_{IOmax = 20} \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

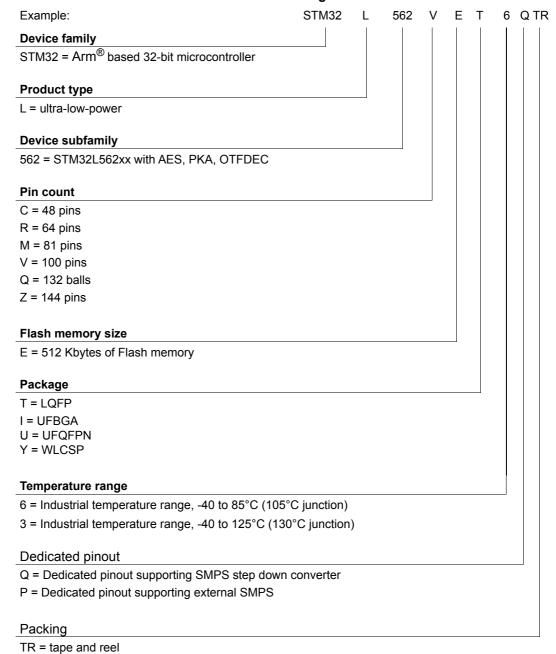
Using the values obtained in $\,T_{Jmax}^{}$ is calculated as follows:

- For LQFP100, 49.3°C/W

 $T_{Jmax} = 100 \text{ °C} + (49.3 \text{ °C/W} \times 134 \text{ mW}) = 100 \text{ °C} + 6.6 \text{ °C} = 106.6 \text{ °C}$

This is above the range of the suffix 6 version parts ($-40 < T_J < 105$ °C).

In this case, parts must be ordered at least with the temperature range suffix 3 (see Section 7: Ordering information) unless we reduce the power dissipation in order to be able to use suffix 6 parts.


333/341

Ordering information STM32L562xx

7 Ordering information

xxx = programmed parts

Table 164. STM32L562xx ordering information scheme

- All packages are ECOPACK2 (RoHS compliant and free of brominated, chlorinated and antimony-oxide flame retardants).
- 2. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

334/341 DS12736 Rev 5

8 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.

DS12736 Rev 5 335/341

Revision history STM32L562xx

9 Revision history

Table 165. Document revision history

Date	Revision	Changes
04-Oct-2019	1	Initial release
11-Feb-2020	2	Updated Section : Features. Updated Table 2: STM32L562xx features and peripheral counts. Updated Figure 1: STM32L562xx block diagram. Updated Section 3.1: Arm® Cortex®-M33 core with TrustZone® and FPU. Updated Section 3.2: Art Accelerator – instruction cache (ICACHE). Updated Section 3.3: Memory protection unit. Updated Section 3.4: Embedded Flash memory. Updated Section 3.6: Boot modes. Updated Table 5: Boot space versus RDP protection. Updated Table 5: Seourable peripherals by TZSC. Updated Table 10: STM32L562xx modes overview. Updated Table 10: STM32L562xx modes overview. Updated Table 11: Functionalities depending on the working mode. Updated Table 12: STM32L562xx peripherals interconnect matrix. Updated Figure 7: STM32L562xx clock tree. Updated Section 3.17.1: Nested vectored interrupt controller (NVIC). Updated Section 3.21: Analog-to-digital converter (ADC). Removed information related to UFBGA132_ExtSMPS in Section 4: Pinouts and pin description. Updated Table 24: Voltage characteristics. Updated Table 27: General operating conditions. Updated Table 33: Current consumption in Run and Low-power run modes, code with data processing running from Flash in single bank, ICACHE ON in 2-way. Updated Table 36: Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter. Updated Table 37: Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter. Updated Table 38: Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter. Updated Table 43: Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE ON in 1-way and power supplied by internal SMPS step down converter. Updated Table 43: Current consumption in Run mode, code with data processing running

