

Safety Standard Certified Ceramic Capacitors/ High Voltage Ceramic Capacitors

muRata *Innovator
in Electronics*

Murata
Manufacturing Co., Ltd.

EU RoHS Compliant

- All the products in this catalog comply with EU RoHS.
- EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment."
- For more details, please refer to our website 'Murata's Approach for EU RoHS' (<http://www.murata.com/info/rohs.html>).

CONTENTS

Part Numbering	2
1 Type KY (Basic Insulation) -Class X1, Y2- (Recommend)	5
2 Type KH (Basic Insulation) -Class X1, Y2-	8
3 Type KX New Small Size (Reinforced Insulation) -Class X1, Y1- (Recommend)	10
4 Type KX (Reinforced Insulation) -Class X1, Y1-	13
● Type KY/KH/KX Specifications and Test Methods	15
5 DEJ Series -Based on the Electrical Appliance and Material Safety Law of Japan-	19
● DEJ Series Specifications and Test Methods	20
Safety Certified Ceramic Capacitors Characteristics Data (Typical Example)	23
Safety Certified Ceramic Capacitors Packaging	26
Safety Certified Ceramic Capacitors ⚠Caution	28
Safety Certified Ceramic Capacitors Notice	31
6 DES Series (125°C Guaranteed/Low-dissipation Factor/DC500V-1kV)	32
● DES Series Specifications and Test Methods	34
7 DEH Series (125°C Guaranteed/Low-dissipation Factor/DC500V-3.15kV)	36
● DEH Series Specifications and Test Methods	39
8 DEA Series (125°C Guaranteed/Class 1/DC1k-3.15kV)	41
● DEA Series Specifications and Test Methods	44
9 DEB Series (Class 2/DC1k-3.15kV)	46
● DEB Series Specifications and Test Methods	49
10 DEC Series (Class 1, 2/DC6.3kV)	51
● DEC Series Specifications and Test Methods	53
11 DEF Series (Only for LCD Backlight Inverter Circuit/6.3kVp-p)	55
● DEF Series Specifications and Test Methods	57
High Voltage Ceramic Capacitors Characteristics Data (Typical Example)	59
High Voltage Ceramic Capacitors Packaging	60
High Voltage Ceramic Capacitors ⚠Caution	62
High Voltage Ceramic Capacitors Notice	69
12 Type KJ -Class X1, Y2- (For Automotive Use/AC Line Filter of PHEV/EV Charger)	70
● Type KJ Specifications and Test Methods	71
Safety Certified Ceramic Capacitors for Automotive Characteristics Data (Typical Example)	75
Safety Certified Ceramic Capacitors for Automotive Packaging	76
Safety Certified Ceramic Capacitors for Automotive ⚠Caution	77
Safety Certified Ceramic Capacitors for Automotive Notice	80
Safety Certified Ceramic Capacitors/High Voltage Ceramic Capacitors ISO9000 Certifications	81

● Part Numbering

Safety Standard Certified Ceramic Capacitors

(Part Number) **DE 2 E3 KY 102 M N3 A F**
 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

① Product ID

Product ID		
DE	Safety Standard Certified Ceramic Capacitors/ High Voltage Ceramic Capacitors	

② Series Category

Code	Outline	Contents
1	Safety Standard Certified	Class X1, Y1
2		Class X1, Y2
J	250Vac (r.m.s.)	-Products based on the Electrical Appliance and Material Safety Law of Japan-

For Electrical Appliance and Material Safety Law of Japan, the first three digits (①Product ID and ②Series Category) express "Series Name."

For Safety Certified Capacitors, the first three digits express product code. The fourth figure expresses certified type shown in ④Safety Standard Certified Type column.

③ Temperature Characteristics

Code	Temperature Characteristics	Cap. Change or Temp. Coeff.	Temperature Range
B3	B	±10%	-25 to +85°C
E3	E	+20%, -55%	
F3	F	+30%, -80%	
1X	SL	+350 to -1000ppm/°C	+20 to +85°C

④ Rated Voltage/Safety Standard Certified Type

Code	Rated Voltage
E2	250Vac (r.m.s.)
KH	X1, Y2; 250Vac (r.m.s.) (Safety Standard Certified Type KH)
KY	X1, Y2; 250Vac (r.m.s.), 300Vac (r.m.s.) (Safety Standard Certified Type KY)
KX	X1, Y1; 250Vac (r.m.s.), 300Vac (r.m.s.) (Safety Standard Certified Type KX)

⑤ Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two numbers.

⑥ Capacitance Tolerance

Code	Capacitance Tolerance
J	±5%
K	±10%
M	±20%
Z	+80%, -20%

⑦ Lead Style

Code	Lead Style	Dimensions (mm)		
		Lead Spacing	Lead Diameter	Pitch of Components
A2	Vertical Crimp Long	5	$\phi 0.6 \pm 0.05$	—
A3		7.5		
A4		10		
A5		10		
B2	Vertical Crimp Short	5	$\phi 0.6 \pm 0.05$	—
B3		7.5		
B4		10		
B5		10		
C3	Straight Long	7.5	$\phi 0.6 \pm 0.05$	—
D3	Straight Short	7.5	$\phi 0.6 \pm 0.05$	—
N2	Vertical Crimp Taping	5	$\phi 0.6 \pm 0.05$	12.7
N3		7.5		15
N4		10		25.4
N5		10		25.4
N7		7.5		30
P3	Straight Taping	7.5	$\phi 0.6 \pm 0.05$	15

⑧ Packaging

Code	Packaging
A	Ammo Pack Taping
B	Bulk

⑨ Individual Specification Code

For part number that cannot be identified without "Individual Specification," it is added at the end of part number, expressed by three-digit alphanumerics.

⑩ Halogen-free Compatible Product

High Voltage Ceramic Capacitors (500V-6.3kV)

(Part Number)

DE	B	B3	3A	102	K	N2	A	
1	2	3	4	5	6	7	8	9

① Product ID

Product ID	
DE	High Voltage Ceramic Capacitors (500V-6.3kV) / Safety Standard Certified Ceramic Capacitors

② Series Category

Code	Outline	Contents
A	High Voltage	Class 1 (Char. SL) DC1-3.15kV Rated
B		Class 2 DC1-3.15kV Rated
C		Class 1, 2 DC6.3kV Rated
H		High Temperature Guaranteed, Low-dissipation Factor (Char. R, C)
S		High Temperature Guaranteed, Low-dissipation Factor (Char. D)
F		LCD Backlight Inverter Circuit

The first three digits (①Product ID and ②Series Category) express "Series Name."

③ Temperature Characteristics

Code	Temperature Characteristics	Cap. Change or Temp. Coeff.	Temperature Range
B3	B	±10%	-25 to +85°C
E3		+20%, -55%	
F3	F	+30%, -80%	-25 to +85°C
C3		±20%	
	C	+15%, -30%	+85 to +125°C
R3		±15%	-25 to +85°C
	R	+15%, -30%	+85 to +125°C
D3		+20%, -30%	-25 to +125°C
1X	SL	+350 to -1000ppm/°C	+20 to +85°C
2C	CH	0±60ppm/°C	+20 to +85°C

④ Rated Voltage

Code	Rated Voltage
2H	500Vdc
3A	1kVdc
3D	2kVdc
3F	3.15kVdc
3J	6.3kVdc
LH	6.3kVp-p

⑤ Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two numbers.

⑥ Capacitance Tolerance

Code	Capacitance Tolerance
C	±0.25pF
D	±0.5pF
J	±5%
K	±10%
Z	+80%, -20%

⑦ Lead Style

Code	Lead Style	Dimensions (mm)		
		Lead Spacing	Lead Diameter	Pitch of Components
A2	Vertical Crimp Long	5	ø0.6±0.05	—
A3		7.5		
A4		10		
B2/J2	Vertical Crimp Short	5	ø0.6±0.05	—
B3/J3		7.5		
B4		10		
C1	Straight Long	5	ø0.5±0.05	—
C3		7.5	ø0.6±0.05	
C4		10	ø0.5±0.05	
CD	Straight Short	7.5	ø0.5±0.05	—
D1		5	ø0.5±0.05	
D3		7.5	ø0.6±0.05	
DD	Vertical Crimp Taping	7.5	ø0.5±0.05	12.7
N2		5	ø0.6±0.05	
N3		7.5	15	
N7		7.5	30	
P2	Straight Taping	5	ø0.6±0.05	12.7
P3		7.5		15

⑧ Packaging

Code	Packaging
A	Ammo Pack Taping
B	Bulk

⑨ Individual Specification Code

For part number that cannot be identified without "Individual Specification," it is added at the end of part number, expressed by three-digit alphanumerics.

Safety Standard Certified Ceramic Capacitors for Automotive

(Part Number)

DE 6 E3 KJ 102 M N3 A

1 2 3 4 5 6 7 8 9

① Product ID

Product ID								
DE	Safety Standard Certified Ceramic Capacitors/ High Voltage Ceramic Capacitors							

② Series Category

Code	Outline	Contents
6	Safety Standard Certified	Class X1, Y2

The first three digits express product code. The fourth figure expresses certified type shown in ④ Safety Standard Certified Type column.

③ Temperature Characteristics

Code	Temperature Characteristics	Cap. Change or Temp. Coeff.	Temperature Range
B3	B	±10%	–25 to +85°C
E3	E	+20%, –55%	

④ Rated Voltage/Safety Standard Certified Type

Code	Rated Voltage
KJ	X1, Y2; 300Vac (r.m.s.), (Safety Standard Certified Type KJ)

⑤ Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two numbers.

⑥ Capacitance Tolerance

Code	Capacitance Tolerance
K	±10%
M	±20%

⑦ Lead Style

Code	Lead Style	Dimensions (mm)		
		Lead Spacing	Lead Diameter	Pitch of Components
A3	Vertical Crimp Long	7.5	ø0.6±0.05	—
B3	Vertical Crimp Short			—
N3	Vertical Crimp Taping			15

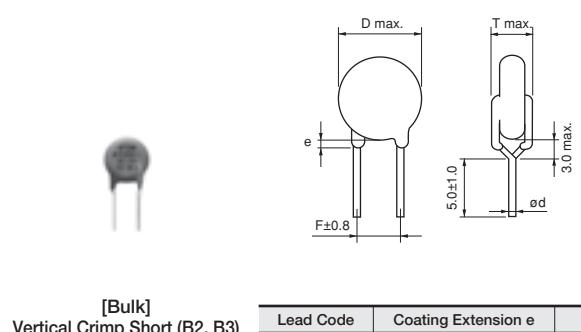
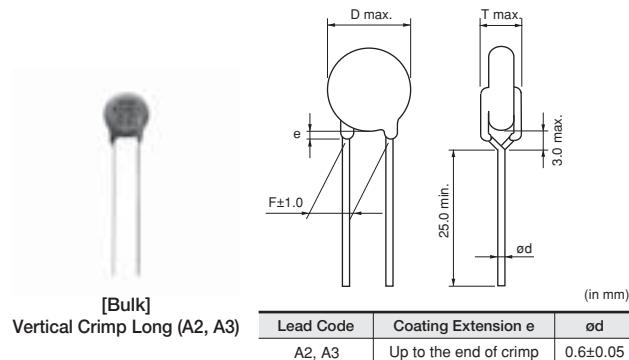
⑧ Packaging

Code	Packaging
A	Ammo Pack Taping
B	Bulk

⑨ Individual Specification Code

For part number that cannot be identified without "Individual Specification," it is added at the end of part number, expressed by three-digit alphanumerics.

Safety Standard Certified Ceramic Capacitors



muRata

1

Type KY (Basic Insulation) -Class X1, Y2- (Recommend)

■ Features

1. Compact size; diameter 25% less than Type KH.
2. Operating temperature range guaranteed up to 125 degrees C.
3. Dielectric strength:
 AC2000V (for lead spacing F=5mm)
 AC2600V (for lead spacing F=7.5mm)
4. Class X1/Y2 capacitors certified by
 UL/CSA/VDE/BSI/SEMKO/DEMKO/FIMKO/NEMKO/
 ESTI/NSW/CQC.
5. Coated with flame-retardant epoxy resin
 (conforming to UL94V-0 standard).
 We recommend a halogen-free product* as our standard item.
- * Cl=900ppm max., Br=900ppm max. and
 Cl+Br=1500ppm max.
6. Taping available for automatic insertion.
7. AC300V Rated Voltage item are newly added.

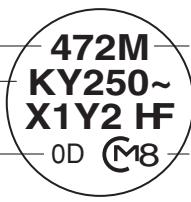
■ Applications

1. Ideal for use as X/Y capacitors for AC line filters and primary-secondary coupling on switching power supplies and AC adapters.
2. Ideal for use on D-A isolation and noise absorption for DAA modems without transformers.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

■ Standard Certification

	Standard No.	Certified No.	Rated Voltage
UL	UL60384-14	E37921	250Vac (r.m.s.)
CSA	CSA E60384-14	1283280	
VDE	IEC 60384-14 EN 60384-14	40006273	
BSI	EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14	KM 37901	
SEMKO	1207848		
DEMKO	IEC 60384-14	D01002	
FIMKO	EN 60384-14	24197	
NEMKO	P12215094		
ESTI	12.0102		
NSW	IEC 60384-14 AS3250	6824	
CQC	GB/T14472	CQC06001017446 CQC06001017447	


- The certification number might change due to revision of the application standard and changes in the range of acquisition.
- Please contact us when the certification of South Korean Safety Standard is necessary.

	Standard No.	Certified No.	Rated Voltage
UL	UL60384-14	E37921	300Vac (r.m.s.)
CSA	CSA E60384-14	1283280	
VDE	IEC 60384-14 EN 60384-14	40006273	
BSI	EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14	KM 37901	
SEMKO	1207848		
DEMKO	IEC 60384-14	D01002	
FIMKO	EN 60384-14	24197	
NEMKO	P12215094		
ESTI	12.0102		
NSW	IEC 60384-14 AS3250	6824	
CQC	IEC 60384-14	CQC12001079706 CQC12001079940	

- The certification number might change due to revision of the application standard and changes in the range of acquisition.

muRata

■ Marking

Example	Item
	① Type Designation KY
	② Nominal Capacitance (Under 100pF: Actual value, 100pF and over: 3 digit system)
	③ Capacitance Tolerance
	④ Company Name Code C8 : Made in Taiwan C15 : Made in Thailand
	⑤ Manufactured Date Code
	Class Code X1Y2
	Rated Voltage Mark 250~, 300~
	Halogen Free Mark HF

Rated Voltage 250Vac

● Lead Spacing F=7.5mm

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE21XKY100J□□□M02F	250Vac(r.m.s.)	SL	10pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY150J□□□M02F	250Vac(r.m.s.)	SL	15pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY220J□□□M02F	250Vac(r.m.s.)	SL	22pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY330J□□□M02F	250Vac(r.m.s.)	SL	33pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY470J□□□M02F	250Vac(r.m.s.)	SL	47pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE21XKY680J□□□M02F	250Vac(r.m.s.)	SL	68pF±5%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY101K□□□M02F	250Vac(r.m.s.)	B	100pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY151K□□□M02F	250Vac(r.m.s.)	B	150pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY221K□□□M02F	250Vac(r.m.s.)	B	220pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY331K□□□M02F	250Vac(r.m.s.)	B	330pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY471K□□□M02F	250Vac(r.m.s.)	B	470pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY681K□□□M02F	250Vac(r.m.s.)	B	680pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY102M□□□M02F	250Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY152M□□□M02F	250Vac(r.m.s.)	E	1500pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY222M□□□M02F	250Vac(r.m.s.)	E	2200pF±20%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY332M□□□M02F	250Vac(r.m.s.)	E	3300pF±20%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY472M□□□M02F	250Vac(r.m.s.)	E	4700pF±20%	10.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2F3KY103M□□□M02F	250Vac(r.m.s.)	F	10000pF±20%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Individual specification code "M02" expresses "simplicity marking and guarantee of dielectric strength between lead wires: AC2600V."

