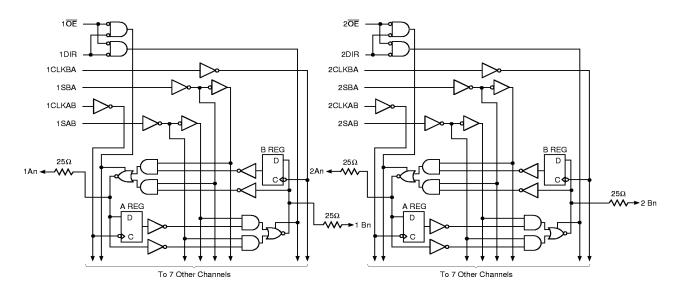


High Speed CMOS 3.3V 16-Bit Bus Registered Transceiver with Bus Hold and Output Resistor

QS74LCX162H646


FEATURES/BENEFITS

- 5V tolerant inputs and outputs
- · Industry standard pinouts
- 25Ω series resistor for low switching noise
- Bus Hold feature holds last active state during 3-state operation
- 10μA I_{CCO} quiescent power supply current
- · Hot insertable
- 2.0V–3.6V V_{CC} supply operation
- ±12mA balanced output drive
- Meets or exceeds JEDEC Standard 36 specifications
- $t_{PD} = 5.3$ ns
- · Input hysteresis for noise immunity
- · Multiple power and ground pins for low noise
- Operating temperature range: -40°C to +85°C
- Latch-up performance exceeds 500mA
- ESD performance: Human body model > 2000V Machine model > 200V
- Packages available: 56-pin TSSOP 56-pin SSOP

DESCRIPTION

The LCX162H646 is a 16-bit bus registered transceiver with three-state outputs that is ideal for driving address and data buses. The LCX162H646 is organized for transmission of data between A bus and B bus either directly or from the internal storage registers. The 3.3V LCX family features low power, low switching noise, and fast switching speeds for low power portable applications as well as high-end advanced workstation applications. 5V tolerant inputs and outputs allow this LCX product to be used in mixed 5V and 3.3V applications. The QS74LCX162H646 with integrated output resistor is ideally suited for low noise environments where reduced output overshoot and undershoot are critical requirements. Bus Hold circuitry on the data inputs retains the last active state during 3-state operation, eliminating the need for external pull-up resistors. Easy board layout is facilitated by the use of flow-through pinouts and byte enable controls provide architectural flexibility for systems designers. To accommodate hot-plug or live insertion applications, this product is designed not to load an active bus when V_{CC} is removed.

Figure 1. Functional Block Diagram

MDSL-00207-01 July 31, 1997 QUALITY SEMICONDUCTOR, INC.

1

Figure 2. Pin Configuration (All Pins Top View) SSOP, TSSOP

1DIR	Ъ	1	56	10E
1CLKAB	a	2	55	TCLKBA
1SAB	д:	3	54	1SBA
GND	d.	4	53	GND
1A1	d:	5	52] 1B1
1A2	d,	6	51] 1B2
V_{CC}	d	7	50	\Box $\lor_{\rm cc}$
1A3	Ц:	8	49] 1B3
1A4	Ц:	9	48] 1B4
1A5	4	10	47] 1B5
GND	П	11	46	GND
1A6	П	12	45] 1B6
1A7	П	13	44] 1B7
1A8	П	14	43] 1B8
2A1	П	15	42] 2B1
2A2	П	16	41] 2B2
2A3	4	17	40] 2B3
GND	4	18	39	GND
2A4	_	19	38] 2B4
2 A 5	Ц:	20	37] 2B5
2A6	Ц:	21	36	2B6
V_{CC}	_	22	35	□ v _{cc}
2A7	_	23	34	2B7
2A8	_	24	33	2B8
GND	_	25	32	GND
2SAB	п.	26	31	2SBA
2CLKAB	7	27	30	
2DIR	4	28	29	20E

Table 1. Pin Description

Name	Description
xAx	Data Register A Inputs Data Register B Outputs (Bus Hold Inputs)
xBx	Data Register B Inputs Data Register A Outputs (Bus Hold Inputs)
xCLKAB, xCLKBA	Clock Inputs
xSAB, xSBA	Output Source Select Inputs
xDIR, x OE	Output Enable Inputs

