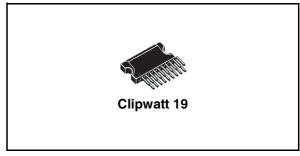


STA543SA

24W x 1 + 7W x 2

Triple Amplifier with DC Volume Control


PRELIMINARY DATA

Features

- OUTPUT POWER CAPABILITY 24W x 1 + 7W x 2 @ V_{CC} = 15V, R_L = 4 Ω , THD = 10%
- LINEAR DC VOLUME CONTROL FOR EACH SINGLE CHANNEL
- MINIMUM EXTERNAL COMPONENTS COUNT:
 - NO BOOTSTRAP CAPACITORS
 - NO BOUCHEROT CELLS
 - INTERNALLY FIXED GAIN (20dB SE, 26dB BTL)
- ST-BY FUNCTION (CMOS COMPATIBLE)
- NO AUDIBLE POP DURING ST-BY OPERATIONS
- DIAGNOSTIC FACILITIES
 - CLIP DETECTOR
 - OUT TO GND SHORT
 - OUT TO VS SHORT
 - SOFT SHORT AT TURN-ON
 - THERMAL SHUTDOWN PROXIMITY

Protections

- OUPUT AC/DC SHORT CIRCUIT
- SOFT SHORT AT TURN-ON

- OVERRATING CHIP TEMPERATURE WITH SOFT THERMAL LIMITER
- VERY INDUCTIVE LOADS
- FORTUITOUS OPEN GND
- ESD

Description

The device is a class AB Audio amplifier assembled in the Clipwatt19 package; it is designed for high quality sound application.

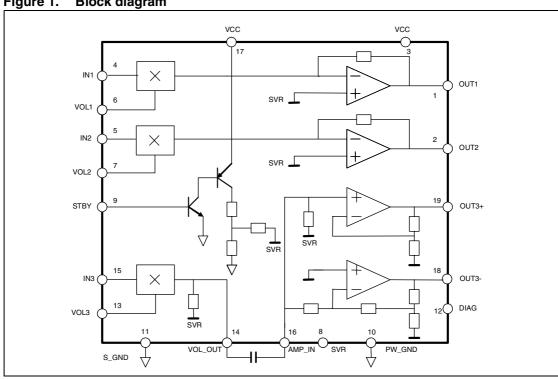
The STA543SA is a 3-channels audio amplifier with DC volume control dedicated for each single channel. It is a device suitable for 2.1 solution thank to its output configuration with two single ended channels and one bridge. The Short Circuit Protection, the Thermal Protection and the Diagnostics Functions are integrated in the device.

Order codes

Part number	Temp range, °C	Package	Packing
STA543SA	0 to 70	Clipwatt 19	Tube

Contents

1	Bloc	k diagram and Pins description4
	1.1	Block diagram
	1.2	Pins description
2	Elec	trical specifications6
	2.1	Absolute maximum ratings6
	2.2	Thermal data
	2.3	Electrical characteristics
3	Test	board and Layout
	3.1	Test board parts list
4	Eval	uation Board
	4.1	Crcuit description
	4.2	Evaluation Board Functional Description:
		4.2.1 Input Cut-off frequency:
		4.2.2 Output Cut-off frequency:13
		4.2.3 Crossover Network for SW:
5	Gen	eral structure
	5.1	Gain Internally Fixed to 20dB in Single Ended, 26dB in Bridge 15
	5.2	Silent Turn On/Off and Muting/Stand-by Function
	5.3	STAND-BY DRIVING (pin9)15
	5.4	Output Stage
	5.5	Rail-to-Rail Output Voltage Swing With No Need of Bootstrap Capacitors 15
	5.6	Absolute Stability Without Any External Compensation
	5.7	BUILT-IN Shortcircuit Protection
		5.7.1 Diagnostic Facilities (Pin 12)
		5.7.2 Thermal Shutdown
	5.8	Handling of the diagnostic information
	5.9	PCB-Layout Grounding (general rules)