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KY) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

● Lead Spacing F=5mm

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE21XKY100J□□□M01F	250Vac(r.m.s.)	SL	10pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY150J□□□M01F	250Vac(r.m.s.)	SL	15pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY220J□□□M01F	250Vac(r.m.s.)	SL	22pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY330J□□□M01F	250Vac(r.m.s.)	SL	33pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY470J□□□M01F	250Vac(r.m.s.)	SL	47pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE21XKY680J□□□M01F	250Vac(r.m.s.)	SL	68pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY101K□□□M01F	250Vac(r.m.s.)	B	100pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY151K□□□M01F	250Vac(r.m.s.)	B	150pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY221K□□□M01F	250Vac(r.m.s.)	B	220pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY331K□□□M01F	250Vac(r.m.s.)	B	330pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY471K□□□M01F	250Vac(r.m.s.)	B	470pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2B3KY681K□□□M01F	250Vac(r.m.s.)	B	680pF±10%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY102M□□□M01F	250Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A

Continued on the following page.

Continued from the preceding page.

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE2E3KY152M□□□M01F	250Vac(r.m.s.)	E	1500pF±20%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY222M□□□M01F	250Vac(r.m.s.)	E	2200pF±20%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY332M□□□M01F	250Vac(r.m.s.)	E	3300pF±20%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DE2E3KY472M□□□M01F	250Vac(r.m.s.)	E	4700pF±20%	10.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Individual specification code "M01" expresses "simplicity marking and guarantee of dielectric strength between lead wires: AC2000V."

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KY) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Rated Voltage 300Vac

● Lead Spacing F=7.5mm

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE2B3KY101K□□□U02F	300Vac(r.m.s.)	B	100pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY151K□□□U02F	300Vac(r.m.s.)	B	150pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY221K□□□U02F	300Vac(r.m.s.)	B	220pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY331K□□□U02F	300Vac(r.m.s.)	B	330pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY471K□□□U02F	300Vac(r.m.s.)	B	470pF±10%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2B3KY681K□□□U02F	300Vac(r.m.s.)	B	680pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY102M□□□U02F	300Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY152M□□□U02F	300Vac(r.m.s.)	E	1500pF±20%	7.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY222M□□□U02F	300Vac(r.m.s.)	E	2200pF±20%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY332M□□□U02F	300Vac(r.m.s.)	E	3300pF±20%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2E3KY472M□□□U02F	300Vac(r.m.s.)	E	4700pF±20%	10.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DE2F3KY103M□□□U02F	300Vac(r.m.s.)	F	10000pF±20%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Individual specification code "U02" expresses "simplicity marking and guarantee of dielectric strength between lead wires: AC2600V."

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KY) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Safety Standard Certified Ceramic Capacitors

muRata

Type KH (Basic Insulation) -Class X1, Y2-

2

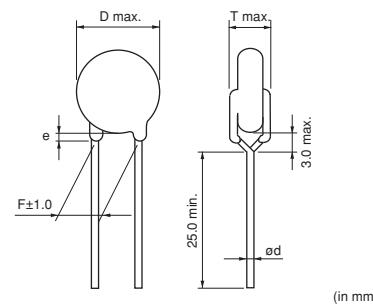
■ Features

1. Operating temperature range guaranteed up to 125 degrees C.
2. Dielectric strength: AC2600V
3. Class X1/Y2 capacitors certified by UL/CSA/VDE/BSI/SEMKO/DEMKO/FIMKO/NEMKO/ESTI/NSW.
4. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard).
- Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
5. Taping available for automatic insertion.

■ Applications

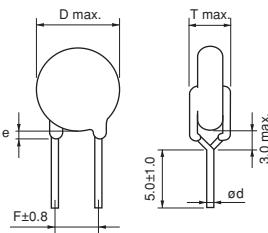
Ideal for use as X/Y capacitors for AC line filters and primary-secondary coupling on switching power supplies and AC adapters.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.


■ Standard Certification

	Standard No.	Certified No.	Rated Voltage
UL	UL60384-14	E37921	250Vac (r.m.s.)
CSA	CSA E60384-14	1343805	
VDE	IEC 60384-14 EN 60384-14	40002796	
BSI	EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14	KM 37901	
SEMKO		1200285	
DEMKO	IEC 60384-14	D01006	
FIMKO		24195	
NEMKO	EN 60384-14	P12215095	
ESTI		12.0104	
NSW	IEC 60384-14 AS3250	6529	

- The certification number might change due to revision of the application standard and changes in the range of acquisition.
- Please contact us when the certification of Chinese Safety Standard or South Korean Safety Standard is necessary.


[Bulk] Vertical Crimp Long (A3)

Lead Code	Coating Extension e	ød
A3	Up to the end of crimp	0.6±0.05

[Bulk] Vertical Crimp Short (B3)

Lead Code	Coating Extension e	ød
B3	Up to the end of crimp	0.6±0.05

■ Marking

Example	Item
① KH472M X1Y2 BSI DE S F M8 MJS02 250~ N 65 D	① Type Designation KH
② Nominal Capacitance (Marked with 3 figures)	② Nominal Capacitance (Marked with 3 figures)
③ Capacitance Tolerance	③ Capacitance Tolerance
④ Company Name Code G16 : Made in Taiwan C15 : Made in Thailand	④ Company Name Code G16 : Made in Taiwan C15 : Made in Thailand
⑤ Manufactured Date Code	⑤ Manufactured Date Code
UL Approval Mark	UL Approval Mark
CSA Approval Mark	CSA Approval Mark
VDE Approval Mark	VDE Approval Mark
BSI Approval Mark	BSI Approval Mark
SEMKO Approval Mark	SEMKO Approval Mark
DEMKO Approval Mark	DEMKO Approval Mark
FIMKO Approval Mark	FIMKO Approval Mark
NEMKO Approval Mark	NEMKO Approval Mark
ESTI Approval Mark	ESTI Approval Mark
Class Code	X1Y2
Rated Voltage Mark	250~

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE2B3KH101K□□□	250Vac(r.m.s.)	B	100pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2B3KH151K□□□	250Vac(r.m.s.)	B	150pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2B3KH221K□□□	250Vac(r.m.s.)	B	220pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2B3KH331K□□□	250Vac(r.m.s.)	B	330pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2B3KH471K□□□	250Vac(r.m.s.)	B	470pF±10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2B3KH681K□□□	250Vac(r.m.s.)	B	680pF±10%	9.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2E3KH102M□□□	250Vac(r.m.s.)	E	1000pF±20%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2E3KH152M□□□	250Vac(r.m.s.)	E	1500pF±20%	9.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2E3KH222M□□□	250Vac(r.m.s.)	E	2200pF±20%	10.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2E3KH332M□□□	250Vac(r.m.s.)	E	3300pF±20%	12.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2E3KH472M□□□	250Vac(r.m.s.)	E	4700pF±20%	13.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE2F3KH103M□□□	250Vac(r.m.s.)	F	10000pF±20%	16.0mm max.	7.5	7.0mm max.	A3B	B3B	N7A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KH) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Safety Standard Certified Ceramic Capacitors

muRata

Type KX New Small Size (Reinforced Insulation) -Class X1, Y1- (Recommend)

3

■ Features

1. We design capacitors much more compact in size than current Type KX, having reduced the diameter by 20% max.
2. Operating temperature range guaranteed up to 125 degrees C.
3. Dielectric strength: AC4000V
4. Class X1/Y1 capacitors certified by UL/CSA/VDE/BSI/SEMKO/DEMKO/FIMKO/NEMKO/ESTI/IMQ/CQC.
5. Can be used with a component in appliances requiring reinforced insulation and double insulation based on UL1492, IEC60065 and IEC60950.
6. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard).
 We recommend a halogen-free product* as our standard item.
 * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
7. Taping available for automatic insertion.
8. AC300V Rated Voltage item are newly added.

■ Applications

1. Ideal for use as X/Y capacitors for AC line filters and primary-secondary coupling on switching power supplies and AC adapters.
2. Ideal for use on D-A isolation and noise absorption for DAA modems without transformers.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

*: Small sized Type KX differs from current Type KX in electrical characteristics, such as the voltage dependency, capacitance temperature dependency, and Dielectric strength.

Therefore, before replacing current Type KX, please make a performance check by equipment. Please also refer to Notice (Rating) item 2, "Performance Check by Equipment," below.

[Bulk]
 Vertical Crimp Long (A4)

Lead Code	Coating Extension e	ød
A4	Up to the end of crimp	0.6±0.05

(in mm)

[Bulk]
 Vertical Crimp Short (B4)

Lead Code	Coating Extension e	ød
B4	Up to the end of crimp	0.6±0.05

(in mm)

■ Standard Certification Rated Voltage (AC250V) B, E Char.

	Standard No.	Certified No.
UL	UL60384-14	E37921
CSA	CSA E60384-14	1343810
VDE	IEC 60384-14 EN 60384-14	40002831
BSI	EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14	KM 37901
SEMKO		1200074
DEMKO	IEC 60384-14	D01004
FIMKO	EN 60384-14	24191
NEMKO		P12215096
ESTI		12.0094
IMQ	EN 60384-14	V4069
CQC	GB/T14472	CQC02001001556 CQC04001011643

- The certification number might change due to revision of the application standard and changes in the range of acquisition.
- Please contact us when the certification of South Korean Safety Standard is necessary.

■ Standard Certification Rated Voltage (AC300V) B, E Char.

	Standard No.	Certified No.
UL	UL60384-14	E37921
CSA	CSA E60384-14	1343810
VDE	IEC 60384-14 EN 60384-14	40002831
BSI	EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14	KM 37901
SEMKO		1200074
DEMKO	IEC 60384-14	D01004
FIMKO	EN 60384-14	24191
NEMKO		P12215096
ESTI		12.0094
IMQ	EN 60384-14	V4069
CQC	IEC 60384-14	CQC12001079735 CQC12001079941

- The certification number might change due to revision of the application standard and changes in the range of acquisition.

■ Marking Rated Voltage (AC250V) B, E Char.

Example	Item
① Type Designation KX	
② Nominal Capacitance (3 digit system)	
③ Capacitance Tolerance	
④ Company Name Code C8 : Made in Taiwan C15 : Made in Thailand	
⑤ Manufactured Date Code	
Class Code X1Y1	
Rated Voltage Mark 250~	
Halogen Free Mark HF	

■ Marking Rated Voltage (AC300V) B, E Char.

Example	Item
① Type Designation KX	
② Nominal Capacitance (3 digit system)	
③ Capacitance Tolerance	
④ Company Name Code C8 : Made in Taiwan C15 : Made in Thailand	
⑤ Manufactured Date Code	
Class Code X1Y1	
Rated Voltage Mark 300~	
Halogen Free Mark HF	

Rated Voltage 250Vac

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE1B3KX101K□□□N01F	250Vac(r.m.s.)	B	100pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX151K□□□N01F	250Vac(r.m.s.)	B	150pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX221K□□□N01F	250Vac(r.m.s.)	B	220pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX331K□□□N01F	250Vac(r.m.s.)	B	330pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX471K□□□N01F	250Vac(r.m.s.)	B	470pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX681K□□□N01F	250Vac(r.m.s.)	B	680pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX102M□□□N01F	250Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX152M□□□N01F	250Vac(r.m.s.)	E	1500pF±20%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX222M□□□N01F	250Vac(r.m.s.)	E	2200pF±20%	9.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX332M□□□N01F	250Vac(r.m.s.)	E	3300pF±20%	10.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX472M□□□N01F	250Vac(r.m.s.)	E	4700pF±20%	12.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Please contact us when less than 100pF capacitance product is necessary.

Rated Voltage 300Vac

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE1B3KX101K□□□P01F	300Vac(r.m.s.)	B	100pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX151K□□□P01F	300Vac(r.m.s.)	B	150pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX221K□□□P01F	300Vac(r.m.s.)	B	220pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX331K□□□P01F	300Vac(r.m.s.)	B	330pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX471K□□□P01F	300Vac(r.m.s.)	B	470pF±10%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1B3KX681K□□□P01F	300Vac(r.m.s.)	B	680pF±10%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX102M□□□P01F	300Vac(r.m.s.)	E	1000pF±20%	7.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX152M□□□P01F	300Vac(r.m.s.)	E	1500pF±20%	8.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX222M□□□P01F	300Vac(r.m.s.)	E	2200pF±20%	9.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX332M□□□P01F	300Vac(r.m.s.)	E	3300pF±20%	10.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A
DE1E3KX472M□□□P01F	300Vac(r.m.s.)	E	4700pF±20%	12.0mm max.	10.0	7.0mm max.	A4B	B4B	N4A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Safety Standard Certified Ceramic Capacitors

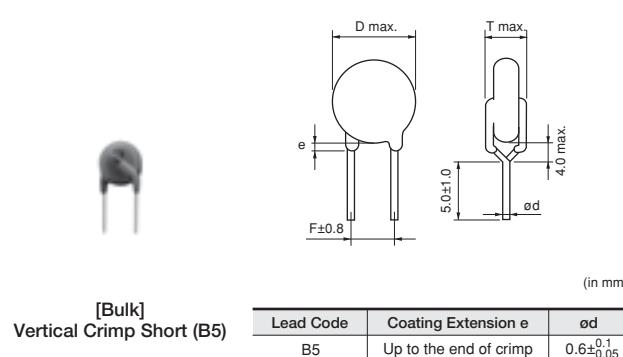
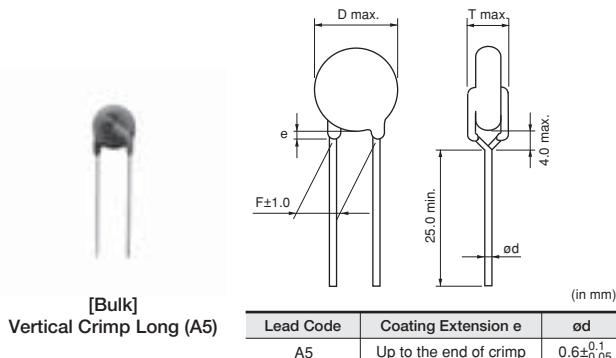
muRata

Type KX (Reinforced Insulation) -Class X1, Y1-

■ Features

1. Operating temperature range guaranteed up to 125 degrees C.
2. Dielectric strength: AC4000V
3. Class X1/Y1 capacitors certified by UL/CSA/VDE/BSI/SEMKO/DEMKO/FIMKO/NEMKO/ESTI/IMQ.
4. Can be used with a component in appliances requiring reinforced insulation and double insulation based on UL1492, IEC60065 and IEC60950.
5. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard).
- Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
6. Taping available for automatic insertion.

■ Applications



Ideal for use as X/Y capacitors for AC line filters and primary-secondary coupling on switching power supplies and AC adapters.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

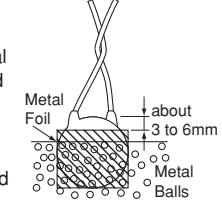
■ Standard Certification

	Standard No.	Certified No.	Rated Voltage
UL	UL60384-14	E37921	250Vac (r.m.s.)
CSA	CSA E60384-14	1343810	
VDE	IEC 60384-14 EN 60384-14	40002831	
BSI	EN 60065 (8.8, 14.2) IEC 60384-14 EN 60384-14	KM 37901	
SEMKO		1200074	
DEMKO	IEC 60384-14	D01004	
FIMKO	EN 60384-14	24191	
NEMKO		P12215096	
ESTI		12.0094	
IMQ	EN 60384-14	V4069	

- The certification number might change due to revision of the application standard and changes in the range of acquisition.
- Please contact us when the certification of Chinese Safety Standard or South Korean Safety Standard is necessary.