STM32L562xx Revision history

Table 165. Document revision history

Date	Revision	Changes
11-Feb-2020	2 (continued)	Updated Table 47: Current consumption in Run and Low-power run modes, code with data processing running from SRAM2. Updated Table 48: Current consumption in Run mode, code with data processing running from SRAM2 and power supplied by internal SMPS step down converter. Updated Table 61: Current consumption in Sleep mode, Flash ON and power supplied by internal SMPS step down converter. Updated Table 76: Current consumption in Stop 2 mode. Updated Table 77: Current consumption in Stop 1 mode Updated Table 80: Current consumption in Standby mode. Updated Table 80: Current consumption in Shutdown mode. Updated Table 81: Current consumption in VBAT mode. Updated Table 83: Low-power mode wakeup timings. Updated Table 83: Low-power mode wakeup timings. Updated Table 102: I/O static characteristics. Updated Table 103: Output voltage characteristics. Updated Table 104: I/O AC characteristics (All I/Os except FT_c). Updated Table 111: ADC accuracy - limited test conditions 1. Updated Table 112: ADC accuracy - limited test conditions 2. Updated Table 113: ADC accuracy - limited test conditions 3. Updated Table 114: ADC accuracy - limited test conditions 4. Updated Table 117: VREFBUF characteristics. Updated Table 119: OPAMP characteristics. Updated Table 123: Temp and VDD monitoring characteristics. Updated Table 129: SPI characteristics. Updated Table 130: SAI characteristics. Updated Table 130: SAI characteristics. Updated Table 146: OCTOSPI characteristics in SDR mode. Updated Table 148: OCTOSPI characteristics in DTR mode (with DQS)/Octal and HyperBus.
12-May-2020	3	Updated - Section 2: Description - Figure 1: STM32L562xx block diagram - Figure 2: STM32L562xx power supply overview - Figure 3: STM32L562xxxxP power supply overview - Figure 12: STM32L562xx UFQFPN48 pinout - Figure 13: STM32L562xxxxP UFQFPN48 external SMPS pinout - Section 5.3.2: SMPS step-down converter - Table 20: Legend/abbreviations used in the pinout table Updated title of Table 36, Table 37, Table 38, Table 42, Table 43, Table 44, Table 46, Table 48, Table 50, Table 52, Table 54, Table 56, Table 58, Table 61.

Revision history STM32L562xx

Table 165. Document revision history

Date	Revision	Table 165. Document revision history Changes
		Added:
		- Table 28: SMPS modes summary
		- Table 29: SMPS characteristics
		 Table 62: Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 2-way and power supplied by external SMPS.
		 Table 63: Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE ON in 1-way and power supplied by external SMPS.
		 Table 64: Current consumption in Run mode, code with data processing running from Flash in single bank, ICACHE disabled and power supplied by external SMPS.
		 Table 65: Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 2-way and power supplied by external SMPS.
		 Table 66: Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE on in 1-way and power supplied by external SMPS.
	3 (continued)	 Table 67: Current consumption in Run mode, code with data processing running from Flash in dual bank, ICACHE disabled and power supplied by external SMPS
		 Table 68: Current consumption in Run mode, code with data processing running from SRAM1, and power supplied by external SMPS.
12-May-2020		 Table 69: Current consumption in Run mode, code with data processing running from SRAM2, and power supplied by external SMPS.
		 Table 70: Current consumption in Sleep mode, Flash ON and power supplied by external SMPS.
		 Table 71: Current consumption in Run mode, code with data processing running from Flash, ICACHE on (2-way) and power supplied by external SMPS
		 Table 72: Current consumption in Run mode, code with data processing running from Flash, ICACHE on (1-way) and power supplied by external SMPS
		 Table 73: Current consumption in Run mode, code with data processing running from Flash, ICACHE disabled and power supplied by external SMPS
		 Table 74: Current consumption in Run mode, code with data processing running from SRAM1, and power supplied by external SMPS
		 Table 75: Current consumption in Run mode, code with data processing running from SRAM2, and power supplied by external SMPS
		Updated:
		- Table 102: I/O static characteristics.
		- Table 146: OCTOSPI characteristics in SDR mode.
		- Table 147: OCTOSPI characteristics in DTR mode (no DQS)
		 Table 148: OCTOSPI characteristics in DTR mode (with DQS)/Octal and HyperBus
		 Table 150: Dynamics characteristics: SD / eMMC characteristics, VDD=2.7V to 3.6 V
		- Table 151: Dynamics characteristics: eMMC characteristics VDD=1.71 V to 1.9V