STA543SA

6	The	rmal Information	. 20
	6.1	Example (A): 2 channels Single Ended + 1Ch (BTL)	. 20
7	Pacl	kage information	. 21
8	Revi	ision history	. 22

Block diagram and Pins description 1

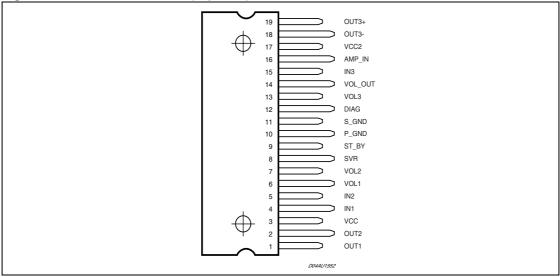

1.1 **Block diagram**

Figure 1. **Block diagram**

1.2 **Pins description**

Figure 2. Pins Connections (Top view)

5//

Table 1. Pin description

N°	Pin Name	Pin Type	Function
1	OUT1	OUTPUT	Channel 1 output
2	OUT2	OUTPUT	Channel 2 output
3	VCC	POWER	Power supply
4	IN1	INPUT	Channel 1 input
5	IN2	INPUT	Channel 2 input
6	VOL1	INPUT	Channel 1 volume control
7	VOL2	INPUT	Channel 2 volume control
8	SVR	INPUT	Supply Voltage Rejection
9	ST-BY	INPUT	Stand-by
10	P_GND	POWER	Power ground
11	S_GND	POWER	Signal Ground
12	DIAG	OUTPUT	Diagnostics
13	VOL3	INPUT	Channel 3 volume control
14	VOL_OUT	OUTPUT	Channel 3 volume control output
15	IN3	INPUT	Channel 3 input
16	AMP_IN	INPUT	Channel 3 amplifier input
17	VCC2	POWER	Power supply
18	OUT3-	OUTPUT	Channel 3 negative output
19	OUT3+	OUTPUT	Channel 3 positive output

2 Electrical specifications STA543SA

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{op}	Operating Supply Voltage	18	V
V _s	DC Supply Voltage	20	V
P _{tot}	Total Power Dissipation (T _{case} = 70°C)	35	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to150	°C
V _{ctr}	Volume Control DC Voltage	7	V
T _{op}	Operating Temperature	0 to 70	°C

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance Junction to case Max.	2	°C/W
R _{th j-amb}	Thermal Resistance Junction to ambient Max.	45	°C/W

2.3 Electrical characteristics

Table 4. Electrical characteristics

(Refer to the test circuit, V_S = 15V; R_L = 4Ω ; f = 1kHz; T_{amb} = 25°C unless otherwise specified).

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
V _s	Supply Voltage Range		8		18	V
I _d	Total Quiescent Drain Current				150	mA
V _{os}	Output Offset Voltage	Single Ended	-250		250	mV
♥ os	Output Offset Voltage	Bridge	-150		150	111 V
		THD = 10%: $R_L = 4\Omega$				
Po	Output Power	Bridge		24		W
		Single Ended		7		W
		$R_L = 4\Omega$, Single Ended,				
THD	Total Harmonic Distortion	Po =0.1 to 4W		0.4		%
		Bridge, Po =0.1 to10W		0.4		%
		f = 1 kHz Single Ended		70		dB
C _T	Cross Talk	f = 10 kHz Single Ended		60		dB
OT	CIUSS Idik	f = 1 kHz Bridge	F.F.			dB
		f = 10 kHz Bridge	55	60		dB
R _{in}	Input Impedance	Single Ended and Bridge	20	30		kΩ

Table 4. Electrical characteristics (continued) (Refer to the test circuit, $V_S = 15V$; $R_L = 4\Omega$; f = 1kHz; $T_{amb} = 25^{\circ}C$ unless otherwise specified).