■ Marking

Example	Item
①	Type Designation KX
②	Nominal Capacitance (Under 100pF: Actual value, 100pF and over: Marked with 3 figures)
③	Capacitance Tolerance
④	Company Name Code ⌚ : Made in Taiwan ⚓15 : Made in Thailand
⑤	Manufactured Date Code
UL Approval Mark	UL
CSA Approval Mark	CSA
VDE Approval Mark	VDE
BSI Approval Mark	BSI
SEMKO Approval Mark	SEMKO
DEMKO Approval Mark	DEMKO
FIMKO Approval Mark	FIMKO
NEMKO Approval Mark	NEMKO
ESTI Approval Mark	ESTI
IMQ Approval Mark	IMQ
Class Code	X1Y1
Rated Voltage Mark	250~


Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE1B3KX101K□□□	250Vac(r.m.s.)	B	100pF±10%	9.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1B3KX151K□□□	250Vac(r.m.s.)	B	150pF±10%	9.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1B3KX221K□□□	250Vac(r.m.s.)	B	220pF±10%	9.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1B3KX331K□□□	250Vac(r.m.s.)	B	330pF±10%	9.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1B3KX471K□□□	250Vac(r.m.s.)	B	470pF±10%	9.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1B3KX681K□□□	250Vac(r.m.s.)	B	680pF±10%	10.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1E3KX102M□□□A01	250Vac(r.m.s.)	E	1000pF±20%	8.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1E3KX152M□□□A01	250Vac(r.m.s.)	E	1500pF±20%	9.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1E3KX222M□□□A01	250Vac(r.m.s.)	E	2200pF±20%	10.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1E3KX332M□□□A01	250Vac(r.m.s.)	E	3300pF±20%	12.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1E3KX392M□□□A01	250Vac(r.m.s.)	E	3900pF±20%	13.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A
DE1E3KX472M□□□A01	250Vac(r.m.s.)	E	4700pF±20%	15.0mm max.	10.0	8.0mm max.	A5B	B5B	N5A

Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

Type KY/KH/KX Specifications and Test Methods

Operating Temperature Range: -40 to +125°C (Except for UL/VDE, -25 to +125°C)

No.	Item	Specifications	Test Method																								
1	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.																								
2	Marking	To be easily legible	The capacitor should be visually inspected.																								
3	Capacitance	Within specified tolerance																									
4	Dissipation Factor (D.F.) Q	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>B, E</td> <td>D.F.≤2.5%</td> </tr> <tr> <td>F</td> <td>D.F.≤5.0%</td> </tr> <tr> <td>SL</td> <td>Q≥400+20C* (C<30pF) Q≥1000 (C≥30pF)</td> </tr> </tbody> </table>	Char.	Specifications	B, E	D.F.≤2.5%	F	D.F.≤5.0%	SL	Q≥400+20C* (C<30pF) Q≥1000 (C≥30pF)	The capacitance, dissipation factor and Q should be measured at 20°C with 1±0.1kHz (char. SL: 1±0.1MHz) and AC5V(r.m.s.) max.																
Char.	Specifications																										
B, E	D.F.≤2.5%																										
F	D.F.≤5.0%																										
SL	Q≥400+20C* (C<30pF) Q≥1000 (C≥30pF)																										
5	Insulation Resistance (I.R.)	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging. The voltage should be applied to the capacitor through a resistor of 1MΩ.																								
6	Between Lead Wires	No failure	<p>The capacitor should not be damaged when the test voltages from Table 1 are applied between the lead wires for 60 sec.</p> <p><Table 1></p> <table border="1"> <thead> <tr> <th>Type</th> <th>Test Voltage</th> </tr> </thead> <tbody> <tr> <td>KY</td> <td>For lead spacing F=5mm AC2000V(r.m.s.) For lead spacing F=7.5mm AC2600V(r.m.s.)</td> </tr> <tr> <td>KH</td> <td>AC2600V(r.m.s.)</td> </tr> <tr> <td>KX</td> <td>AC4000V(r.m.s.)</td> </tr> </tbody> </table>	Type	Test Voltage	KY	For lead spacing F=5mm AC2000V(r.m.s.) For lead spacing F=7.5mm AC2600V(r.m.s.)	KH	AC2600V(r.m.s.)	KX	AC4000V(r.m.s.)																
Type	Test Voltage																										
KY	For lead spacing F=5mm AC2000V(r.m.s.) For lead spacing F=7.5mm AC2600V(r.m.s.)																										
KH	AC2600V(r.m.s.)																										
KX	AC4000V(r.m.s.)																										
Body Insulation	No failure	<p>First, the terminals of the capacitor should be connected together. Then, as shown in the figure at right, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 6mm from each terminal.</p> <p>Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC voltage from Table 2 is applied for 60 sec. between the capacitor lead wires and metal balls.</p> <p><Table 2></p> <table border="1"> <thead> <tr> <th>Type</th> <th>Test Voltage</th> </tr> </thead> <tbody> <tr> <td>KY</td> <td>AC2600V(r.m.s.)</td> </tr> <tr> <td>KH</td> <td>AC2600V(r.m.s.)</td> </tr> <tr> <td>KX</td> <td>AC4000V(r.m.s.)</td> </tr> </tbody> </table>	Type	Test Voltage	KY	AC2600V(r.m.s.)	KH	AC2600V(r.m.s.)	KX	AC4000V(r.m.s.)																	
Type	Test Voltage																										
KY	AC2600V(r.m.s.)																										
KH	AC2600V(r.m.s.)																										
KX	AC4000V(r.m.s.)																										
7	Temperature Characteristics	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>B</td> <td>Within ±10%</td> </tr> <tr> <td>E</td> <td>Within +20% -55%</td> </tr> <tr> <td>F</td> <td>Within +30% -80%</td> </tr> </tbody> </table> <p>(Temp. range: -25 to +85°C)</p> <table border="1"> <thead> <tr> <th>Char.</th> <th>Temperature Coefficient</th> </tr> </thead> <tbody> <tr> <td>SL</td> <td>+350 to -1000ppm/°C</td> </tr> </tbody> </table> <p>(Temp. range: +20 to +85°C)</p>	Char.	Capacitance Change	B	Within ±10%	E	Within +20% -55%	F	Within +30% -80%	Char.	Temperature Coefficient	SL	+350 to -1000ppm/°C	<p>The capacitance measurement should be made at each step specified in Table 3.</p> <p><Table 3></p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>20±2</td> </tr> <tr> <td>2</td> <td>-25±2</td> </tr> <tr> <td>3</td> <td>20±2</td> </tr> <tr> <td>4</td> <td>85±2</td> </tr> <tr> <td>5</td> <td>20±2</td> </tr> </tbody> </table>	Step	Temperature (°C)	1	20±2	2	-25±2	3	20±2	4	85±2	5	20±2
Char.	Capacitance Change																										
B	Within ±10%																										
E	Within +20% -55%																										
F	Within +30% -80%																										
Char.	Temperature Coefficient																										
SL	+350 to -1000ppm/°C																										
Step	Temperature (°C)																										
1	20±2																										
2	-25±2																										
3	20±2																										
4	85±2																										
5	20±2																										
8	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	<p>The lead wire of a capacitor should be dipped into molten solder for 2±0.5 sec.</p> <p>The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.</p> <p>Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C</p>																								

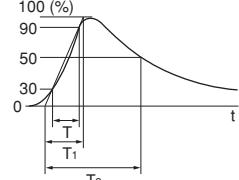
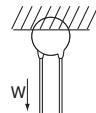
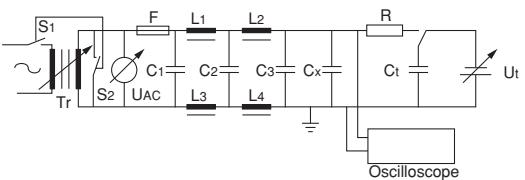
*1 "C" expresses nominal capacitance value (pF).

Continued on the following page.

Type KY/KH/KX Specifications and Test Methods

Continued from the preceding page.

No.	Item	Specifications	Test Method	
9	Soldering Effect (Non-Preheat)	Appearance	No marked defect	
		Capacitance Change	Within $\pm 10\%$	
		I.R.	1000MΩ min.	
		Dielectric Strength	Per Item 6	
10	Soldering Effect (On-Preheat)	Appearance	No marked defect	
		Capacitance Change	Within $\pm 10\%$	
		I.R.	1000MΩ min.	
		Dielectric Strength	Per Item 6	
11	Vibration Resistance	Appearance	No marked defect	
		Capacitance	Within the specified tolerance	
		D.F. Q	Char. Specifications	
			B, E D.F. $\leq 2.5\%$	
12	Humidity (Under Steady State)		F D.F. $\leq 5.0\%$	
			SL Q $\geq 400 + 20C^{*1}$ (C < 30pF)	
			Q ≥ 1000 (C $\geq 30pF$)	
			Char. Specifications	
13	Humidity Loading		B, E D.F. $\leq 5.0\%$	
			F D.F. $\leq 7.5\%$	
			SL Q $\geq 275 + 5/2C^{*1}$ (C < 30pF)	
			Q ≥ 350 (C $\geq 30pF$)	
		I.R.	3000MΩ min.	
		Dielectric Strength	Per Item 6	
		Appearance	No marked defect	
		Capacitance Change	Char. Specifications	
			B Within $\pm 10\%$	
			E, F Within $\pm 15\%$	
			SL Within $\pm 5\%$	
		D.F. Q	Char. Specifications	
			B, E D.F. $\leq 5.0\%$	
			F D.F. $\leq 7.5\%$	
			SL Q $\geq 275 + 5/2C^{*1}$ (C < 30pF)	
			Q ≥ 350 (C $\geq 30pF$)	
		I.R.	3000MΩ min.	
		Dielectric Strength	Per Item 6	

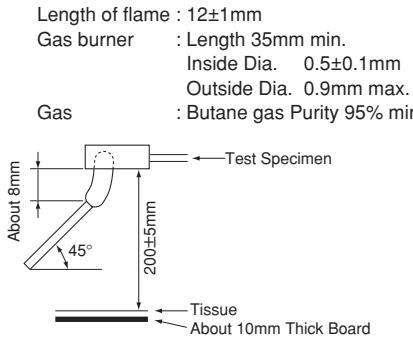
*1 "C" expresses nominal capacitance value (pF).

*2 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.

Type KY/KH/KX Specifications and Test Methods

 Continued from the preceding page.


No.	Item	Specifications	Test Method
14	Life	Appearance	No marked defect
		Capacitance Change	Within $\pm 20\%$
		I.R.	3000MΩ min.
14	Dielectric Strength	Per Item 6	Impulse Voltage Each individual capacitor should be subjected to a 5kV (Type KX: 8kV) impulses for three times. Then the capacitors are applied to life test. Front time (T1) = 1.2μs=1.67T Time to half-value (T2) = 50μs Apply a voltage from Table 4 for 1000 hrs. at 125+2/-0°C, and relative humidity of 50% max. <Table 4> Applied Voltage 170% of Rated Voltage except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 sec.
			Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.* ²
15	Robustness of Terminations	Tensile	Lead wire should not be cut off. Capacitor should not be broken.
		Bending	Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
16	Active Flammability	The cheesecloth should not be on fire.	The capacitor should be individually wrapped in at least one but not more than two complete layers of cheesecloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge. C _{1,2} : 1μF±10% C ₃ : 0.033μF±5% 10kV L ₁ to 4 : 1.5mH±20% 16A Rod core choke C _t : 3μF±5% 10kV R : 100Ω±2% C _x : Capacitor under test UAC : UR±5% F : Fuse, Rated 10A U _R : Rated Voltage U _t : Voltage applied to C _t

*² "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.

Type KY/KH/KX Specifications and Test Methods

Continued from the preceding page.

No.	Item	Specifications	Test Method																																																												
17	Passive Flammability	The burning time should not exceed 30 sec. The tissue paper should not ignite.	<p>The capacitor under test should be held in the flame in the position that best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec.</p> <p>Length of flame : 12±1mm Gas burner : Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas : Butane gas Purity 95% min.</p>																																																												
18	Temperature and Immersion Cycle	<table border="1"> <tr> <td>Appearance</td> <td colspan="2">No marked defect</td> </tr> <tr> <td>Capacitance Change</td> <td>Char.</td> <td>Capacitance Change</td> </tr> <tr> <td></td> <td>B</td> <td>Within ±10%</td> </tr> <tr> <td></td> <td>E, F</td> <td>Within ±20%</td> </tr> <tr> <td></td> <td>SL</td> <td>Within ± 5%</td> </tr> </table> <table border="1"> <tr> <td>D.F. Q</td> <td>Char.</td> <td>Specifications</td> </tr> <tr> <td></td> <td>B, E</td> <td>D.F.≤5.0%</td> </tr> <tr> <td></td> <td>F</td> <td>D.F.≤7.5%</td> </tr> <tr> <td></td> <td>SL</td> <td>Q≥275+5/2C¹(C<30pF) Q≥350 (C≥30pF)</td> </tr> </table> <table border="1"> <tr> <td>I.R.</td> <td colspan="2">3000MΩ min.</td> </tr> </table> <table border="1"> <tr> <td>Dielectric Strength</td> <td colspan="2">Per Item 6</td> </tr> </table>	Appearance	No marked defect		Capacitance Change	Char.	Capacitance Change		B	Within ±10%		E, F	Within ±20%		SL	Within ± 5%	D.F. Q	Char.	Specifications		B, E	D.F.≤5.0%		F	D.F.≤7.5%		SL	Q≥275+5/2C ¹ (C<30pF) Q≥350 (C≥30pF)	I.R.	3000MΩ min.		Dielectric Strength	Per Item 6		<p>The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles.</p> <p><Temperature Cycle></p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> <th>Time (min)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>-40+0/-3</td> <td>30</td> </tr> <tr> <td>2</td> <td>Room temp.</td> <td>3</td> </tr> <tr> <td>3</td> <td>125+3/-0</td> <td>30</td> </tr> <tr> <td>4</td> <td>Room temp.</td> <td>3</td> </tr> </tbody> </table> <p>Cycle time: 5 cycles</p> <p><Immersion Cycle></p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> <th>Time (min)</th> <th>Immersion Water</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>65+5/-0</td> <td>15</td> <td>Clean water</td> </tr> <tr> <td>2</td> <td>0±3</td> <td>15</td> <td>Salt water</td> </tr> </tbody> </table> <p>Cycle time: 2 cycles</p> <p>Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition² for 24±2 hrs.</p> <p>Post-treatment: Capacitor should be stored for 24±2 hrs. at room condition.²</p>	Step	Temperature (°C)	Time (min)	1	-40+0/-3	30	2	Room temp.	3	3	125+3/-0	30	4	Room temp.	3	Step	Temperature (°C)	Time (min)	Immersion Water	1	65+5/-0	15	Clean water	2	0±3	15	Salt water
Appearance	No marked defect																																																														
Capacitance Change	Char.	Capacitance Change																																																													
	B	Within ±10%																																																													
	E, F	Within ±20%																																																													
	SL	Within ± 5%																																																													
D.F. Q	Char.	Specifications																																																													
	B, E	D.F.≤5.0%																																																													
	F	D.F.≤7.5%																																																													
	SL	Q≥275+5/2C ¹ (C<30pF) Q≥350 (C≥30pF)																																																													
I.R.	3000MΩ min.																																																														
Dielectric Strength	Per Item 6																																																														
Step	Temperature (°C)	Time (min)																																																													
1	-40+0/-3	30																																																													
2	Room temp.	3																																																													
3	125+3/-0	30																																																													
4	Room temp.	3																																																													
Step	Temperature (°C)	Time (min)	Immersion Water																																																												
1	65+5/-0	15	Clean water																																																												
2	0±3	15	Salt water																																																												

¹ "C" expresses nominal capacitance value (pF).

² "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

AC250V Ceramic Capacitor Non Safety Certified Type

muRata

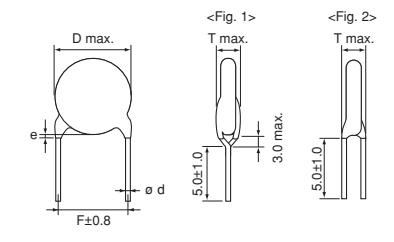
DEJ Series Based on the Electrical Appliance and Material Safety Law of Japan

■ Features

1. This type is based on the electrical appliance and material safety law of Japan (separated table 4).
2. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard).
- Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
3. Taping available for automatic insertion.

