Photodiode array with amplifier \$8865 series

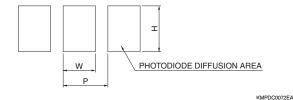
Photodiode array combined with signal processing circuit chip

S8865 series is a Si photodiode array combined with a signal processing circuit chip. The signal processing circuit chip is formed by CMOS process and incorporates a timing generator, shift register, charge amplifier array, clamp circuit and hold circuit, making the external circuit configuration simple. A long, narrow image sensor can also be configured by arranging multiple arrays in a row. For X-ray detection applications, types with fluorescent paper affixed on the active area are also available.

Features

- Large element pitch: 2 types available S8865-64: 0.8 mm pitch × 64 ch S8865-128: 0.4 mm pitch × 128 ch
- 5 V power supply operation
- Simultaneous integration by using a charge amplifier array
- Sequential readout with a shift register (Data rate: 1 MHz Max.)
- Low dark current due to zero-bias photodiode operation
- Integrated clamp circuit allows low noise and wide dynamic range
- Integrated timing generator allows operation at two different pulse timings
- Types with phosphor screen affixed on the active area are available for X-ray detection: S8865-64G/S8865-128G

Applications


- Long line sensors
- Line sensors for X-ray detection

■ Mechanical specifications

Parameter	Symbol *1	S8865-64	S8865-128	Unit
Element pitch	Р	0.8	0.4	mm
Element diffusion width	W	0.7	0.3	mm
Element height	Н	0.8	0.6	mm
Number of elements	-	64	128	-
Active area length	-	51.2	51.2	mm

^{*1:} Refer to following figure.

■ Enlarged view of active area

SOLID STATE DIVISION

■ Absolute maximum ratings

Parameter	Symbol	Rated value	Unit
Supply voltage	Vdd	-0.3 to +6	V
Reference voltage	Vref	-0.3 to +6	V
Photodiode voltage	Vpd	-0.3 to +6	V
Gain selection terminal voltage	Vgain	-0.3 to +6	V
Master/slave selection voltage	Vms	-0.3 to +6	V
Clock pulse voltage	V (CLK)	-0.3 to +6	V
Reset pulse voltage	V (RESET)	-0.3 to +6	V
External start pulse voltage	V (EXTST)	-0.3 to +6	V
Operating temperature *2	Topr	-5 to +60	°C
Storage temperature	Tstg	-10 to +70	°C

^{*2 :} No condensation

■ Recommended terminal voltage

Parameter		Symbol	Min.	Тур.	Max.	Unit
Supply voltage		Vdd	4.75	5	5.25	V
Reference voltage		Vref	4	4.5	Vdd	V
Photodiode voltage		Vpd	-	Vref	-	V
Gain selection terminal	High gain	Vacin	Vdd-0.25	Vdd	Vdd+0.25	V
voltage	Low gain	Vgain	0	-	0.4	V
Master/slave selection	High level *3	Vms	Vdd-0.25	Vdd	Vdd+0.25	V
voltage	Low level *4	VIIIS	0	-	0.4	V
Clock pulse veltage	High level	V (CLK)	Vdd-0.25	Vdd	Vdd+0.25	V
Clock pulse voltage	Low level		0	-	0.4	V
Deact pulse valtage	High level	V (RESET)	Vdd-0.25	Vdd	Vdd+0.25	V
Reset pulse voltage	Low level		0	-	0.4	V
External start pulse	t pulse High level		Vdd-0.25	Vdd	Vdd+0.25	V
voltage	Low level	V (EXESP)	0	-	0.4	V

^{*3 :} Parallel

■ Electrical characteristics [Ta=25 °C, Vdd=5 V, V (CLK)=V (RESET)=5 V]

Parameter		Cumbal	S8865-64		S8865-128			Unit	
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Clock pulse frequency *5		f (CLK)	40	-	4000	40	•	4000	kHz
Output impedance		Zo	-	3	•	-	3	-	kΩ
Power consumption		Р	-	100	1	-	180		mW
Charge amp feedback	High gain	Cf	-	0.5	1	•	0.5	•	
capacitance	Low gain	Ci	-	1	-	-	1	-	pF

^{* 5:} Video data rate is 1/4 of clock pulse frequency f (CLK).