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
G_v	Maximum Voltage Gain Internally Fixed	Single Ended, Vol Ctrl (Pins 6 and 7) > 4.5V Bridge, Vol Ctrl (pin 13) > 4.5V (**)	19 25	20 26	21 27	dB dB
A _{Min} Vol	Attenuation at minimum volume	Vol Ctrl < 0.5V	80			dB
G _v	Voltage Gain Match	Single Ended			0.5	dB
		f = 20 to 22 kHz (play, max. volume) Single Ended		500		μV
E _N	Total Output Noise	Bridge f = 20 to 22 kHz (play, max. attenuation) Single Ended Bridge		250 500		μV
SVR	Supply Voltage Rejection	Rg = 0; f = 300Hz	50			dB
A_SB	Stand-by Attenuation		80	90		dB
I_{SB}	ST-BY Current Consumption	V _{ST-BY} = 0 to 1.5V			100	μΑ
V_{SB}	ST-BY In Threshold Voltage				1.5	V
V_{SB}	ST-BY Out Threshold Voltage		3.5			V
I _{stby}	ST-BY Pin Current	Play Mode V _{stby} = 5V Max Driving Current Under Fault			50 5	μA mA
I _{cd off}	Clipping Detector Output Average Current	d = 1% (*)		90		μΑ
I _{cd on}	Clipping Detector Output Average Current	d = 5% (*)		160		μΑ
V _{diag}	Voltage Saturation on DIAG	Sink Current at DIAG = 1mA			0.7	٧
T _W	Thermal Warning			140		°C
T_M	Thermal Muting			150		°C
T _S	Thermal Shut-down			160		°C

Note:

^(*) DIAG Pulled-up to 5V with 10 k Ω ; $R_L = 4\Omega$

^(**) For channel 3: if used the input pin 16 (with 100nF decoupling) instead of pin 15 the voltage gain is always max. and it is independent from Volume Control.

3 Test board and Layout STA543SA

3 Test board and Layout

Figure 3. Test board

Figure 4. PC boards and component layout

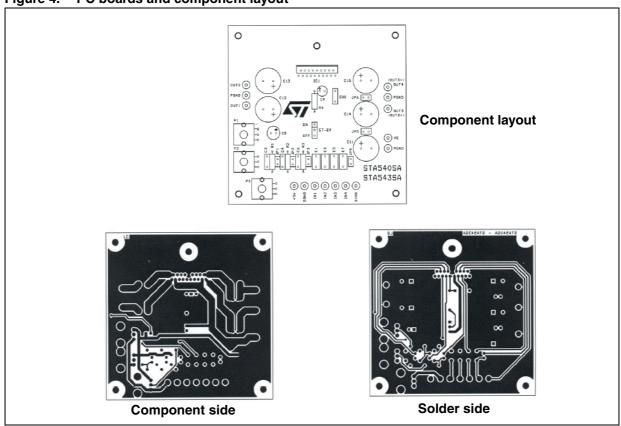
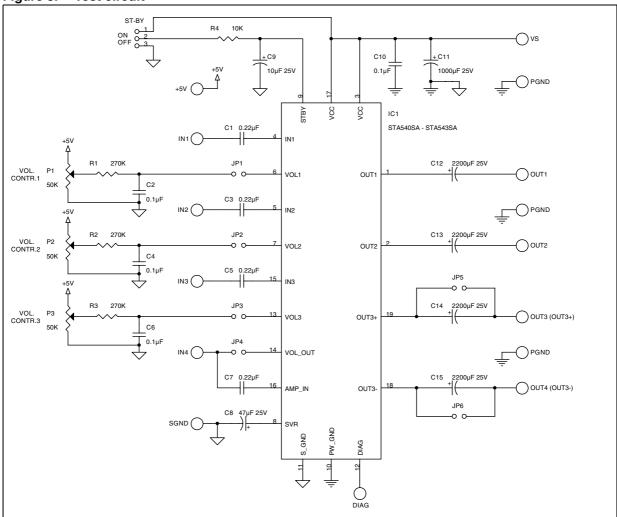