Table 2. Function Table

Inputs				Data	I/O(1)			
χ <mark>ΟΕ</mark>	xDIR	xCLKAB	xCLKAB	xSAB	xSBA	xAx	хВх	Operation or Function
Н	Х	H or L	H or L	х	х	Input	Input	Isolation
Н	Х	<u> </u>	T	Х	X			Store A and B Data
L	L	X	Х	Х	L	Output	Input	Real Time B Data to A Bus
L	L	Х	H or L	Х	Н			Stored B Data to A Bus
L	Н	X	Х	L	X	Input	Output	Real Time A Data to B Bus
L	Η	H or L	Х	Н	X	-	•	Stored A Data to B Bus

- 1. The data output functions may be enabled or disabled by various signals at the xOE or xDIR inputs. Data input functions are always enabled, i.e. data at the bus pins will be stored on every LOW-to-HIGH transition on the clock
- 2. H = HIGH Voltage Level L = LOW Voltage Level

 - X = Don't Care

 ↑ = LOW-to-HIGH Transition

Table 3. Capacitance

Symbol	Pins	Тур	Unit	Conditions
C_{IN}	Input Capacitance	7.0	pF	$V_{IN} = 0V$, $V_{OUT} = 0V$, $f = 1MHz$
C _{I/O}	I/O Capacitance	8.0	pF	$V_{IN} = 0V$, $V_{OUT} = 0V$, $f = 1MHz$
C _{PD}	Power Dissipation Capacitance	20	pF	$V_{CC} = 3.3V$, $V_{IN} = 0$ or V_{CC} f = 10MHz

Note: Capacitance is characterized but not production tested.

Table 4. Absolute Maximum Ratings

Supply Voltage to Ground	0.5V to +7.0V
DC Output Voltage V _{OUT}	
Outputs HIGH-Z	0.5V to +7.0V
Outputs Active	$-0.5V$ to $V_{CC} + 0.5V$
DC Input Voltage V _{IN}	
DC Input Diode Current with V _{IN} < 0	
DC Output Diode Current	
V _O < 0	–50mA
V _O > V _{CC}	+50mA
DC Output Source/Sink Current (I _{OH} /I _{OL})	±50mA
DC Supply Current per Supply Pin	±100mA
DC Ground Current per Ground Pin	±100mA
T _{STG} Storage Temperature	–65° to +150°C

Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to this device resulting in functional or reliability type failures.

Table 5. Recommended Operating Conditions

Symbol	Parameter		Min	Max	Unit
V _{CC}	Supply Voltage, Op	perating	2.0	3.6	V
	Supply Voltage, Da	ata Retention Only	1.5	3.6	
V_{IN}	Input Voltage		0	5.5	V
V _{out}	Output Voltage in A	Active State	0	$V_{\rm cc}$	٧
	Output Voltage in "	OFF" State	0	5.5	
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0 - 3.6 V$		±12	mA
	$V_{\rm CC} = 2.7V$		_	±6	
Δt/Δν	Input Transition Sle	ew Rate		10	ns/V
T _A	Operating Free Air	Temperature	-4 0	+85	°C

MDSL-00207-01 July 31, 1997 QUALITY SEMICONDUCTOR, INC.