STM32L562xx Revision history

Table 165. Document revision history

Date	Revision	Changes
29-Sep-2020	4	Updated: — Table 10: STM32L562xx modes overview. — Table 14: Temperature sensor calibration values — Table 21: STM32L562xx pin definitions — Table 77: Current consumption in Stop 1 mode — Table 80: Current consumption in Shutdown mode. — Table 83: Low-power mode wakeup timings — Table 117: VREFBUF characteristics — Table 121: V _{BAT} monitoring characteristics — Section 3.28: True random number generator (RNG) Added — Figure 46: VREFBUF in case VRS = 0 Figure 47: VREFBUF in case VRS = 1

Revision history STM32L562xx

Table 165. Document revision history

Dete	Davistan	Table 165. Document revision history
Date	Revision	Changes
		Updated:
		- Section : Features Section 1: Introduction.
		- Section 1. Introduction. - Figure 6: SMPS step down converter power supply scheme.
		- Section 3.13: General-purpose inputs/outputs (GPIOs).
		- Section 3.28: True random number generator (RNG).
		- Table 18: USART/UART/LPUART features.
		 SMBus version to 3.0 and PMBus version to 1.3 in Section 3.36: Inter-integrated circuit interface (I²C).
		 Replaced all occurrences of "master" by "controller" and "slave" by "target" in Section 3.36: Inter-integrated circuit interface (I²C).
		- Table 18: USART/UART/LPUART features.
		- Section 5.2: Absolute maximum ratings.
		- Table 24: Voltage characteristics.
		- Section : I/O static current consumption.
		- Section : I/O dynamic current consumption.
		- Figure 41: I/O AC characteristics definition ⁽¹⁾ .
		- Figure 43: ADC accuracy characteristics.
		 Figure 44: Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function.
		- Table 98: EMI characteristics for fHSE = 8 MHz and fHCLK = 110 MHz.
		- Section 5.3.15: I/O port characteristics.
19-May-2025	5	- Table 124: DFSDM measured timing 1.71 to 3.6 V.
10 May 2020	· ·	- Figure 48: SPI timing diagram - slave mode and CPHA = 0.
		 Figure 49: SPI timing diagram - slave mode and CPHA = 1.
		- Figure 50: SPI timing diagram - master mode.
		- Figure 51: SAI master timing waveforms.
		- Figure 52: SAI slave timing waveforms.
		- Table 131: USART (SPI mode) characteristics.
		- Figure 53: USART timing diagram in SPI master mode.
		- Figure 54: USART timing diagram in SPI slave mode.
	-	- Figure 63: NAND controller waveforms for read access.
		- Figure 64: NAND controller waveforms for write access.
		- Figure 67: OCTOSPI timing diagram - SDR mode.
		- Figure 68: OCTOSPI timing diagram - DDR mode.
		- Figure 69: OCTOSPI HyperBus clock.
		- Figure 70: OCTOSPI HyperBus read.
		- Figure 71: OCTOSPI HyperBus read with double latency.
		- Figure 72: OCTOSPI HyperBus write. Added:
		- Sustainability logo on the cover page.
		- Section 5.3.34: USB_FS characteristics.
		- Section 6.1: Device marking.
		- Section 8: Important security notice.
		Country Indiana

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS12736 Rev 5 341/341