Figure 5. Test circuit

9/23

3 Test board and Layout STA543SA

3.1 Test board parts list

Table 5. Test board parts list

Components	Suggested Value	Purpose
R1, R2, R3	300kΩ	DC Volume CTRL
R4	10kΩ	ST-BY TIME CONSTANT
P1, P2, P3	100kΩ	DC VolCTRL
C2, C4, C6	0.1μF	VolCTRL Bypass
C1,C3,C5,C7	0.22μF	INPUT DC DECOUPLING
C8	47μF	RIPPLE REJECTION
C9	10μF	ST-BY TIME CONSTANT
C10	0.1μF	SUPPLY VOLTAGE BYPASS
C11	1000μF	SUPPLY VOLTAGE BYPASS
C12,C13	2200μF	OUTPUT DC DECOUPLING

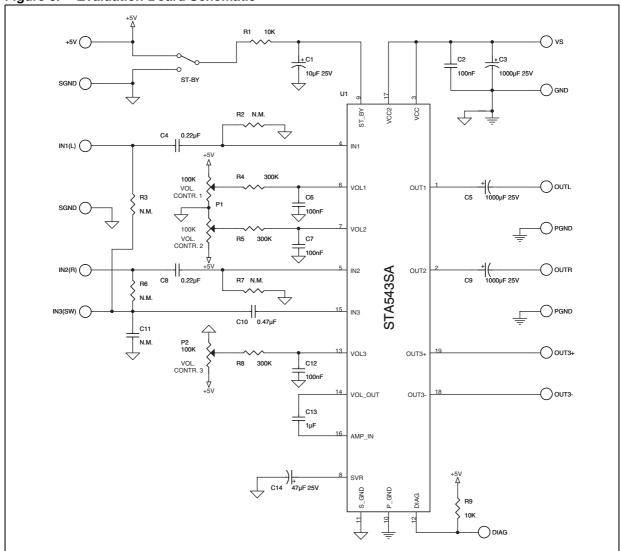
Table 6. Jumper selection

Jumpers Purpose		Connection
JP1, JP2, JP3	DC Volume CTRL	Closed
JP4	Volume CTRL OUT	Closed
JP5, JP6	Bypass DC out Capacitors	Closed connect BTL speaker Between Out 3+ And Out 3-

STA543SA 4 Evaluation Board

4 Evaluation Board

In addition to the Test Board shown in *Figure 3.* intended also to evaluate the STA540SA Amplifier, it is possible to order the dedicated STA543SA evaluation board of *Figure 6.*


The PCB layout (single layer) is shown in Figure 7.

4.1 Crcuit description

With this board it is possible to amplify three analog signals Left, Right, Subwoofer coming from separated sources or to generate the BASS part to be sent to the Subwoofer via a passive crossover network.

All the three channels have a Linear DC volume Control.

Figure 6. Evaluation Board Schematic

11/23

4 Evaluation Board STA543SA

Figure 7. Evaluation Board PCB and Component Layout

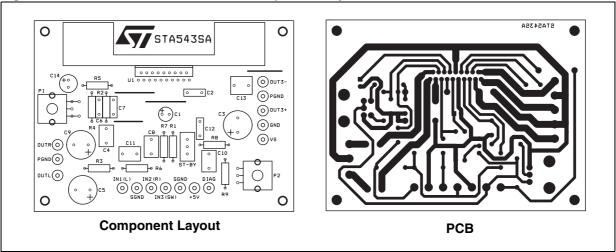


Table 7. Part list

Component	Recommended Value	Purpose	Larger than Recommended value	Smaller then Recommended value
R1	10K	St-By Circuit	Larger On/Off time	Smaller On/Off time
R2,R7	Not mounted	See notes		
R3,R6	Not mounted	See notes		
R4,R5,R8	300K	DC-Vol CTRL		
P1,P2	100K pot.	DC-Vol CTRL		
R10	10K	Open Collector Pull up		
C1	10uF	St-by Circuit	Larger On/Off time	Smaller On/Off time
C2	100nF	Supply Voltage Bypass		Danger of oscillations
C3	C3 1000uF			Danger of oscillations
C4,C8	C4,C8 220nF		Lower low freq Cutoff	Higher low freq Cutoff
C10	C10 470nF Input D0		Lower low freq Cutoff	Higher low freq Cutoff
C11	Not mounted	See notes		
C6,C7,C12	100nF	DC Vol. bypass		
C5,C9	1000uF	Output Dc decoupling	Lower low freq Cutoff	Higher low freq Cutoff
C13	1uF			
C14			Increase of SVR , increase of switch ON time	Degradation of SVR