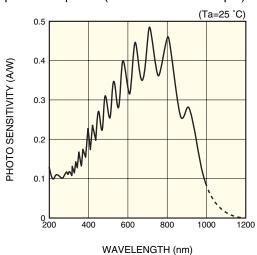
^{*4 :} Serial at 2nd or later stages

Photodiode array with amplifier S8865 series

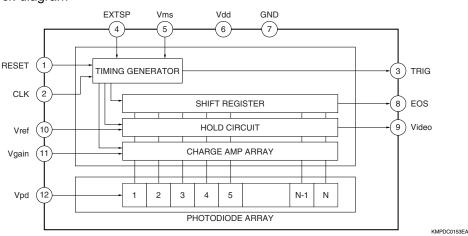
■ Electrical/optical characteristics [Ta=25 °C, Vdd=5 V, V (CLK)=V (RESET)=5 V, Vgain=5 V (High gain), 0 V (Low gain)]

					_			
Parameter		S8865-64		S8865-128			Unit	
		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
se range	λ		200 to 1000					nm
wavelength	λр	•	720	-	-	720	-	nm
High gain	\/d	ı	0.02	0.2	-	0.01	0.1	mV
Low gain	Vu	-	0.01	0.1	-	0.005	0.05	IIIV
ut voltage	Vsat	1	3.5	-	-	3.5	-	V
High gain	Foot	ı	0.8	-	-	2.4	-	$mlx \cdot s$
Low gain	⊏Sat	-	1.6	-	-	4.8	-	IIIIx · S
High gain	C	•	4400	-	-	1500	-	V/ <i>lx</i> ⋅ s
Low gain	0	-	2200	-	-	750	-	V/lx·S
non-uniformity *8	PRNU	1	-	±10	-	-	±10	%
High gain	.	1	1	-	-	1	-	m) /mm o
Low gain	IN	-	0.6	-	-	0.6	-	mVrms
Itage *10	Vos	-	Vref	-	-	Vref	-	V
	se range wavelength High gain Low gain It voltage High gain Low gain High gain Low gain High gain Low gain High gain Low gain non-uniformity *8 High gain Low gain	se range	Min. se range λ wavelength λp High gain Vd Low gain - High gain Esat Low gain - High gain S Low gain - non-uniformity *8 PRNU High gain N Low gain -	Name ter Symbol Min. Typ.	Immeter Symbol Min. Typ. Max. se range λ 200 to wavelength λp - 720 - High gain Vd - 0.02 0.2 Low gain Vsat - 0.01 0.1 It voltage Vsat - 0.8 - High gain Esat - 0.8 - Low gain S - 4400 - Low gain S - 2200 - non-uniformity *8 PRNU - - ±10 High gain N - 1 - Low gain N - 0.6 -	Immeter Symbol Min. Typ. Max. Min. Se range λ 200 to 1000 wavelength λp - 720 - - High gain Vd - 0.02 0.2 - Low gain Vsat - 0.01 0.1 - High gain Esat - 0.8 - - Low gain S - - - - Low gain S - - - - N - 2200 - - - High gain N - - ±10 - High gain N - - - - Low gain N - - - - Low gain N - - - -	Min. Typ. Max. Min. Typ. See range λ 200 to 1000	Ameter Symbol Min. Typ. Max. Min. Typ. Max. See range λ 200 to 1000 200 to 1

^{*6:} Integration time ts=1 ms


PRNU = $\Delta X/X \times 100$ (%)

where X is the average output of all elements and ΔX is the difference between the maximum and minimum outputs.

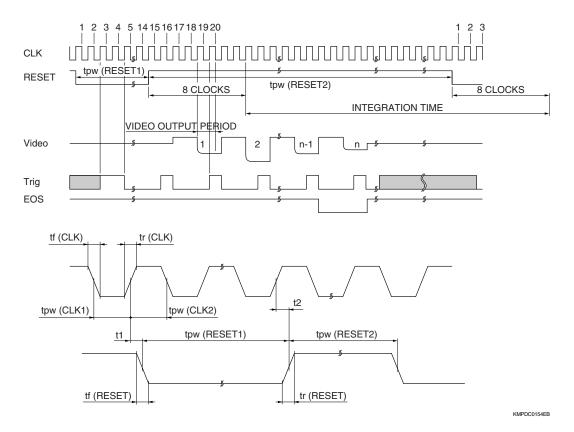

■ Output waveform of one element

OUTPUT OFFSET VOLTAGE Vref=4.5 V Typ. SATURATION OUTPUT VOLTAGE Vsat=3.5 V Typ. 1 V Typ. SATURATION STATE GND KMPDC01526

■ Spectral response (measurement example)

■ Block diagram

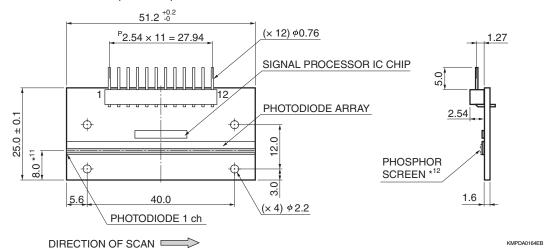
KMPDB0220EA


^{*7:} Measured with a 2856 K tungsten lamp.