[Bulk]
 Vertical Crimp Long (A3)
 Straight Long (C3)

Lead Code	Coating Extension e	Φ d	Style
A3	Up to the end of crimp	0.6±0.05	Fig. 1
C3	3.0 max.	0.6±0.05	Fig. 2


■ Applications

Ideal for use on AC line filters and primary-secondary coupling for switching power supplies and AC adapters.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

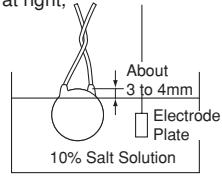
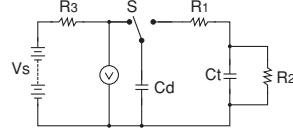
[Bulk]
 Vertical Crimp Short (B3)
 Straight Short (D3)

Lead Code	Coating Extension e	Φ d	Style
B3	Up to the end of crimp	0.6±0.05	Fig. 1
D3	3.0 max.	0.6±0.05	Fig. 2

■ Marking

Nominal Body Diameter	ø7-8mm	E, F
	ø9-11mm	102Z 250~ 16
		332Z 250~ C16
	Nominal Capacitance	Marked with 3 figures
	Capacitance Tolerance	Marked with code
	Rated Voltage	Marked with code
	Manufacturer's Identification	Marked with C (omitted for nominal body diameter ø8mm and under)
	Manufactured Date Code	Abbreviation

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping (1)	Lead Package Taping (2)
DEJE3E2102Z□□□	250Vac(r.m.s.)	E	1000pF+80/-20%	7.0mm max.	7.5	4.0mm max.	C3B	D3B	N2A	P3A
DEJE3E2222Z□□□	250Vac(r.m.s.)	E	2200pF+80/-20%	8.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJE3E2332Z□□□	250Vac(r.m.s.)	E	3300pF+80/-20%	9.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJE3E2472Z□□□	250Vac(r.m.s.)	E	4700pF+80/-20%	11.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJF3E2472Z□□□	250Vac(r.m.s.)	F	4700pF+80/-20%	8.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A
DEJF3E2103Z□□□	250Vac(r.m.s.)	F	10000pF+80/-20%	11.0mm max.	7.5	4.0mm max.	A3B	B3B	N2A	N3A



Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Taping (1): Lead spacing F=5.0mm, Taping (2): Lead spacing F=7.5mm.

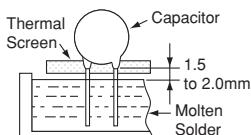
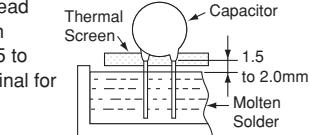
muRata

DEJ Series Specifications and Test Methods

Operating Temperature Range: -25 to +85°C

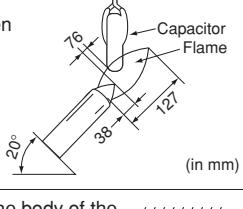
No.	Item	Specifications	Test Method																		
1	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.																		
2	Marking	To be easily legible	The capacitor should be visually inspected.																		
3	Capacitance	Within specified tolerance	The capacitance should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max.																		
4	Dissipation Factor (D.F.)	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>D.F.≤2.5%</td> </tr> <tr> <td>F</td> <td>D.F.≤5.0%</td> </tr> </tbody> </table>	Char.	Specifications	E	D.F.≤2.5%	F	D.F.≤5.0%	The dissipation factor should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max.												
Char.	Specifications																				
E	D.F.≤2.5%																				
F	D.F.≤5.0%																				
5	Insulation Resistance (I.R.)	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.																		
6	Dielectric Strength	<table border="1"> <tr> <td>Between Lead Wires</td> <td>No failure</td> </tr> <tr> <td>Body Insulation</td> <td>No failure</td> </tr> </table>	Between Lead Wires	No failure	Body Insulation	No failure	<p>The capacitor should not be damaged when AC1500V(r.m.s.) are applied between the lead wires for 60 sec.</p> <p>First, the terminals of the capacitor should be connected together. Then, as shown in the figure at right, the capacitor should be immersed into 10% salt solution up to a position of about 3 to 4mm apart from the terminals.</p> <p>Finally, AC1500V(r.m.s.) is applied for 60 sec. between the capacitor lead wires and electrode plate.</p>														
Between Lead Wires	No failure																				
Body Insulation	No failure																				
7	Temperature Characteristics	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>Within +20% -55%</td> </tr> <tr> <td>F</td> <td>Within +30% -80%</td> </tr> </tbody> </table>	Char.	Capacitance Change	E	Within +20% -55%	F	Within +30% -80%	<p>The capacitance measurement should be made at each step specified in Table 1.</p> <p>Table 1</p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>20±2</td> </tr> <tr> <td>2</td> <td>-25±2</td> </tr> <tr> <td>3</td> <td>20±2</td> </tr> <tr> <td>4</td> <td>85±2</td> </tr> <tr> <td>5</td> <td>20±2</td> </tr> </tbody> </table>	Step	Temperature (°C)	1	20±2	2	-25±2	3	20±2	4	85±2	5	20±2
Char.	Capacitance Change																				
E	Within +20% -55%																				
F	Within +30% -80%																				
Step	Temperature (°C)																				
1	20±2																				
2	-25±2																				
3	20±2																				
4	85±2																				
5	20±2																				
8	Discharge Test	<table border="1"> <tr> <td>Appearance</td> <td>No marked defect</td> </tr> <tr> <td>I.R.</td> <td>1000MΩ min.</td> </tr> <tr> <td>Dielectric Strength</td> <td>Per Item 6</td> </tr> </table>	Appearance	No marked defect	I.R.	1000MΩ min.	Dielectric Strength	Per Item 6	<p>As in Figure 1, discharge is made 50 times at 5 sec. intervals from the capacitor (Cd) charged at DC voltage of specified.</p> <p>Fig.1</p> <p>Ct: Capacitor under test R2: 100MΩ S: High-voltage switch R3: Surge resistance R1: 1000Ω</p> <table border="1"> <tr> <td>Cd</td> <td>0.001μF</td> </tr> <tr> <td>Vs</td> <td>DC10kV</td> </tr> </table>	Cd	0.001μF	Vs	DC10kV								
Appearance	No marked defect																				
I.R.	1000MΩ min.																				
Dielectric Strength	Per Item 6																				
Cd	0.001μF																				
Vs	DC10kV																				
9	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	<p>The lead wire of a capacitor should be dipped into molten solder for 2±0.5 sec.</p> <p>The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.</p> <p>Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C</p>																		

Continued on the following page.



DEJ Series Specifications and Test Methods

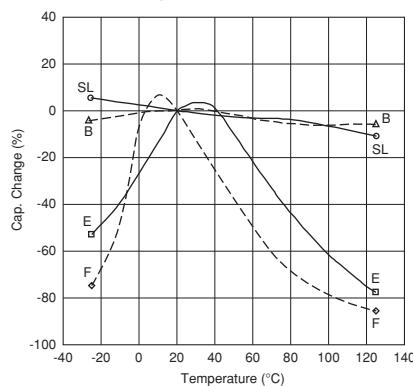
 Continued from the preceding page.

No.	Item	Specifications	Test Method				
10	Soldering Effect (Non-Preheat)	Appearance	No marked defect				
		I.R.	1000MΩ min.				
		Dielectric Strength	Per Item 6				
11	Soldering Effect (On-Preheat)	Appearance	No marked defect				
		I.R.	1000MΩ min.				
		Dielectric Strength	Per Item 6				
12	Vibration Resistance	Appearance	No marked defect				
		Capacitance	Within the specified tolerance				
		D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>D.F.≤2.5%</td> </tr> <tr> <td>F</td> <td>D.F.≤5.0%</td> </tr> </tbody> </table>	Char.	Specifications	E	D.F.≤2.5%
Char.	Specifications						
E	D.F.≤2.5%						
F	D.F.≤5.0%						
13	Solvent Resistance	Appearance	No marked defect				
14	Humidity (Under Steady State)	Appearance	No marked defect				
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>Within ±20%</td> </tr> <tr> <td>F</td> <td>Within ±30%</td> </tr> </tbody> </table>	Char.	Capacitance Change	E	Within ±20%
Char.	Capacitance Change						
E	Within ±20%						
F	Within ±30%						
D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>D.F.≤5.0%</td> </tr> <tr> <td>F</td> <td>D.F.≤7.5%</td> </tr> </tbody> </table>	Char.	Specifications	E	D.F.≤5.0%	F	D.F.≤7.5%
Char.	Specifications						
E	D.F.≤5.0%						
F	D.F.≤7.5%						
I.R.	1000MΩ min.						
Dielectric Strength	Per Item 6						
15	Humidity Insulation	Appearance	No marked defect				
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>Within ±20%</td> </tr> <tr> <td>F</td> <td>Within ±30%</td> </tr> </tbody> </table>	Char.	Capacitance Change	E	Within ±20%
Char.	Capacitance Change						
E	Within ±20%						
F	Within ±30%						
D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>D.F.≤5.0%</td> </tr> <tr> <td>F</td> <td>D.F.≤7.5%</td> </tr> </tbody> </table>	Char.	Specifications	E	D.F.≤5.0%	F	D.F.≤7.5%
Char.	Specifications						
E	D.F.≤5.0%						
F	D.F.≤7.5%						
I.R.	1000MΩ min.						
Dielectric Strength	Per Item 6						


*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

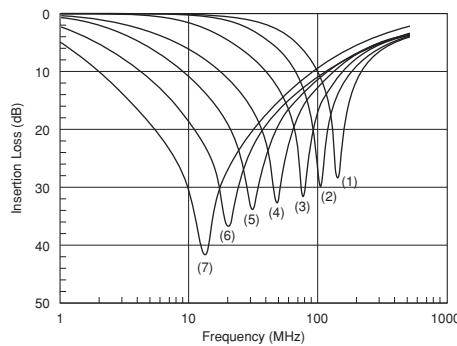
Continued on the following page.

DEJ Series Specifications and Test Methods

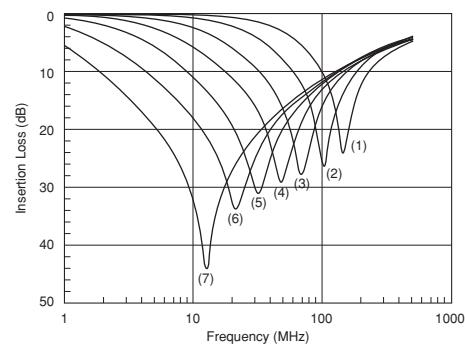

Continued from the preceding page.

No.	Item	Specifications	Test Method																									
16	Humidity Loading	Appearance	No marked defect																									
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>Within $\pm 20\%$</td> </tr> <tr> <td>F</td> <td>Within $\pm 30\%$</td> </tr> </tbody> </table>	Char.	Capacitance Change	E	Within $\pm 20\%$	F	Within $\pm 30\%$																			
Char.	Capacitance Change																											
E	Within $\pm 20\%$																											
F	Within $\pm 30\%$																											
D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>D.F. $\leq 5.0\%$</td> </tr> <tr> <td>F</td> <td>D.F. $\leq 7.5\%$</td> </tr> </tbody> </table>	Char.	Specifications	E	D.F. $\leq 5.0\%$	F	D.F. $\leq 7.5\%$																					
Char.	Specifications																											
E	D.F. $\leq 5.0\%$																											
F	D.F. $\leq 7.5\%$																											
I.R.	1000MΩ min.																											
Dielectric Strength	Per Item 6																											
17	Life	Appearance	No marked defect																									
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>Within $\pm 20\%$</td> </tr> <tr> <td>F</td> <td>Within $\pm 30\%$</td> </tr> </tbody> </table>	Char.	Capacitance Change	E	Within $\pm 20\%$	F	Within $\pm 30\%$																			
Char.	Capacitance Change																											
E	Within $\pm 20\%$																											
F	Within $\pm 30\%$																											
I.R.	1000MΩ min.																											
Dielectric Strength	Per Item 6																											
18	Flame Test	Appearance	The capacitor flame discontinued as follows.																									
			<table border="1"> <thead> <tr> <th>Cycle</th> <th>Time (sec.)</th> </tr> </thead> <tbody> <tr> <td>1 to 2</td> <td>15 max.</td> </tr> <tr> <td>3</td> <td>60 max.</td> </tr> </tbody> </table>	Cycle	Time (sec.)	1 to 2	15 max.	3	60 max.																			
Cycle	Time (sec.)																											
1 to 2	15 max.																											
3	60 max.																											
19	Robustness of Terminations	Tensile																										
			Lead wire should not be cut off. Capacitor should not be broken.																									
		Bending																										
			<p>As shown in the figure at right, fix the body of the capacitor, apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10 ± 1 sec.</p>																									
20	Temperature and Immersion Cycle	Appearance	No marked defect																									
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>Within $\pm 20\%$</td> </tr> <tr> <td>F</td> <td>Within $\pm 30\%$</td> </tr> </tbody> </table>	Char.	Capacitance Change	E	Within $\pm 20\%$	F	Within $\pm 30\%$																			
Char.	Capacitance Change																											
E	Within $\pm 20\%$																											
F	Within $\pm 30\%$																											
D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>E</td> <td>D.F. $\leq 5.0\%$</td> </tr> <tr> <td>F</td> <td>D.F. $\leq 7.5\%$</td> </tr> </tbody> </table>	Char.	Specifications	E	D.F. $\leq 5.0\%$	F	D.F. $\leq 7.5\%$																					
Char.	Specifications																											
E	D.F. $\leq 5.0\%$																											
F	D.F. $\leq 7.5\%$																											
I.R.	1000MΩ min.																											
Dielectric Strength	Per Item 6																											
<p>The capacitor should be subjected to applied flame for 15 sec. and then removed for 15 sec. until 3 cycles are completed.</p> <p>The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles.</p> <p><Temperature Cycle></p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> <th>Time (min)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>-25+0/-3</td> <td>30</td> </tr> <tr> <td>2</td> <td>Room temp.</td> <td>3</td> </tr> <tr> <td>3</td> <td>85+3/-0</td> <td>30</td> </tr> <tr> <td>4</td> <td>Room temp.</td> <td>3</td> </tr> </tbody> </table> <p>Cycle time: 5 cycles</p> <p><Immersion Cycle></p> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> <th>Time (min)</th> <th>Immersion Water</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>65+5/-0</td> <td>15</td> <td>Clean water</td> </tr> <tr> <td>2</td> <td>0±3</td> <td>15</td> <td>Salt water</td> </tr> </tbody> </table> <p>Cycle time: 2 cycles</p> <p>Pre-treatment: Capacitor should be stored at $85\pm 2^\circ\text{C}$ for 1 hr., then placed at room condition*¹ for 24 ± 2 hrs.</p> <p>Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*¹</p>		Step	Temperature (°C)	Time (min)	1	-25+0/-3	30	2	Room temp.	3	3	85+3/-0	30	4	Room temp.	3	Step	Temperature (°C)	Time (min)	Immersion Water	1	65+5/-0	15	Clean water	2	0±3	15	Salt water
Step	Temperature (°C)	Time (min)																										
1	-25+0/-3	30																										
2	Room temp.	3																										
3	85+3/-0	30																										
4	Room temp.	3																										
Step	Temperature (°C)	Time (min)	Immersion Water																									
1	65+5/-0	15	Clean water																									
2	0±3	15	Salt water																									

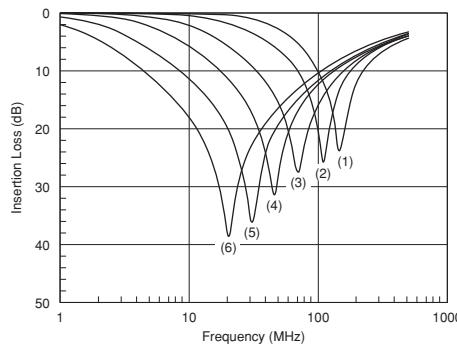
*¹ "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa


Safety Certified Ceramic Capacitors Characteristics Data (Typical Example)