STA543SA 4 Evaluation Board

4.2 Evaluation Board Functional Description:

4.2.1 Input Cut-off frequency:

The input Cut-off frequency is set by the external capacitor (C4,C8,C10) values and by the internal Input Impedance Rin ($30K\Omega$ typ)

fi (cut-off) =
$$1 / 2\pi$$
 (Ri x Ci)

for the suggested values we have

Left/Right $f i = 1 / 2\pi (30K\Omega \times 220nF) = 24Hz$

SW fi = $1 / 2\pi (30K\Omega \times 470nF) = 11Hz$

4.2.2 Output Cut-off frequency:

The output Cut-off frequency is set by the DC decoupling capacitor placed in series to the speaker (C5,C9) value and by the Speaker Impedance

C5,C9	8ohm	6ohm	4ohm	Unit
100uF	199	265	398	Hz
220uF	90	121	181	Hz
470uF	42	56	85	Hz
1000uF	20	27	40	Hz
2200uF	9	12	18	Hz

4.2.3 Crossover Network for SW:

with this board it's possible, when the Bass Audio Signal to be sent to CH.3 is not available from the Audioprocessor, to generate it with a simple Low Pass Filter composed by an RC network.

The components to be added are R3,R6,C11:

fo =
$$1/2\pi$$
 R3 (R4) x C11

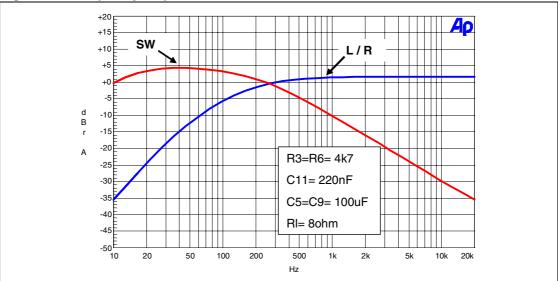
example:

for
$$R3 = R4 = 4K7$$

we have $C11 = 100nF \rightarrow 340Hz$

 $C11 = 220nF \rightarrow 150Hz$

 $C11 = 330nF \rightarrow 100Hz$


It is advisable at this point to modify the value of the DC decoupling capacitors in such a way to send to L and R speakers only the high frequencies.

For example the frequency response shown in *Figure 8.* was obtained with RI = 80hm, C5=C9= 100uF, R3=R6= 4K7 and C11=220nF

Note: In order to give the input freq response less sensitive to the spread in the Input Impedance (Rin parameter), it is possible to add externally two resitors R2,R7 in parallel to Rin.

4 Evaluation Board STA543SA

STA543SA 5 General structure

5 General structure

5.1 Gain Internally Fixed to 20dB in Single Ended, 26dB in Bridge

Advantages of this design choice are in terms of:

- components and space saving
- output noise, supply voltage rejection and distortion optimization.

5.2 Silent Turn On/Off and Muting/Stand-by Function

The stand-by can be easily activated by means of a CMOS level applied to pin 9 through a RC filter.

Under stand-by condition the device is turned off completely (supply current = 1mA typ.; output attenuation= 80dB min.).

Every ON/OFF operation is virtually pop free. Furthemore, at turn-on the device stays in muting condition for a time determined by the value assigned to the SVR capacitor. While in muting the device outputs becomes insensitive to any kinds of signal that may be present at the input terminals. In other words every transient coming from previous stages produces no unplesantacoustic effect to the speakers.