^{*8:} When the photodiode array is exposed to uniform light which is 50 % of the saturation exposure, the Photo Response Non-Uniformity (PRNU) is defined as follows:

^{*9:} Measured with a video data rate of 50 kHz and Ts=1 ms in dark state.

^{*10:} Video output is negative-going output with respect to the output offset voltage.


■ Timing chart

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock pulse width	tpw (CLK1), tpw (CLK2)	125	-	12500	ns
Clock pulse rise/fall times	tr (CLK), tf (CLK)	0	20	30	ns
Reset pulse width 1	tpw (RESET1)	10	-	-	μs
Reset pulse width 2	tpw (RESET2)	20	-	-	μs
Reset pulse rise/fall times	tr (RESET), tf (RESET)	0	20	30	ns
Clock pulse-reset pulse timing 1	t1	-20	0	20	ns
Clock pulse-reset pulse timing 2	t2	-20	0	20	ns

- 1. The internal timing circuit starts operation at a fall of CLK immediately after a RESET pulse sets to Low.
- 2. When a fall of CLK is counted as "1 clock", the video signal at the 1st channel appears between "18.5 clocks and 20 clocks". Then a video signal appears every 4 clocks.
- 3. Signal charge integration time equals the High period of a RESET pulse. However, the charge integration does not start at the rise of a RESET pulse but starts at the 8th clock after the rise of the RESET pulse and ends at the 8th clock after the fall of the RESET pulse. Signals integrated within this period are sequentially read out as time-series signals by the shift register operation when the RESET pulse next changes from High to Low. The rise and fall of a RESET pulse must be synchronized with the fall of a CLK pulse, but the rise of a RESET pulse must be set outside the video output period. One cycle of RESET pulses cannot be set shorter than the time equal to "(video signal readout period 16.5 + 4) × N (number of pixels)" clocks.

■ Dimensional outline (unit: mm)

*11: Distance from the bottom of the board to the center of active area

Board: G10 glass epoxy

Connector: PRECI-DIP DURTAL 800-10-012-20-001

*12:Photodiode array with phosphor screen: S8865-64G/-128G only

· Material Gd₂O₂S: Tb

 \cdot Phosphor thickness 300 μm Typ.

· Detectable energy range 30k to 100 keV

■ Pin connection

Pin No.	Symbol	Name	Note	
1	RESET	Reset pulse	Pulse input	
2	CLK	Clock pulse	Pulse input	
3	Trig	Trigger pulse	Positive-going pulse output	
4	EXTSP	External start pulse	Pulse input	
5	Vms	Master/slave selection supply voltage	Voltage input	
6	Vdd	Supply voltage	Voltage input	
7	GND	Ground		
8	EOS	End of scan	Negative-going pulse output	
9	Video	Video output	Negative-going output with respect to Vref	
10	Vref	Reference voltage	Voltage input	
11	Vgain	Gain selection terminal voltage	Voltage input	
12	Vpd	Photodiode voltage	Voltage input	

■ Gain selection terminal voltage setting

Vdd: High gain (Cf: 0.5 pF) GND: Low gain (Cf: 1 pF)

■ Master/slave selection voltage Vms and external start pulse EXTSP settings

Set to A in the table below in most cases.

To sequentially read out signals from two or more sensors linearly connected, set the 1st sensor to A and the 2nd or later sensors to B. The CLK and RESET pulses should be shared with each sensor and the video output terminal of each sensor connected together.

		Vms	EXTSP
Α	Parallel readout, serial readout at 1st sensor	Vdd	Vdd
В	Serial readout at 2nd and later sensors	GND	Preceding sensor EOS should be input

■ Readout circuit

Check that pulse signals meet the required pulse conditions before supplying them to the input terminals. Video output should be amplified by an operational amplifier that is connected close to the sensor.

Photodiode array with amplifier S8865 series

■ Cautions during use

- (1) The signal processing circuit chips of S8865 series are protected against static electricity. However, in order to prevent possible damage to the chip, implement electrostatic countermeasures such as grounding of the operator, work table and tools. Furthermore, the devices must be protected against surge voltages from external equipment.
- (2) Since the photodiode array chip is not protected, handle it carefully so it will not become contaminated or scratched. Photodiode array performance may deteriorate if operated at high temperatures and humidity, so the housing should be designed to be airtight. The signal processing circuit chip and its wire bonding are covered with a resin coating for protection, but never touch these portions. In addition, take care when installing the board so that it does not warp.
- (3) S8865-64G, -128G
 Signal processing IC chip performance will drop if subjected to X-rays. Protect the IC chip from X-rays by installing a lead shield.

Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2004 Hamamatsu Photonics K.K.

HAMAMATSU PHOTONICS K.K., Solid State Division