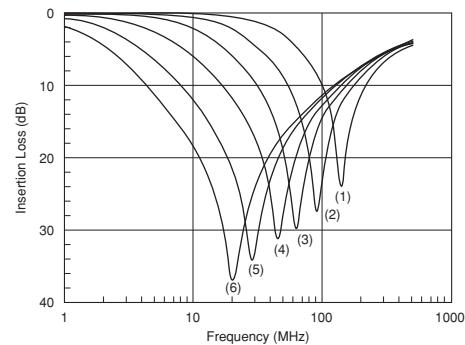
■ Capacitance - Temperature Characteristics


■ Insertion Loss - Frequency Characteristics

Type KY


Type KY
 Signal power: 1mW
 AC240V(r.m.s.) / 60Hz is applied on the capacitor.
 (1) DE2B3KY101KA2B****
 (2) DE2B3KY221KA2B****
 (3) DE2B3KY471KA2B****
 (4) DE2E3KY102MA2B****
 (5) DE2E3KY222MA2B****
 (6) DE2E3KY472MA2B****
 (7) DE2F3KY103MA3B****

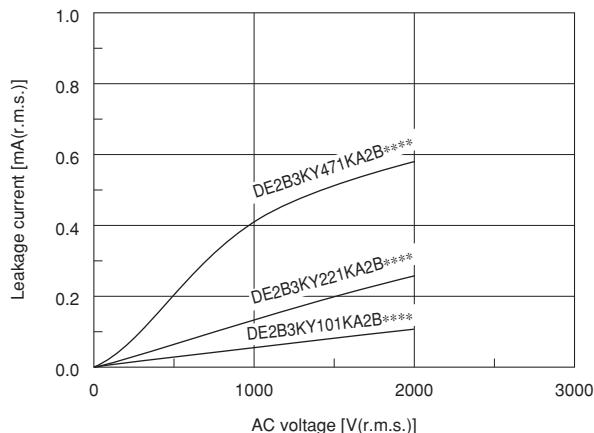
Type KH


Type KH
 Signal power: 1mW
 AC240V(r.m.s.) / 60Hz is applied on the capacitor.
 (1) DE2B3KH101KA3B
 (2) DE2B3KH221KA3B
 (3) DE2B3KH471KA3B
 (4) DE2E3KH102MA3B
 (5) DE2E3KH222MA3B
 (6) DE2E3KH472MA3B
 (7) DE2F3KH103MA3B

Type KX New Small Size

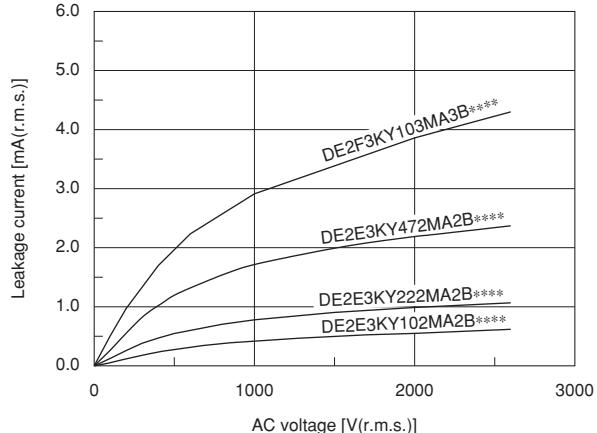
Type KX New Small Size
 Signal power: 1mW
 AC240V(r.m.s.) / 60Hz is applied on the capacitor.
 (1) DE1B3KX101KA4BN01F
 (2) DE1B3KX221KA4BN01F
 (3) DE1B3KX471KA4BN01F
 (4) DE1E3KX102MA4BN01F
 (5) DE1E3KX222MA4BN01F
 (6) DE1E3KX472MA4BN01F

Type KX

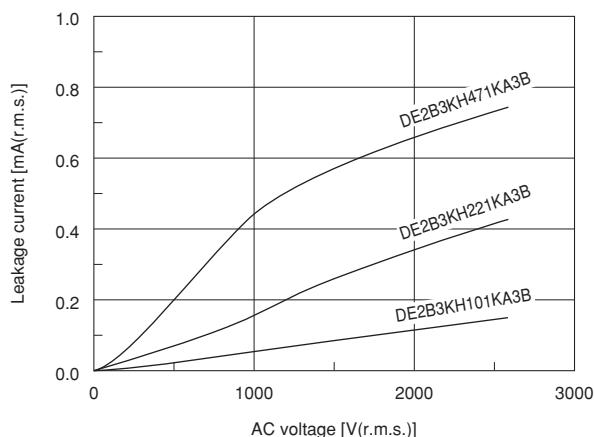

Type KX
 Signal power: 1mW
 AC240V(r.m.s.) / 60Hz is applied on the capacitor.
 (1) DE1B3KX101KA5B
 (2) DE1B3KX221KA5B
 (3) DE1B3KX471KA5B
 (4) DE1E3KX102MA5BA01
 (5) DE1E3KX222MA5BA01
 (6) DE1E3KX472MA5BA01

Safety Certified Ceramic Capacitors Characteristics Data (Typical Example)

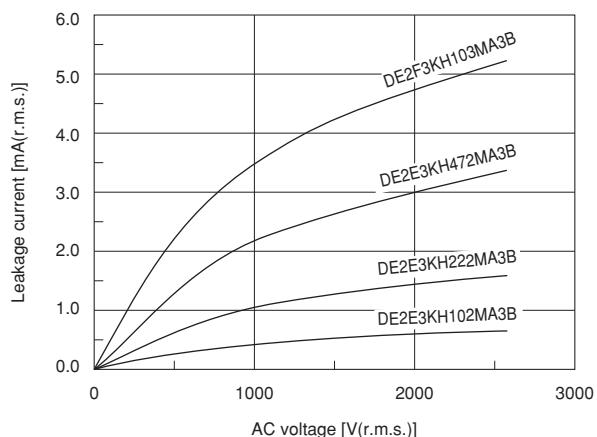
■ Leakage Current Characteristics


Type KY (B char.)

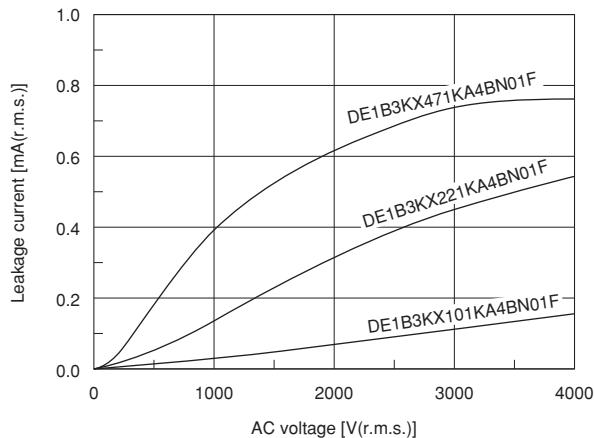
AC voltage : 60Hz
 Temperature : 25°C


Type KY (E,F char.)

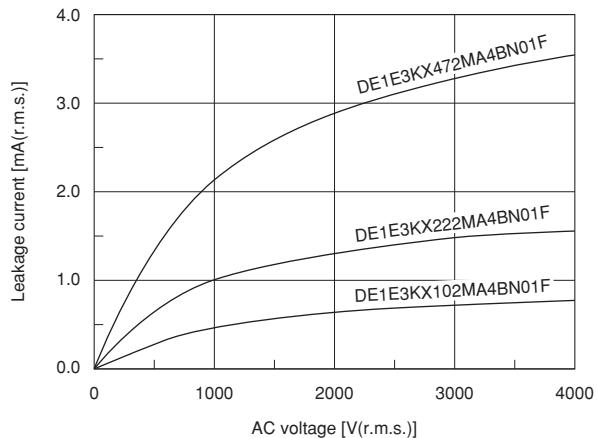
AC voltage : 60Hz
 Temperature : 25°C


Type KH (B char.)

AC voltage : 60Hz
 Temperature : 25°C


Type KH (E, F char.)

AC voltage : 60Hz
 Temperature : 25°C


Type KX New Small Size (B char.)

AC voltage : 60Hz
 Temperature : 25°C

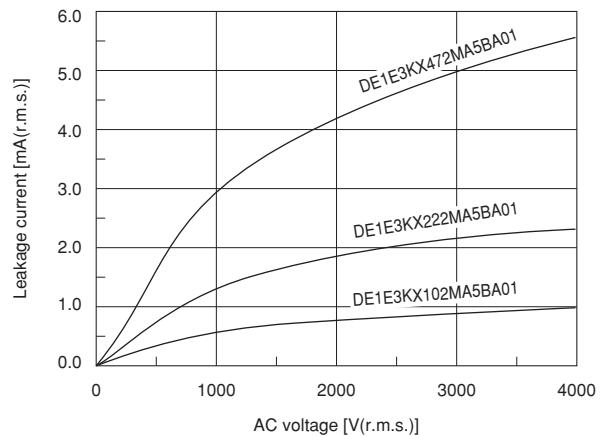
Type KX New Small Size (E char.)

AC voltage : 60Hz
 Temperature : 25°C

Continued on the following page.

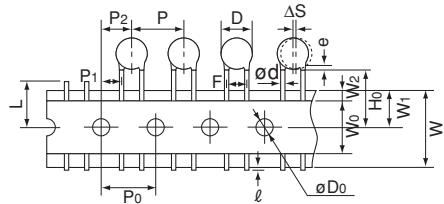
Safety Certified Ceramic Capacitors Characteristics Data (Typical Example)

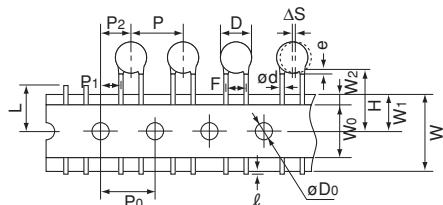
Continued from the preceding page.


Type KX (B char.)

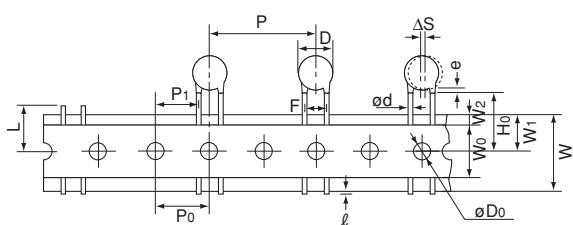
AC voltage : 60Hz
Temperature : 25°C

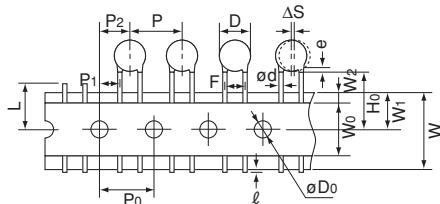
Type KX (E char.)

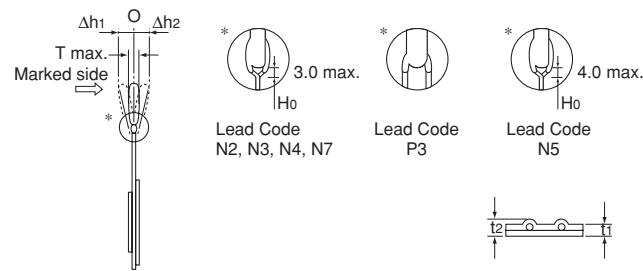
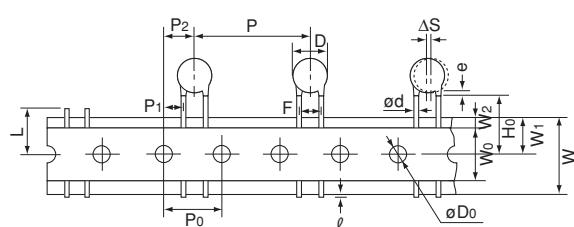

AC voltage : 60Hz
Temperature : 25°C


Safety Certified Ceramic Capacitors Packaging

■ Taping Specifications


- 12.7mm pitch / lead spacing 5mm taping
 Vertical crimp type
 (Lead Code: N2)


- 15mm pitch / lead spacing 7.5mm taping
 Straight type
 (Lead Code: P3)



- 25.4mm pitch / lead spacing 10.0mm taping
 Vertical crimp type
 (Lead Code: N4, N5)

- 15mm pitch / lead spacing 7.5mm taping
 Vertical crimp type
 (Lead Code: N3)

- 30mm pitch / lead spacing 7.5mm taping
 Vertical crimp type
 (Lead Code: N7)

Item	Code	N2	N3	P3	N7	N4	N5
Pitch of component	P	12.7±1.0		15.0±2.0	30.0±2.0	25.4±2.0	
Pitch of sprocket hole	P ₀	12.7±0.3		15.0±0.3		12.7±0.3	
Lead spacing	F	5.0 ^{+0.8} _{-0.2}		7.5±1.0		10.0±1.0	
Length from hole center to component center	P ₂	6.35±1.3		7.5±1.5		—	
Length from hole center to lead	P ₁	3.85±0.7		3.75±1.0		7.7±1.5	
Body diameter	D			See the individual product specifications.			
Deviation along tape, left or right	ΔS	0±1.0		0±2.0			
Carrier tape width	W			18.0±0.5			
Position of sprocket hole	W ₁			9.0±0.5			
Lead distance between reference and bottom planes	H ₀	18.0 ^{+2.0} ₋₀		—	18.0 ^{+2.0} ₋₀		
	H	—		20.0 ^{+1.5} _{-1.0}	—		
Protrusion length	ℓ			+0.5 to -1.0			
Diameter of sprocket hole	øD ₀			4.0±0.1			
Lead diameter	ød			0.6±0.05		0.6 ^{+0.1} _{-0.05}	
Total tape thickness	t ₁			0.6±0.3			
Total thickness, tape and lead wire	t ₂			1.5 max.			
Body thickness	T			See the individual product specifications.			
Portion to cut in case of defect	L			11.0 ⁺⁰ _{-1.0}			
Hold down tape width	W ₀			11.5 min.			
Hold down tape position	W ₂			1.5±1.5			
Coating extension on lead	e	Up to the end of crimp	3.0 max.		Up to the end of crimp		
Deviation across tape, front	Δh ₁	1.0 max.			2.0 max.		
Deviation across tape, rear	Δh ₂						

(in mm)

Continued on the following page.

Safety Certified Ceramic Capacitors Packaging

◀ Continued from the preceding page.

■ Packaging Styles

Bulk	Taping
Polyethylene Bag 	Ammo Pack

■ Minimum Quantity (Order in Sets Only)

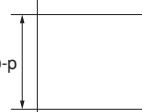
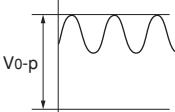
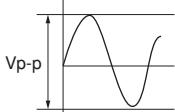
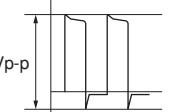
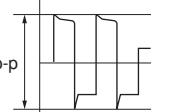
[Bulk] (pcs./Bag)

	Body Dia. D (mm)	Lead Code	Lead Code
		A□, C□	B□, D□
Type KY	7	250 *	500
Type KH	8 to 11	250	500
Type KX (New Small Size)	12 to 14	200	250
DEJ Series	15, 16	100	200
	8, 9	250	500
Type KX	10	100	250
	12 to 15	100	200

* Lead Spacing F=5.0mm (Code: A2): 500pcs.

[Taping] (pcs./Ammo Pack)

Lead Code	N2	N3, P3	N4, N5, N7
Type KY	1,000	900	—
Type KH	—	900	400
Type KX (New Small Size)	—	—	500
Type KX	—	—	500
DEJ Series	1,500	1,000	—






Safety Certified Ceramic Capacitors ⚠Caution

■ ⚠Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the V_{p-p} value of the applied voltage or the V_{o-p} that contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement					

2. Operating Temperature and Self-generated Heat

(Apply to B/E/F Char.)

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may have self-generated heat due to dielectric loss. Applied voltage load should be such that self-generated heat is within 20°C under the condition where the capacitor is subjected to an atmospheric temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of $\phi 0.1\text{mm}$ under conditions where the capacitor is not affected by radiant heat from other components or wind from surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. Test Condition for Withstanding Voltage

(1) Test Equipment

Test equipment for AC withstand voltage should be used with the performance of the wave similar to 50/60Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

Continued on the following page.