5.3 STAND-BY DRIVING (pin9)

Some precautions have to be taken in the definition of stand-by driving networks: pin 9 cannot be directly driven by a voltage source whose curent capability is higher than 5mA. In pratical cases a series resistance has always to be inserted, having it the double purpose of limiting the current at pin 9 and to smooth down the stand-by ON/OFF transitions - in combination with a capacitor - for output pop prevention.

In any case, a capacitor of at lest 100nF from pin 9 to S-GND, with no resistance in between, is necessary to ensure correct turn-on.

5.4 Output Stage

The fully complementary output stage was made possible by the development of a new component: the ST exclusive power ICV PNP.

A novel design based upon the connection shown in *Figure 9.* has then allowed the full exploitation of its possibilities.

The clear advantages this new approach has over classical output stages are as follows:

5.5 Rail-to-Rail Output Voltage Swing With No Need of Bootstrap Capacitors.

The output swing is limited only by the V_{CEsat} of the output transistors, which are in the range of 0.3Ω (R_{sat}) each.

577

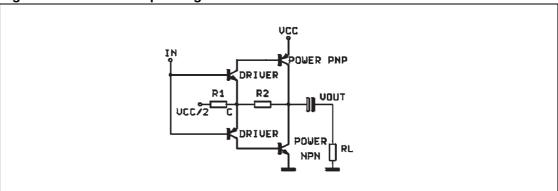
CD00061065 15/23

5 General structure STA543SA

Classical solutions adopting composite PNP-NPN for the upper output stage have higher saturation loss on the top side of the waveform.

This unbalanced saturation causes a significant power reduction. The only way to recover power consists of the addition of expensive bootstrap capacitors.

5.6 Absolute Stability Without Any External Compensation.


Referring to the circuit of *Figure 9*. the gain V_{out}/V_{in} is greater than unity, approximately 1+R2/R1. The DC output (VCC/2) is fixed by an auxiliary amplifier common to all the channels.

By controlling the amount of this local feedback it is possible to force the loop gain $(A^*\beta)$ to less than unity at frequency for which the phase shift is 180° . This means that the output buffer is intrinsically stable and not prone to oscillation.

Most remarkably, the above feature has been achieved in spite of the very low closed loop gain of the amplifier.

In contrast, with the classical PNP-NPN stage, the solution adopted for reducing the gain at high frequencies makes use of external RC networks, namely the Boucherot cells.

Figure 9. The new output stage

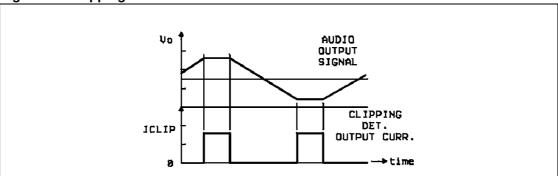
5.7 BUILT-IN Shortcircuit Protection

Reliable and safe operation, in presence of all kinds of short circuit involving the outputs is assured by BUILT-IN protectors. Additionally to the AC/DC short circuit to GND, to VS, across the speaker, a SOFT SHORT condition is signalled out during the TURN-ON PHASE so assuring correct operation for the device it self and for the loudspeaker.

This particular kind of protection acts in such a way to avoid the device is turned on (by ST-BY) when a resistive path (less than 16 ohms) is present between the output and GND. As the involved circuitry is normally disabled when a current higher than 5mA is flowing into the ST-BY pin, it is important, in order not to disable it, to have the external current source driving the STBY pin limited to 5mA.

CD00061065

STA543SA 5 General structure

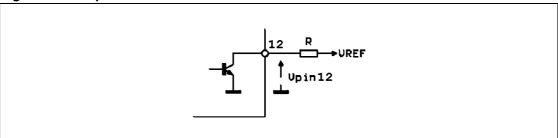

5.7.1 Diagnostic Facilities (Pin 12)

The STA543SA is equipped with a diagnostic circuitry able to detect the following events:

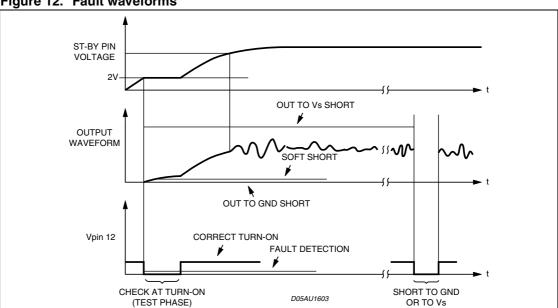
- Clipping in the output signal
- Thermal shutdown
- Output fault:
 - short to GND
 - short to VS
 - soft short at turn on

The information is available across an open collector output (pin 12) through a current sinking when the event is detected

Figure 10. Clipping Detection Waveforms



A current sinking at pin 12 is provided when a certain distortion level is reached at each output. This function allows gain compression facility whenever the amplifier is overdriven.

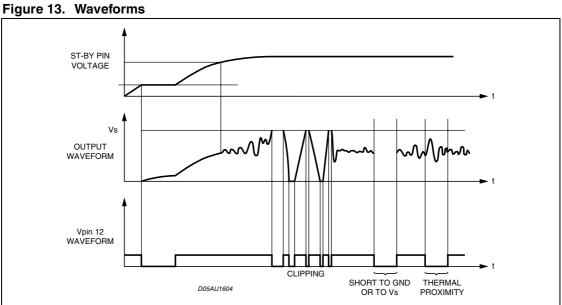

5.7.2 Thermal Shutdown

In this case the output 12 will signal the proximity of the junction temperature to the shutdown threshold. Typically current sinking at pin 12 will start $\sim 10^{\circ}$ C before the shutdown threshold is reached.

Figure 11. Output fault waveforms

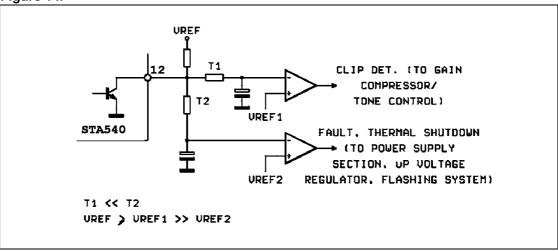
STA543SA 5 General structure

Figure 12. Fault waveforms


Handling of the diagnostic information 5.8

As different kinds of information is available at the same pin (clipping detection, output fault, thermal proximity), this signal must be handled properly in order to discriminate the event.

This could be done taking into account the different timing of the diagnostic output during each case.


Normally the clip detector signalling produces a

low level at out 12 that present under faulty conditions: based on this assumption an interface circuitry to differentiate the information is the represented in the schematic of Figure 14.

STA543SA 5 General structure

Figure 14.

5.9 PCB-Layout Grounding (general rules)

The device has 2 distinct ground leads, P-GND (POWER GROUND) and S-GND (SIGNAL GROUND) which are practically disconnected from each other at chip level. Proper operation requires that P-GND and S-GND leads be connected together on the PCB-layout by means of reasonably low-resistance tracks.

As for the PCB-ground configuration, a star-like arrangement whose center is represented by the supply-filtering electrolytic capacitor ground is highly advisable. In such context, at least 2 separate paths have to be provided, one for P-GND and one for S-GND.

The correct ground assignments are as follows:

- STANDBY CAPACITOR, pin 9 (or any other standby driving networks): on S-GND
- SVR CAPACITOR (pin 8): on S-GND and to be placed as close as possible to the device.
- INPUT SIGNAL GROUND (from active/passive signal processor stages): on S-GND.
- SUPPLY FILTERING CAPACITORS (pins 3,17): on P-GND. The (-) terminal of the electrolytic capacitor has to be directly tied to the battery (-) line and this should represent the starting point for all the ground paths.

6 Thermal Information STA543SA

6 Thermal Information

In order to avoid the thermal protection intervention that is placed at T_j =150°C (Thermal Muting) or T_j =160°C (Thermal Shut-down), it is important the Heat Sinker R_{TH} (°C/W) dimensioning.