Table 6. DC Electrical Characteristics Over Operating Range

Industrial Temperature Range, $T_A = -40$ °C to +85°C

Symbol	Parameter	Test Condition	ons	Min	Typ ⁽¹⁾	Max	Unit
V_{IH}	Input HIGH Voltage	Logic HIGH fo	r All Inputs	2.0		_	\
V _{IL}	Input LOW Voltage	Logic LOW for	r All Inputs	_	_	0.8	٧
V _{OH}	Output HIGH Voltage	$V_{CC} = 2.7V, I_{C}$ $V_{CC} = 3.0V, I_{C}$	_H = -12mA	V _{CC} -0.2 2.4 2.2	_	_	V
V _{OL}	Output Low Voltage	$V_{CC} = 3.0V, I_{O}$ $V_{CC} = 2.7V, I_{O}$ $V_{CC} = 3.0V, I_{O}$ $V_{CC} = 3.0V, I_{O}$	_L = 100μA _L = 12mA	— — —		0.2 0.55 0.8	V
R _{OUT}	Output Resistance	$V_{\rm CC} = 3.0 \text{V}, I_{\rm O}$	_L = 12mA	_	28	_	Ω
ΔV_{T}	Input Hysteresis(2)	V _{TLH} - V _{THL} for All Inputs		_	150	_	mV
I _I	Input Leakage Current	$V_1 = 0V$, $V_1 = 5$	5.5V	_	_	±1.0	μА
I _{BH}	Input Current Inputs High or Low	$V_{CC} = 3.6V, V_{CC}$	$_{\rm IN}$ = 0V or $V_{\rm IN}$ = $V_{\rm CC}$	_		50	μА
	Bus Hold Inputs(2,3)	$V_{CC} = 3.6V, 0.$	$8V < V_{IN} < 2.0V$	_		500(4)	μΑ
I _{BHH}	Bus Hold Sustaining Current	$V_{\rm CC} = 3.0V$	V _{IN} = 2.0V	- 75	_	_	μΑ
I _{BHL}	Bus Hold Inputs		$V_{IN} = 0.8V$	+75	_		μΑ
l _{oz}	High-Z I/O Leakage	$V_O = 0V, V_O = V_I = V_{IH} \text{ or } V_{IL}$	5.5V	_		±1.0	μА
I _{os}	Short Circuit Current(2,5)	$V_{CC} = 3.6V, V_O = GND$		-60	_	-200	mA
I _{OR}	Current Drive	$V_{CC} = 3.6V, V_{OUT} = 2.0V$		40	_	_	mA
I _{OFF}	Power Off Leakage	$V_{CC} = 0V, V_1 o$	$V_{CC} = 0V$, V_I or $V_O = 5.5V$		_	10	μА
V _{IK}	Input Clamp Voltage	$V_{CC} = 2.7V, I_{IN}$	_I = -18mA		-0.7	-1.2	V

Notes: 1. Typical values indicate $V_{CC} = 3.3V$, and $T_A = 25^{\circ}C$. 2. These parameters are guaranteed by characterization but not production tested.

^{3.} Pins with Bus Hold are identified in the Pin Description.

^{4.} An external driver must provide at least $|I_{BH}|$ during transition to guarantee that the Bus Hold input will change states.

^{5.} Not more than one output should be tested at one time. Duration of test should not exceed one second.

Table 7. Power Supply Characteristics

Symbol	Parameter	Test Conditions(1)		Typ(2)	Max	Unit
I _{cc}	Quiescent Power Supply Current	$V_{CC} = 3.6V$, Freq = 0 $V_{IN} = GND \text{ or } V_{CC}$		0.1	10	μΑ
ΔI_{CC}	Supply Current per	$V_{CC} = 3.6V$	Control Inputs	2.0	30	μА
	Input @ TTL HIGH	$V_{IN} = V_{CC} - 0.6V^{(3)}$	Bus Hold Inputs		500	μA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V _{CC} = 3.6V, Outputs Open One Bit Toggling @ 50% Duty Cycle xDIR = xOE = GND	$V_{IN} = V_{CC}$ $V_{IN} = GND$	65	100	μA/ MHZ
lc	Total Power Supply Current ⁽⁶⁾	V _{CC} = 3.6V, Outputs Open One Bit Toggling @ 50% Duty Cycle f = 5MHz, f _{CP} = 10MHz (xCLKBA) xDIR = xOE = GND,	$V_{IN} = V_{CC}$ -0.6V $V_{IN} = GND$	0.5(5)	0.8(5)	mA
		V _{CC} = 3.6V, Outputs Open Sixteen Bits Toggling @ 50% Duty Cycle f = 2.5MHz, f _{CP} = 10MHz (xCLKBA) xDIR = xOE = GND	$V_{IN} = V_{CC}$ -0.6V $V_{IN} = GND$	2.0(5)	3.3(5)	mA

- 1. For conditions shown as Min. or Max., use the appropriate values specified under Recommended Operating Conditions for applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient. 3. Per TTL driven input. All Other Inputs at V_{CC} or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed by design but not tested.

6. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$. $I_C = I_{CCQ} + \Delta I_{CC} D_H N_T + I_{CCD} f N_O$. $I_{CCQ} = Quiescent Current (<math>I_{CCL}$, I_{CCH} , and I_{CCZ}). $\Delta I_{CC} = Power Supply Current for a TTL-High Input (<math>V_{IN} = V_{CC} - 0.6V$).

D_H = Duty Cycle for TTL High Inputs.

 N_T = Number of TTL High Inputs.

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL).

f = Average Switching Frequency per Output.

N_O = Number of Outputs Switching.