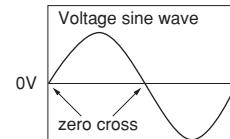
Safety Certified Ceramic Capacitors ⚠Caution

Continued from the preceding page.

(2) Voltage Applied Method

When the withstanding voltage is applied, the capacitor's lead or terminal should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the zero cross.* At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the output of the withstanding voltage test equipment.


If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may rise, and therefore, a defect may be caused.

*ZERO CROSS is the point where voltage sine wave passes 0V. See the figure at right.

4. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could result in an electric shock, fire or fuming.

**FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY
RESULT, WORST CASE, IN A SHORT CIRCUIT
AND CAUSE FUMING OR PARTIAL DISPERSION
WHEN THE PRODUCT IS USED.**

Safety Certified Ceramic Capacitors ⚠Caution

■ ⚠Caution (Storage and Operating Condition)

Operating and Storage Environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Also, avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%.

Use capacitors within 6 months after delivery.
Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ ⚠Caution (Soldering and Mounting)

1. Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use.

Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specifications of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Soldering the capacitor with a soldering iron should be performed in the following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max.

Soldering time: 3.5 sec. max.

3. Bonding, Resin Molding and Coating

For bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment. When the amount of applications, dryness/hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc). are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

4. Treatment after Bonding, Resin Molding and Coating

When the outer coating is hot (over 100 degrees C.) after soldering, it becomes soft and fragile.

Therefore, please be careful not to give it mechanical stress.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ ⚠Caution (Handling)

Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use.

Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Safety Certified Ceramic Capacitors Notice

■ Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

■ Notice (Rating)

1. Capacitance Change of Capacitors

(1) For SL char.

Capacitance might change a little depending on a surrounding temperature or an applied voltage.

Please contact us if you use a strict constant time circuit.

(2) For B/E/F char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. Therefore, it is not likely to be suitable for use in a constant time circuit.

Please contact us if you need detailed information.

2. Performance Check by Equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 (B/E/F char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance, so the capacitance value may change depending on the operating condition in the equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in the capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

High Voltage Ceramic Capacitors

muRata

DES Series (125°C Guaranteed/Low-dissipation Factor/DC500V-1kV)

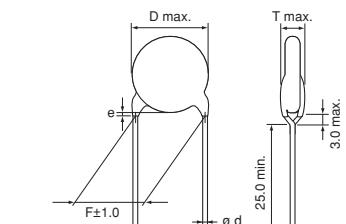
■ Features

1. Low dissipation factor series that can be used for power supplies with an increased switching frequency.
2. The allowable power in the 100 to 300kHz band is improved to approximately one and a half times that of the DEH series while remaining the same size.
3. Operating temperature range is guaranteed up to 125 degrees C.
4. Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).
 Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
5. Taping available for automatic insertion.

6

■ Applications

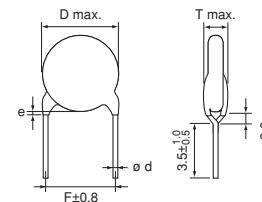
Ideal for use on high-frequency pulse circuits such as snubber circuits for switching power supplies.


Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

■ Marking

Rated Voltage	DC500V	DC1kV
Nominal Body Diameter		
ø6mm	S D 101 66	S D 101 1KV 66
ø7-9mm	S D 102K 66	S D 471K 1KV 66
ø10-17mm	S D 222K M 66	S D 152K 1KV M 66
Series Code	Abbreviation (S)	
Temperature Characteristic	Marked with code	
Nominal Capacitance	Marked with 3 figures	
Capacitance Tolerance	Marked with code (omitted for nominal body diameter ø6mm)	
Rated Voltage	Marked with code (omitted for DC500V)	
Manufacturer's Identification	Marked with M (omitted for nominal body diameter ø9mm and under)	
Manufactured Date Code	Abbreviation	

[Bulk]
Vertical Crimp Long (A2,A3)



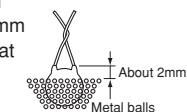
(in mm)

Lead Code	Coating Extension e	ø d
A2, A3	Up to the end of crimp	0.6±0.05

[Bulk]
Vertical Crimp Short (J2,J3)

(in mm)

Lead Code	Coating Extension e	ø d
J2, J3	Up to the end of crimp	0.6±0.05


D Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DESD32H101K□□□	500Vdc	100pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H151K□□□	500Vdc	150pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H221K□□□	500Vdc	220pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H331K□□□	500Vdc	330pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H471K□□□	500Vdc	470pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H681K□□□	500Vdc	680pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H102K□□□	500Vdc	1000pF±10%	8.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H152K□□□	500Vdc	1500pF±10%	9.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H222K□□□	500Vdc	2200pF±10%	10.0mm max.	5.0	4.0mm max.	A2B	J2B	N2A
DESD32H332K□□□	500Vdc	3300pF±10%	12.0mm max.	7.5	4.0mm max.	A3B	J3B	N3A
DESD32H472K□□□	500Vdc	4700pF±10%	14.0mm max.	7.5	4.0mm max.	A3B	J3B	N7A
DESD33A101K□□□	1000Vdc	100pF±10%	6.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A151K□□□	1000Vdc	150pF±10%	6.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A221K□□□	1000Vdc	220pF±10%	6.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A331K□□□	1000Vdc	330pF±10%	6.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A471K□□□	1000Vdc	470pF±10%	7.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A681K□□□	1000Vdc	680pF±10%	8.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A102K□□□	1000Vdc	1000pF±10%	9.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A152K□□□	1000Vdc	1500pF±10%	10.0mm max.	5.0	4.5mm max.	A2B	J2B	N2A
DESD33A222K□□□	1000Vdc	2200pF±10%	12.0mm max.	7.5	4.5mm max.	A3B	J3B	N3A
DESD33A332K□□□	1000Vdc	3300pF±10%	14.0mm max.	7.5	4.5mm max.	A3B	J3B	N7A
DESD33A472K□□□	1000Vdc	4700pF±10%	17.0mm max.	7.5	4.5mm max.	A3B	J3B	N7A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

DES Series Specifications and Test Methods

No.	Item	Specifications	Test Method										
1	Operating Temperature Range	-25 to +125°C											
2	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.										
3	Marking	To be easily legible	The capacitor should be visually inspected.										
4	Between Lead Wires	No failure	The capacitor should not be damaged when DC voltage of 200% of the rated voltage (DC1kV) or DC voltage of 250% of the rated voltage (DC500V) is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current $\leq 50\text{mA}$)										
	Body Insulation	No failure	The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2mm off the metal balls as shown in the figure at right, and AC1250V(r.m.s.) $<50/60\text{Hz}>$ is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current $\leq 50\text{mA}$)										
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min. The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.										
6	Capacitance	Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.										
7	Dissipation Factor (D.F.)	0.3% max.	The dissipation factor should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.										
8	Temperature Characteristics	Within +20~-30% (Temp. range: -25 to +125°C)	The capacitance measurement should be made at each step specified in the Table.										
		Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. before measurements.	<table border="1"> <thead> <tr> <th>Step</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th></tr> </thead> <tbody> <tr> <td>Temp. (°C)</td><td>20±2</td><td>-25±3</td><td>20±2</td><td>125±2</td><td>20±2</td></tr> </tbody> </table>	Step	1	2	3	4	5	Temp. (°C)	20±2	-25±3	20±2
Step	1	2	3	4	5								
Temp. (°C)	20±2	-25±3	20±2	125±2	20±2								
9	Strength of Lead	Pull	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.										
		Bending	Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.										
10	Vibration Resistance	Appearance	No marked defect										
		Capacitance	Within specified tolerance										
		D.F.	0.3% max.										
11	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C										
12	Soldering Effect (Non-Preheat)	Appearance	No marked defect										
		Capacitance Change	Within ±10%										
		Dielectric Strength (Between Lead Wires)	Per item 4.										

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

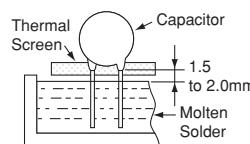
Continued on the following page.

DES Series Specifications and Test Methods

 Continued from the preceding page.

No.	Item	Specifications	Test Method
13	Soldering Effect (On-Preheat)	Appearance	No marked defect
		Capacitance Change	Within $\pm 10\%$
		Dielectric Strength (Between Lead Wires)	Per item 4.
14	Temperature Cycle	Appearance	No marked defect
		Capacitance Change	Within $\pm 10\%$
		D.F.	0.4% max.
		I.R.	1000M Ω min.
		Dielectric Strength (Between Lead Wires)	Per item 4.
15	Humidity (Under Steady State)	Appearance	No marked defect
		Capacitance Change	Within $\pm 10\%$
		D.F.	0.4% max.
		I.R.	1000M Ω min.
		Appearance	No marked defect
16	Humidity Loading	Capacitance Change	Within $\pm 10\%$
		D.F.	0.6% max.
		I.R.	1000M Ω min.
		Appearance	No marked defect
17	Life	Capacitance Change	Within $\pm 10\%$
		D.F.	0.4% max.
		I.R.	2000M Ω min.
		Appearance	No marked defect

First the capacitor should be stored at $120+0/-5^{\circ}\text{C}$ for $60+0/-5$ sec.


Then, as in the figure, the lead wires should be immersed in solder of $260+0/-5^{\circ}\text{C}$ up to 1.5 to 2.0mm from the root of terminal for $7.5+0/-1$ sec.

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 24 ± 2 hrs. at room condition.*

The capacitor should be subjected to 5 temperature cycles.
 <Temperature Cycle>

Step	Temperature (°C)	Time (min)
1	-25 ± 3	30
2	Room Temp.	3
3	125 ± 3	30
4	Room Temp.	3

Cycle time: 5 cycles

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 24 ± 2 hrs. at room condition.*

Set the capacitor for $500+24/-0$ hrs. at $40\pm 2^{\circ}\text{C}$ in 90 to 95% relative humidity.

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 1 to 2 hrs. at room condition.*

Apply the rated voltage for $500+24/-0$ hrs. at $40\pm 2^{\circ}\text{C}$ in 90 to 95% relative humidity. (Charge/Discharge current $\leq 50\text{mA}$)

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 1 to 2 hrs. at room condition.*

Apply a DC voltage of 200% of the rated voltage (DC500V) or DC voltage of 150% of the rated voltage (DC1kV) for 1000 $+48/-0$ hrs. at $125\pm 2^{\circ}\text{C}$ with a relative humidity of 50% max. (Charge/Discharge current $\leq 50\text{mA}$)

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs.

* "Room condition" Temperature: 15 to 35°C , Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

High Voltage Ceramic Capacitors

muRata

DEH Series (125°C Guaranteed/Low-dissipation Factor/DC500V-3.15kV)

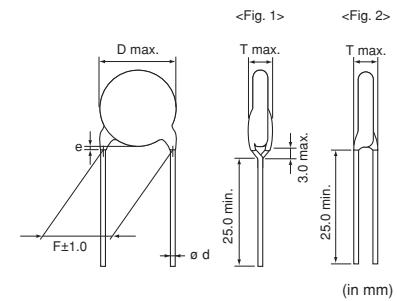
■ Features

1. Reduced heat dissipation permitted due to small dielectric loss of the ceramic material.
2. Operating temperature range is guaranteed up to 125 degrees C.
3. Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).
 Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
4. Taping available for automatic insertion.

■ Applications

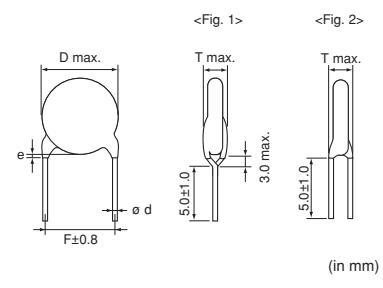
Ideal for use on high-frequency pulse circuits such as a horizontal resonance circuit for CTV and snubber circuits for switching power supplies.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.


Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

■ Marking

		Rated Voltage	DC500V	DC1-3.15kV
Nominal Body Diameter		Temp. Char.	C	R
ø6mm			HR 471 66	
ø7-9mm			HR C 152K 66	HR R 102K 1KV 66
ø10-21mm			HR C 472K M66	HR R 272K 3KV 66
High Temperature Guaranteed Code		HR		
Temperature Characteristics			Marked with code (omitted for nominal body diameter ø6mm)	
Nominal Capacitance			Marked with 3 figures	
Capacitance Tolerance			Marked with code (omitted for nominal body diameter ø6mm)	
Rated Voltage	DC500V		Omitted	
	DC1-3.15kV		Marked with code (for DC3.15kV, marked with 3KV)	
Manufacturer's Identification			Marked with M (omitted for nominal body diameter ø9mm and under)	
Manufactured Date Code			Abbreviation	


[Bulk]
 Vertical Crimp Long (Fig. 1)
 Straight Long (Fig. 2)

Lead Code	Coating Extension e	ø d	Style
A2, A3, A4	Up to the end of crimp	0.6±0.05	Fig. 1
C3	3.0 max.	0.6±0.05	Fig. 2

[Bulk]
 Vertical Crimp Short (Fig. 1)
 Straight Short (Fig. 2)

Lead Code	Coating Extension e	ø d	Style
B2, B3, B4	Up to the end of crimp	0.6±0.05	Fig. 1
D3	3.0 max.	0.6±0.05	Fig. 2

DC500V, C Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEHC32H331K□□□	500Vdc	330pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEHC32H471K□□□	500Vdc	470pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEHC32H681K□□□	500Vdc	680pF±10%	7.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEHC32H102K□□□	500Vdc	1000pF±10%	8.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEHC32H152K□□□	500Vdc	1500pF±10%	9.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEHC32H222K□□□	500Vdc	2200pF±10%	10.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEHC32H332K□□□	500Vdc	3300pF±10%	12.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEHC32H472K□□□	500Vdc	4700pF±10%	14.0mm max.	10.0	4.0mm max.	A4B	B4B	-

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

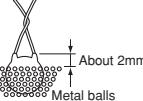
DC1-3.15kV, R Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEHR33A221K□□□	1000Vdc	220pF±10%	7.0mm max.	5.0	4.5mm max.	A2B	B2B	N2A
DEHR33A331K□□□	1000Vdc	330pF±10%	7.0mm max.	5.0	4.5mm max.	A2B	B2B	N2A
DEHR33A471K□□□	1000Vdc	470pF±10%	7.0mm max.	5.0	4.5mm max.	A2B	B2B	N2A
DEHR33A681K□□□	1000Vdc	680pF±10%	8.0mm max.	5.0	4.5mm max.	A2B	B2B	N2A
DEHR33A102K□□□	1000Vdc	1000pF±10%	9.0mm max.	5.0	4.5mm max.	A2B	B2B	N2A
DEHR33A152K□□□	1000Vdc	1500pF±10%	11.0mm max.	5.0	4.5mm max.	A2B	B2B	N2A
DEHR33A222K□□□	1000Vdc	2200pF±10%	13.0mm max.	7.5	4.5mm max.	A3B	B3B	N3A
DEHR33A332K□□□	1000Vdc	3300pF±10%	15.0mm max.	7.5	4.5mm max.	A3B	B3B	N7A
DEHR33A472K□□□	1000Vdc	4700pF±10%	17.0mm max.	7.5	4.5mm max.	A3B	B3B	N7A
DEHR33D221K□□□	2000Vdc	220pF±10%	7.0mm max.	7.5	5.0mm max.	C3B	D3B	P3A
DEHR33D271K□□□	2000Vdc	270pF±10%	7.0mm max.	7.5	5.0mm max.	C3B	D3B	P3A
DEHR33D331K□□□	2000Vdc	330pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D391K□□□	2000Vdc	390pF±10%	8.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D471K□□□	2000Vdc	470pF±10%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D561K□□□	2000Vdc	560pF±10%	9.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D681K□□□	2000Vdc	680pF±10%	10.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D821K□□□	2000Vdc	820pF±10%	11.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D102K□□□	2000Vdc	1000pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D122K□□□	2000Vdc	1200pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D152K□□□	2000Vdc	1500pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEHR33D182K□□□	2000Vdc	1800pF±10%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEHR33D222K□□□	2000Vdc	2200pF±10%	15.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEHR33D272K□□□	2000Vdc	2700pF±10%	17.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEHR33D332K□□□	2000Vdc	3300pF±10%	19.0mm max.	10.0	5.0mm max.	A4B	B4B	-
DEHR33D392K□□□	2000Vdc	3900pF±10%	20.0mm max.	10.0	5.0mm max.	A4B	B4B	-
DEHR33D472K□□□	2000Vdc	4700pF±10%	21.0mm max.	10.0	5.0mm max.	A4B	B4B	-
DEHR33F151K□□□	3150Vdc	150pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F181K□□□	3150Vdc	180pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F221K□□□	3150Vdc	220pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F271K□□□	3150Vdc	270pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEHR33F331K□□□	3150Vdc	330pF±10%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEHR33F391K□□□	3150Vdc	390pF±10%	9.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEHR33F471K□□□	3150Vdc	470pF±10%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEHR33F561K□□□	3150Vdc	560pF±10%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEHR33F681K□□□	3150Vdc	680pF±10%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEHR33F821K□□□	3150Vdc	820pF±10%	12.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEHR33F102K□□□	3150Vdc	1000pF±10%	13.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEHR33F122K□□□	3150Vdc	1200pF±10%	14.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEHR33F152K□□□	3150Vdc	1500pF±10%	15.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEHR33F182K□□□	3150Vdc	1800pF±10%	16.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A

Continued on the following page.