The parameters that influence the dimensioning are:

- Maximum dissipated power for the device (P_{d max})
- Max.Thermal resistance Junction to case (R_{THi-c})
- Max. Ambient temperature Tamb. Max

There is also an additional term that depends on the Iq (quiescent current).

6.1 Example (A): 2 channels Single Ended + 1Ch (BTL)

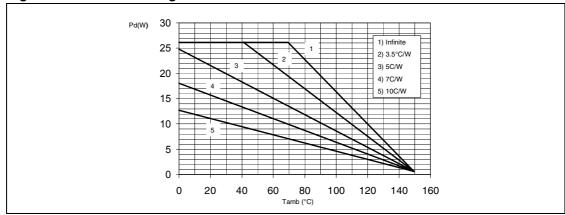
$$V_{CC}$$
= 14.4V, R_{load} = 2x 4 Ω (SE) + 1x 4 Ω (BTL)

Pout = $2 \times 7W + 1 \times 24W$

$$P_{dmax} = 2 \cdot \frac{Vcc^2}{2\pi^2 R1} + \frac{2Vcc^2}{\pi^2 R1} = 2 \cdot 2.62 + 10.5 = 15.76W$$

(Heat sink)
$$R_{THc-a} = \frac{150 - T_{ambmax}}{P_{dmax}} - R_{THj-c} = \frac{150 - 50}{15.76} - 2 = 4.3 \, ^{\circ}C/W$$

NOTE: The values found gives an heatsinker that is dimensioned to sustain the max. dissipated power, but as explained in the Application Note (AN1965) the heatsinker can be smaller when we consider the real application where a musical program is used.

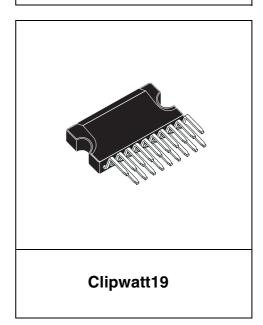

If we consider the so called "Average Listening Dissipated Power" concept we obtain a value that is about 40% less respect the Pdmax (see AN1965 for reference).

So in the examples (A) and we will obtain the value for the Average Listening Dissipated Power that is respectively:

-Example (A) : 15.76 W - 40% = 9.45W that gives
$$R_{THc-a} = 8.5$$
°C/W

In Figure 15. is shown the Power Derating curve for the device

Figure 15. Power Derating Curve


STA543SA 7 Package information

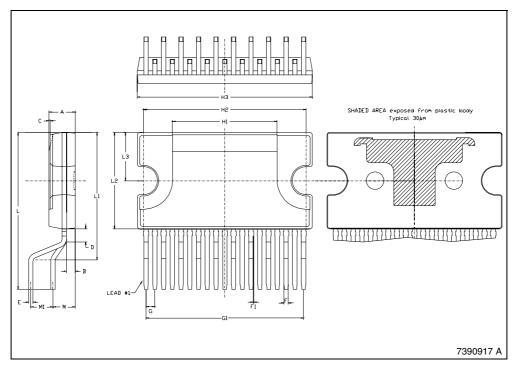

7 Package information

Figure 16. Clipwatt 19 Mechanical Data & Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			3.2			0.126
В			1.05			0.041
С		0.15			0.006	
D		1.50			0.061	
Е	0.49		0.55	0.019		0.022
F	0.47	0.50	0.58	0.018		0.020
F1			0.1			0.004
G	0.87	1.00	1.13	0.034	0.039	0.044
G1	17.87	18.0	18.13	0.703	0.708	0.713
H1		12.0			0.480	
H2		18.6			0.732	
НЗ	19.85			0.781		
L		17.9			0.704	
L1		14.55			0.572	
L2	10.7	11.0	11.2	0.421	0.433	0.441
L3		5.50			0.217	
М		2.54			0.100	
M1		2.54			0.100	

OUTLINE AND MECHANICAL DATA

8 Revision history STA543SA

8 Revision history

Date	Revision	Changes
12-July-2005	1	Initial release.
28-July-2005	2	Modified figgs 6 and 7.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

CD00061065 23/23