Table 8. Dynamic Switching Characteristics(1)

Symbol	Parameter	Conditions	V _{cc}	T _A = 25°C	Units
			(V)	Typical	
V_{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30pF, V_{IH} = 3.3V, V_{IL} = 0V$	3.3	0.8	٧
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30pF, V_{IH} = 3.3V, V_{IL} = 0V$	3.3	0.8	V

1. Characterized but not production tested.

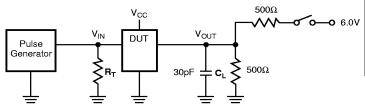
MDSL-00207-01 July 31, 1997

QUALITY SEMICONDUCTOR, INC.

5

Table 9. Switching Characteristics Over Operating Range

Industrial Temperature Range, $T_A = -40^{\circ}\text{C}$ to +85°C. $C_{LOAD} = 30\text{pF}, \ R_{LOAD} = 500\Omega$ unless otherwise noted.


			LCX16	2H646		
		V _{CC} = 3.3	$3\pm0.3V$	V _{cc} =		
Symbol	Description ⁽²⁾	Min	Max	Min	Max	Unit
f_{MAX}	Clock Pulse Frequency(2)	170	_			MHz
t _{PHL} t _{PLH}	Propagation Delay Bus to Bus	2.0	5.3	2.0	6.3	ns
t _{PZH} t _{PZL}	Output Enable Time xDIR or xOE toBus	2.0	7.5	2.0	8.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time ⁽²⁾ xDIR or xOE to Bus	2.0	6.0	2.0	7.0	ns
t _{PHL} t _{PLH}	Propagation Delay Clock to Bus	2.0	6.3	2.0	7.3	ns
t _{PHL} t _{PLH}	Propagation Delay xSAB or xSBA to Bus	2.0	6.3	2.0	7.3	ns
t _{su}	Setup Time HIGH or LOW Bus to Clock	2.5	_	2.5		ns
t _H	Hold Time HIGH or LOW Bus to Clock	1.5	_	1.5		ns
t _W	Clock Pulse Width ⁽²⁾ LOW or HIGH	3.0	_	3.0		ns
t _{SK(O)}	Output Skew ⁽³⁾	_	0.5	_	_	ns

Notes:

- 1. Minimums guaranteed but not tested on propagation delays. See Test Circuit and Waveforms.
- 2. Guaranteed by characterization
- 3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by characterization but not production tested.

TEST CIRCUIT AND WAVEFORMS

Figure 3. Test Circuit

SWITCH POSITION

Test	Switch
Open Drain	
Disable LOW	6V
Enable LOW	
Disable HIGH	GND
Enable HIGH	
All Other Inputs	Open

DEFINITIONS:

 $\mathbf{C_L} = \text{Load}$ capacitance: includes jig and probe capacitance. $\mathbf{R_T} = \text{Termination resistance}$: should be equal to Zout of the Pulse generator.

Figure 4. Setup, Hold, and Release Timing

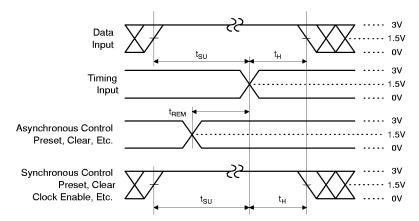
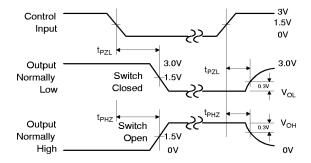



Figure 5. Enable and Disable Timing

Notes:

- Input Control Enable = LOW and input Control Disable = HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; $Z_{OUT} \leq 50\Omega$; $t_F, t_R \leq$ 2.5ns.

MDSL-00207-01 July 31, 1997 QUALITY SEMICONDUCTOR, INC.

7

Figure 6. Pulse Width

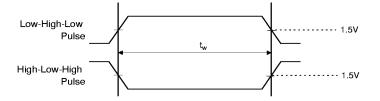
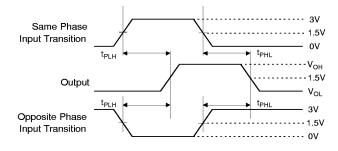
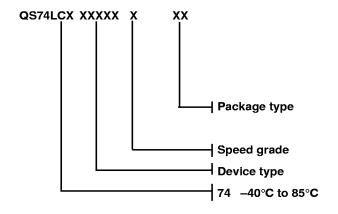




Figure 7. Propagation Delay

ORDERING INFORMATION

Device Type:

162H646

Speed Grades:

Blank - Standard

Package Type:

PV – SSOP, 300 mil PA – TSSOP, 240 mil