Continued from the preceding page.

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEHR33F222K□□□	3150Vdc	2200pF±10%	17.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEHR33F272K□□□	3150Vdc	2700pF±10%	19.0mm max.	10.0	6.0mm max.	A4B	B4B	-

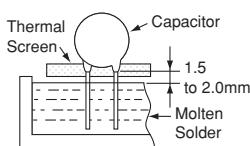

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

DEH Series Specifications and Test Methods

No.	Item	Specifications	Test Method																								
1	Operating Temperature Range	-25 to +125°C																									
2	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.																								
3	Marking	To be easily legible	The capacitor should be visually inspected.																								
4	Dielectric Strength	Between Lead Wires	No failure The capacitor should not be damaged when DC voltage of 200% of the rated voltage (DC1 to 3.15kV) or DC voltage of 250% of the rated voltage (DC500V) is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current \leq 50mA)																								
		Body Insulation	No failure The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2mm off the metal balls as shown in the figure at right, and AC1250V(r.m.s.) $<50/60\text{Hz}>$ is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current \leq 50mA)																								
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min. The insulation resistance should be measured with DC500 \pm 50V within 60 \pm 5 sec. of charging.																								
6	Capacitance	Within specified tolerance	The capacitance should be measured at 20°C with 1 \pm 0.2kHz and AC5V(r.m.s.) max.																								
7	Dissipation Factor (D.F.)	Char. R: 0.2% max. Char. C: 0.3% max.	The dissipation factor should be measured at 20°C with 1 \pm 0.2kHz and AC5V(r.m.s.) max.																								
8	Temperature Characteristics	T. C. <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td></td><th colspan="2">Temp. Char.</th></tr><tr><td></td><td>-25 to +85°C</td><td>+85 to +125°C</td></tr><tr><td>R</td><td>Within $\pm 15\%$</td><td></td></tr><tr><td>C</td><td>Within $\pm 20\%$</td><td>Within +15/-30%</td></tr></table>		Temp. Char.			-25 to +85°C	+85 to +125°C	R	Within $\pm 15\%$		C	Within $\pm 20\%$	Within +15/-30%	The capacitance measurement should be made at each step specified in the Table. Pre-treatment: Capacitor should be stored at 125 \pm 3°C for 1 hr., then placed at room condition* for 24 \pm 2 hrs. before measurements. <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>Step</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr><tr><td>Temp. (°C)</td><td>20\pm2</td><td>-25\pm3</td><td>20\pm2</td><td>125\pm2</td><td>20\pm2</td></tr></table>	Step	1	2	3	4	5	Temp. (°C)	20 \pm 2	-25 \pm 3	20 \pm 2	125 \pm 2	20 \pm 2
	Temp. Char.																										
	-25 to +85°C	+85 to +125°C																									
R	Within $\pm 15\%$																										
C	Within $\pm 20\%$	Within +15/-30%																									
Step	1	2	3	4	5																						
Temp. (°C)	20 \pm 2	-25 \pm 3	20 \pm 2	125 \pm 2	20 \pm 2																						
9	Strength of Lead	Pull	Lead wire should not be cut off. Capacitor should not be broken. As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10 \pm 1 sec.																								
		Bending	Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.																								
10	Vibration Resistance	Appearance	No marked defect																								
		Capacitance	Within specified tolerance																								
		D.F.	Char. R: 0.2% max. Char. C: 0.3% max.																								
11	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2 \pm 0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245 \pm 5°C H63 Eutectic Solder 235 \pm 5°C																								
12	Soldering Effect (Non-Preheat)	Appearance	No marked defect																								
		Capacitance Change	Within $\pm 10\%$																								
		Dielectric Strength (Between Lead Wires)	Per item 4.																								

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.



DEH Series Specifications and Test Methods

 Continued from the preceding page.

No.	Item	Specifications	Test Method
13	Soldering Effect (On-Preheat)	Appearance	No marked defect
		Capacitance Change	Within $\pm 10\%$
		Dielectric Strength (Between Lead Wires)	Per item 4.
14	Temperature Cycle	Appearance	No marked defect
		Capacitance Change	Within $\pm 10\%$
		D.F.	0.4% max.
		I.R.	1000M Ω min.
		Dielectric Strength (Between Lead Wires)	Per item 4.
15	Humidity (Under Steady State)	Appearance	No marked defect
		Capacitance Change	Within $\pm 10\%$
		D.F.	0.4% max.
		I.R.	1000M Ω min.
		Appearance	No marked defect
16	Humidity Loading	Capacitance Change	Within $\pm 10\%$
		D.F.	0.6% max.
		I.R.	1000M Ω min.
		Appearance	No marked defect
17	Life	Capacitance Change	Within $\pm 10\%$
		D.F.	0.4% max.
		I.R.	2000M Ω min.
		Appearance	No marked defect

First the capacitor should be stored at $120+0/-5^{\circ}\text{C}$ for $60+0/-5$ sec.

Then, as in the figure, the lead wires should be immersed in solder of $260+0/-5^{\circ}\text{C}$ up to 1.5 to 2.0mm from the root of terminal for $7.5+0/-1$ sec.

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 24 ± 2 hrs. at room condition.*

The capacitor should be subjected to 5 temperature cycles.
 <Temperature Cycle>

Step	Temperature (°C)	Time (min)
1	-25 ± 3	30
2	Room Temp.	3
3	125 ± 3	30
4	Room Temp.	3

Cycle time: 5 cycles

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 24 ± 2 hrs. at room condition.*

Set the capacitor for $500+24/-0$ hrs. at $40\pm 2^{\circ}\text{C}$ in 90 to 95% relative humidity.

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 1 to 2 hrs. at room condition.*

Apply the rated voltage for $500+24/-0$ hrs. at $40\pm 2^{\circ}\text{C}$ in 90 to 95% relative humidity. (Charge/Discharge current $\leq 50\text{mA}$)

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

Post-treatment:

Capacitor should be stored for 1 to 2 hrs. at room condition.*

Apply a DC voltage of 200% of the rated voltage (DC500V) or DC voltage of 150% of the rated voltage (DC1 to 3.15kV) for $1000+48/-0$ hrs. at $125\pm 2^{\circ}\text{C}$ with a relative humidity of 50% max.

(Charge/Discharge current $\leq 50\text{mA}$)

Pre-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.

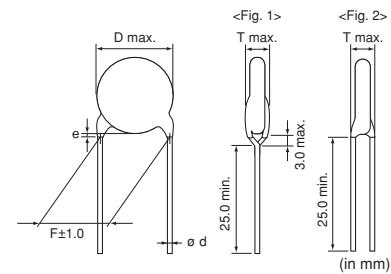
Post-treatment:

Capacitor should be stored at $125\pm 3^{\circ}\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs.

* "Room condition" Temperature: 15 to 35°C , Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

High Voltage Ceramic Capacitors

muRata

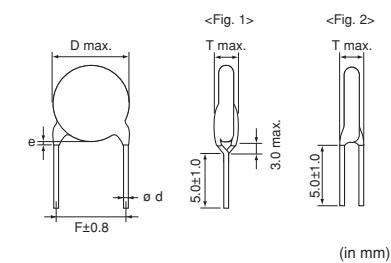

DEA Series (125°C Guaranteed/Class 1/DC1k-3.15kV)

■ Features

1. Temperature compensating type ceramics realize lower heat dissipation than DEH/DES series.
2. Operating temperature range is guaranteed up to 125 degrees C.
3. Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).
 Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
4. Taping available for automatic insertion.

[Bulk]
 Vertical Crimp Long (Fig. 1)
 Straight Long (Fig. 2)

Lead Code	Coating Extension e	Φ d	Style
A2, A3	Up to the end of crimp	0.6±0.05	Fig. 1
C1, CD	3.0 max.	0.5±0.05	Fig. 2
C3	3.0 max.	0.6±0.05	Fig. 2


■ Applications

1. Ideal for use as the ballast in backlighting inverters for liquid crystal display.
2. Ideal for use on high-frequency pulse circuits such as a horizontal resonance circuit for CTV and snubber circuits for switching power supplies.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

[Bulk]
 Vertical Crimp Short (Fig. 1)
 Straight Short (Fig. 2)

Lead Code	Coating Extension e	Φ d	Style
B2, B3	Up to the end of crimp	0.6±0.05	Fig. 1
D1, DD	3.0 max.	0.5±0.05	Fig. 2
D3	3.0 max.	0.6±0.05	Fig. 2

■ Marking

Temp. Char.	
Nominal Body Diameter	SL
ø4.5-5mm	68 1KV
ø6mm	39 3KV 66
ø7-9mm	181J 2KV 66
ø10-16mm	391J 3KV M 66
Nominal Capacitance	Under 100pF: Actual value, 100pF and over: Marked with 3 figures
Capacitance Tolerance	Marked with code (omitted for nominal body diameter ø6mm and under)
Rated Voltage	Marked with code (for DC3.15kV, marked with 3KV)
Manufacturer's Identification	Marked with M (omitted for nominal body diameter ø9mm and under)
Manufactured Date Code	Abbreviation (omitted for nominal body diameter ø5mm and under)

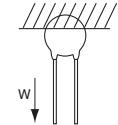
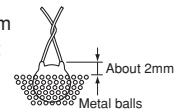
SL Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEA1X3A100J□□□	1000Vdc	10pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A120J□□□	1000Vdc	12pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A150J□□□	1000Vdc	15pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A180J□□□	1000Vdc	18pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A220J□□□	1000Vdc	22pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A270J□□□	1000Vdc	27pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A330J□□□	1000Vdc	33pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A390J□□□	1000Vdc	39pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A470J□□□	1000Vdc	47pF±5%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A560J□□□	1000Vdc	56pF±5%	5.0mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A680J□□□	1000Vdc	68pF±5%	5.0mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEA1X3A820J□□□	1000Vdc	82pF±5%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A101J□□□	1000Vdc	100pF±5%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A121J□□□	1000Vdc	120pF±5%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A151J□□□	1000Vdc	150pF±5%	7.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A181J□□□	1000Vdc	180pF±5%	7.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A221J□□□	1000Vdc	220pF±5%	8.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A271J□□□	1000Vdc	270pF±5%	9.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A331J□□□	1000Vdc	330pF±5%	10.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A391J□□□	1000Vdc	390pF±5%	10.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A471J□□□	1000Vdc	470pF±5%	11.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEA1X3A561J□□□	1000Vdc	560pF±5%	12.0mm max.	7.5	4.0mm max.	A3B	B3B	N3A
DEA1X3D100J□□□	2000Vdc	10pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D120J□□□	2000Vdc	12pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D150J□□□	2000Vdc	15pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D180J□□□	2000Vdc	18pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D220J□□□	2000Vdc	22pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D270J□□□	2000Vdc	27pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D330J□□□	2000Vdc	33pF±5%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D390J□□□	2000Vdc	39pF±5%	5.0mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEA1X3D470J□□□	2000Vdc	47pF±5%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D560J□□□	2000Vdc	56pF±5%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D680J□□□	2000Vdc	68pF±5%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D820J□□□	2000Vdc	82pF±5%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D101J□□□	2000Vdc	100pF±5%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D121J□□□	2000Vdc	120pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D151J□□□	2000Vdc	150pF±5%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D181J□□□	2000Vdc	180pF±5%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D221J□□□	2000Vdc	220pF±5%	10.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D271J□□□	2000Vdc	270pF±5%	11.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEA1X3D331J□□□	2000Vdc	330pF±5%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEA1X3D391J□□□	2000Vdc	390pF±5%	13.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEA1X3D471J□□□	2000Vdc	470pF±5%	14.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEA1X3D561J□□□	2000Vdc	560pF±5%	15.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEA1X3F100J□□□	3150Vdc	10pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEA1X3F120J□□□	3150Vdc	12pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEA1X3F150J□□□	3150Vdc	15pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEA1X3F180J□□□	3150Vdc	18pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEA1X3F220J□□□	3150Vdc	22pF±5%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEA1X3F270J□□□	3150Vdc	27pF±5%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F330J□□□	3150Vdc	33pF±5%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F390J□□□	3150Vdc	39pF±5%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F470J□□□	3150Vdc	47pF±5%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F560J□□□	3150Vdc	56pF±5%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEA1X3F680J□□□	3150Vdc	68pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A

Continued on the following page.

Continued from the preceding page.

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEA1X3F820J□□□	3150Vdc	82pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F101J□□□	3150Vdc	100pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F121J□□□	3150Vdc	120pF±5%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F151J□□□	3150Vdc	150pF±5%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F181J□□□	3150Vdc	180pF±5%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F221J□□□	3150Vdc	220pF±5%	12.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEA1X3F271J□□□	3150Vdc	270pF±5%	14.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEA1X3F331J□□□	3150Vdc	330pF±5%	15.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A
DEA1X3F391J□□□	3150Vdc	390pF±5%	16.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A



Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

DEA Series Specifications and Test Methods

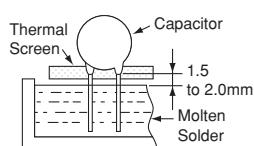
No.	Item	Specifications	Test Method
1	Operating Temperature Range	-25 to +125°C	
2	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
3	Marking	To be easily legible	The capacitor should be visually inspected.
4	Dielectric Strength	Between Lead Wires	No failure
		Body Insulation	No failure
			The capacitor should not be damaged when DC voltage of 200% of the rated voltage is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current \leq 50mA)
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min.
6	Capacitance	Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max.
7	Q	400+20C*2min. (30pF under) 1000 min. (30pF min.)	The Q should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max.
8	Temperature Characteristics	+350 to -1000ppm/°C (Temp. range: +20 to +85°C)	The capacitance measurement should be made at each step specified in the Table.
		Step Temp. (°C)	1 2 3 4 5 20±2 -25±3 20±2 85±2 20±2
9	Strength of Lead	Pull	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10±1 sec.
		Bending	Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
10	Vibration Resistance	Appearance	No marked defect
		Capacitance	Within specified tolerance
		Q	400+20C*2min. (30pF under) 1000 min. (30pF min.)
11	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C
12	Soldering Effect (Non-Preheat)	Appearance	No marked defect
		Capacitance Change	Within ±2.5%
		Dielectric Strength (Between Lead Wires)	Per item 4.

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

Continued on the following page.

DEA Series Specifications and Test Methods


Continued from the preceding page.

No.	Item	Specifications	Test Method
13	Soldering Effect (On-Preheat)	Appearance	No marked defect
		Capacitance Change	Within $\pm 2.5\%$
		Dielectric Strength (Between Lead Wires)	Per item 4.
14	Temperature Cycle	Appearance	No marked defect
		Capacitance Change	Within $\pm 5\%$
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)
		I.R.	1000M Ω min.
		Dielectric Strength (Between Lead Wires)	Per item 4.
15	Humidity (Under Steady State)	Appearance	No marked defect
		Capacitance Change	Within $\pm 5\%$
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)
		I.R.	1000M Ω min.
16	Humidity Loading	Appearance	No marked defect
		Capacitance Change	Within $\pm 5\%$
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)
		I.R.	1000M Ω min.
17	Life	Appearance	No marked defect
		Capacitance Change	Within $\pm 3\%$
		Q	275+5/2C ² min. (30pF under) 350 min. (30pF min.)
		I.R.	2000M Ω min.

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

First the capacitor should be stored at 120+0/-5°C for 60+0/-5 sec.

Then, as in the figure, the lead wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec.

Post-treatment:
Capacitor should be stored for 1 to 2 hrs. at room condition.*¹

The capacitor should be subjected to 5 temperature cycles.
<Temperature Cycle>

Step	Temperature (°C)	Time (min)
1	-25±3	30
2	Room Temp.	3
3	125±3	30
4	Room Temp.	3

Cycle time: 5 cycles

Post-treatment:
Capacitor should be stored for 1 to 2 hrs. at room condition.*¹

Set the capacitor for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity.

Post-treatment:
Capacitor should be stored for 1 to 2 hrs. at room condition.*¹

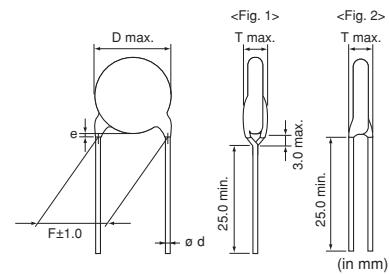
Apply the rated voltage for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity.

(Charge/Discharge current≤50mA)

Post-treatment:
Capacitor should be stored for 1 to 2 hrs. at room condition.*¹

Apply a DC voltage of 150% of the rated voltage for 1000+48/-0 hrs. at 125±2°C with a relative humidity of 50% max. (Charge/Discharge current≤50mA)

Post-treatment:
Capacitor should be stored for 1 to 2 hrs. at room condition.*¹

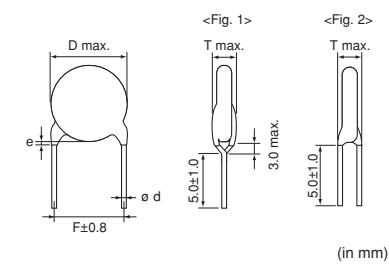

High Voltage Ceramic Capacitors

muRata

DEB Series (Class 2/DC1k-3.15kV)

■ Features

1. Small size and high capacitance
2. Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).
 Please contact us when a halogen-free product* is necessary.
- * Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.
3. Taping available for automatic insertion.



Lead Code	Coating Extension e	Φ d	Style
A2, A3	Up to the end of crimp	0.6±0.05	Fig. 1
C1, CD	3.0 max.	0.5±0.05	Fig. 2
C3	3.0 max.	0.6±0.05	Fig. 2

■ Applications

Ideal for use on decoupling circuits for power supplies.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

Lead Code	Coating Extension e	Φ d	Style
B2, B3	Up to the end of crimp	0.6±0.05	Fig. 1
D1, DD	3.0 max.	0.5±0.05	Fig. 2
D3	3.0 max.	0.6±0.05	Fig. 2

■ Marking

Nominal Body Diameter	Temp. Char.		
	B	E	F
ø4.5-5mm	221 3KV	102 1KV	102 2KV
ø6mm	331 3KV 66	102 2KV 66	222 1KV 66
ø7-9mm	102K 3KV 66	102Z 3KV 66	472Z 2KV 66
ø10-16mm	B 332K 3KV M 66	E 472Z 3KV M 66	103Z 2KV M 66
Temperature Characteristics	Marked with code for char. B and E (omitted for nominal body diameter ø9mm and under)		
Nominal Capacitance	Marked with 3 figures		
Capacitance Tolerance	Marked with code (omitted for nominal body diameter ø6mm and under)		
Rated Voltage	Marked with code (for DC3.15kV, marked with 3KV)		
Manufacturer's Identification	Marked with M (omitted for nominal body diameter ø9mm and under)		
Manufactured Date Code	Abbreviation (omitted for nominal body diameter ø5mm and under)		

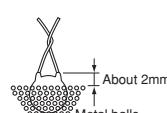
B Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEBB33A101K□□□	1000Vdc	100pF±10%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEBB33A151K□□□	1000Vdc	150pF±10%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEBB33A221K□□□	1000Vdc	220pF±10%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEBB33A331K□□□	1000Vdc	330pF±10%	4.5mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEBB33A471K□□□	1000Vdc	470pF±10%	5.0mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEBB33A681K□□□	1000Vdc	680pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBB33A102K□□□	1000Vdc	1000pF±10%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBB33A152K□□□	1000Vdc	1500pF±10%	8.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBB33A222K□□□	1000Vdc	2200pF±10%	9.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBB33A332K□□□	1000Vdc	3300pF±10%	10.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBB33A472K□□□	1000Vdc	4700pF±10%	12.0mm max.	7.5	4.0mm max.	A3B	B3B	N3A
DEBB33A682K□□□	1000Vdc	6800pF±10%	15.0mm max.	7.5	4.0mm max.	A3B	B3B	N7A
DEBB33D101K□□□	2000Vdc	100pF±10%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D151K□□□	2000Vdc	150pF±10%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D221K□□□	2000Vdc	220pF±10%	4.5mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D331K□□□	2000Vdc	330pF±10%	5.0mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBB33D471K□□□	2000Vdc	470pF±10%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D681K□□□	2000Vdc	680pF±10%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D102K□□□	2000Vdc	1000pF±10%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D152K□□□	2000Vdc	1500pF±10%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D222K□□□	2000Vdc	2200pF±10%	10.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBB33D332K□□□	2000Vdc	3300pF±10%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A
DEBB33D472K□□□	2000Vdc	4700pF±10%	15.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEBB33F101K□□□	3150Vdc	100pF±10%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEBB33F151K□□□	3150Vdc	150pF±10%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEBB33F221K□□□	3150Vdc	220pF±10%	5.0mm max.	7.5	6.0mm max.	CDB	DDB	P3A
DEBB33F331K□□□	3150Vdc	330pF±10%	6.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEBB33F471K□□□	3150Vdc	470pF±10%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEBB33F681K□□□	3150Vdc	680pF±10%	8.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEBB33F102K□□□	3150Vdc	1000pF±10%	9.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEBB33F152K□□□	3150Vdc	1500pF±10%	11.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEBB33F222K□□□	3150Vdc	2200pF±10%	13.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEBB33F332K□□□	3150Vdc	3300pF±10%	15.0mm max.	7.5	6.0mm max.	A3B	B3B	N7A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

E Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEBE33A102Z□□□	1000Vdc	1000pF+80/-20%	5.0mm max.	5.0	4.0mm max.	C1B	D1B	P2A
DEBE33A222Z□□□	1000Vdc	2200pF+80/-20%	7.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBE33A472Z□□□	1000Vdc	4700pF+80/-20%	9.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBE33A103Z□□□	1000Vdc	10000pF+80/-20%	13.0mm max.	7.5	4.0mm max.	A3B	B3B	N3A
DEBE33D102Z□□□	2000Vdc	1000pF+80/-20%	6.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBE33D222Z□□□	2000Vdc	2200pF+80/-20%	8.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBE33D472Z□□□	2000Vdc	4700pF+80/-20%	11.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBE33D103Z□□□	2000Vdc	10000pF+80/-20%	16.0mm max.	7.5	5.0mm max.	A3B	B3B	N7A
DEBE33F102Z□□□	3150Vdc	1000pF+80/-20%	7.0mm max.	7.5	6.0mm max.	C3B	D3B	P3A
DEBE33F222Z□□□	3150Vdc	2200pF+80/-20%	10.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A
DEBE33F472Z□□□	3150Vdc	4700pF+80/-20%	13.0mm max.	7.5	6.0mm max.	A3B	B3B	N3A


Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

F Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEBF33A222Z□□□	1000Vdc	2200pF+80/-20%	6.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBF33A472Z□□□	1000Vdc	4700pF+80/-20%	7.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBF33A103Z□□□	1000Vdc	10000pF+80/-20%	10.0mm max.	5.0	4.0mm max.	A2B	B2B	N2A
DEBF33D102Z□□□	2000Vdc	1000pF+80/-20%	5.0mm max.	5.0	5.0mm max.	C1B	D1B	P2A
DEBF33D222Z□□□	2000Vdc	2200pF+80/-20%	7.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBF33D472Z□□□	2000Vdc	4700pF+80/-20%	9.0mm max.	5.0	5.0mm max.	A2B	B2B	N2A
DEBF33D103Z□□□	2000Vdc	10000pF+80/-20%	12.0mm max.	7.5	5.0mm max.	A3B	B3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

DEB Series Specifications and Test Methods

No.	Item	Specifications	Test Method										
1	Operating Temperature Range	-25 to +85°C											
2	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.										
3	Marking	To be easily legible	The capacitor should be visually inspected.										
4	Dielectric Strength	Between Lead Wires	No failure										
		Body Insulation	No failure										
5	Insulation Resistance (I.R.)	Between Lead Wires	The capacitor should not be damaged when DC voltage of 200% of the rated voltage is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current $\leq 50\text{mA}$)										
6	Capacitance	Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.										
7	Dissipation Factor (D.F.)	Char. B, E: 2.5% max. Char. F: 5.0% max.	The dissipation factor should be measured at 20°C with 1±0.2kHz and AC5V(r.m.s.) max.										
8	Temperature Characteristics	Char. B: Within ±10% Char. E: Within +20/-55% Char. F: Within +30/-80%	The capacitance measurement should be made at each step specified in the Table.										
		Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before measurements.	<table border="1" data-bbox="674 1044 1214 1089"> <tr> <th>Step</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th></tr> <tr> <th>Temp. (°C)</th><td>20±2</td><td>-25±3</td><td>20±2</td><td>85±2</td><td>20±2</td></tr> </table>	Step	1	2	3	4	5	Temp. (°C)	20±2	-25±3	20±2
Step	1	2	3	4	5								
Temp. (°C)	20±2	-25±3	20±2	85±2	20±2								
9	Strength of Lead	Pull	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N (5N for lead diameter 0.5mm), and keep it for 10±1 sec.										
		Bending	Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.										
10	Vibration Resistance	Appearance	No marked defect										
		Capacitance	Within specified tolerance										
		D.F.	Char. B, E: 2.5% max. Char. F: 5.0% max.										
11	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C										
12	Soldering Effect (Non-Preheat)	Appearance	No marked defect										
		Capacitance Change	Char. B: Within ±5% Char. E: Within ±15% Char. F: Within ±20%										
		Dielectric Strength (Between Lead Wires)	Per item 4.										

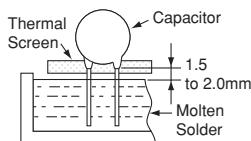
* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.

DEB Series Specifications and Test Methods

Continued from the preceding page.

No.	Item	Specifications	Test Method
13	Soldering Effect (On-Preheat)	Appearance	No marked defect
		Capacitance Change	Char. B: Within $\pm 5\%$ Char. E: Within $\pm 15\%$ Char. F: Within $\pm 20\%$
		Dielectric Strength (Between Lead Wires)	Per item 4.
14	Temperature and Immersion Cycle	Appearance	No marked defect
		Capacitance Change	Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$ Char. F: Within $\pm 30\%$
		D.F.	Char. B, E: 4.0% max. Char. F: 7.5% max.
		I.R.	2000MΩ min.
		Dielectric Strength (Between Lead Wires)	Per item 4.
15	Humidity (Under Steady State)	Appearance	No marked defect
		Capacitance Change	Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$ Char. F: Within $\pm 30\%$
		D.F.	Char. B, E: 5.0% max. Char. F: 7.5% max.
		I.R.	1000MΩ min.
16	Humidity Loading	Appearance	No marked defect
		Capacitance Change	Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$ Char. F: Within $\pm 30\%$
		D.F.	Char. B, E: 5.0% max. Char. F: 7.5% max.
		I.R.	500MΩ min.
17	Life	Appearance	No marked defect
		Capacitance Change	Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$ Char. F: Within $\pm 30\%$
		D.F.	Char. B, E: 4.0% max. Char. F: 7.5% max.
		I.R.	2000MΩ min.


* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

First the capacitor should be stored at 120+0/-5°C for 60+0/-5 sec.

Then, as in the figure, the lead wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec.

Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements.

Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*

The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles.

<Temperature Cycle>

Step	Temperature (°C)	Time (min)
1	-25±3	30
2	Room Temp.	3
3	85±3	30
4	Room Temp.	3

Cycle time: 5 cycles

<Immersion Cycle>

Step	Temperature (°C)	Time (min)	Immersion Water
1	65+5/-0	15	Clean water
2	0±3	15	Salt water

Cycle time : 2 cycles

Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements.

Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*

Set the capacitor for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity.

Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements.

Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*

Apply the rated voltage for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity. (Charge/Discharge current≤50mA)

Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements.

Post-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs.

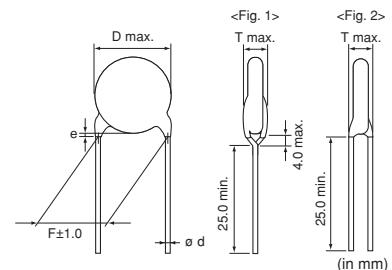
Apply a DC voltage of 150% of the rated voltage for 1000+48/-0 hrs. at 85±2°C with a relative humidity of 50% max. (Charge/Discharge current≤50mA)

Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements.

Post-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition* for 24±2 hrs.

High Voltage Ceramic Capacitors

muRata


DEC Series (Class 1, 2/DC6.3kV)

■ Features

Coated with flame-retardant epoxy resin
 (equivalent to UL94V-0 standard).

Please contact us when a halogen-free product*
 is necessary.

* Cl=900ppm max., Br=900ppm max. and
 Cl+Br=1500ppm max.

■ Applications

1. Ideal for use as the ballast in backlighting inverters for liquid crystal displays (SL Char.).
2. Ideal for use on high voltage circuits such as Cockcroft circuits (B Char.).

[Bulk]
 Vertical Crimp Long (Fig. 1)
 Straight Long (Fig. 2)

Lead Code	Coating Extension e	Φ d	Style
A3	Up to the end of crimp	0.6±0.05	Fig. 1
C4	3.0 max.	0.6±0.05	Fig. 2

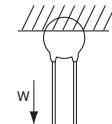
Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids. Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

■ Marking

Nominal Body Diameter	Temp. Char.	SL		
		B	E	
ø7mm		10J 6KV		
ø8-9mm		47J 6KV 66	331K 6KV 66	
ø10-15mm		151J 6KV M 66	B 102K 6KV M 66	222Z 6KV M 66
Temperature Characteristics		Marked with code for char. B (omitted for nominal body diameter ø9mm and under)		
Nominal Capacitance		Under 100pF: Actual value, 100pF and over: Marked with 3 figures		
Capacitance Tolerance		Marked with code		
Rated Voltage		Marked with code (for DC6.3kV, marked with 6KV)		
Manufacturer's Identification		Marked with M (omitted for nominal body diameter ø9mm and under)		
Manufactured Date Code		Abbreviation (omitted for nominal body diameter ø7mm)		

SL Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T
DEC1X3J100JA3BMS1	6300Vdc	10pF±5%	7.0mm max.	7.5	7.0mm max.
DEC1X3J100JC4BMS1	6300Vdc	10pF±5%	7.0mm max.	10.0	7.0mm max.
DEC1X3J120JA3B	6300Vdc	12pF±5%	8.0mm max.	7.5	7.0mm max.
DEC1X3J120JC4B	6300Vdc	12pF±5%	8.0mm max.	10.0	7.0mm max.
DEC1X3J150JA3B	6300Vdc	15pF±5%	8.0mm max.	7.5	7.0mm max.
DEC1X3J150JC4B	6300Vdc	15pF±5%	8.0mm max.	10.0	7.0mm max.
DEC1X3J180JA3B	6300Vdc	18pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J180JC4B	6300Vdc	18pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J220JA3B	6300Vdc	22pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J220JC4B	6300Vdc	22pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J270JA3B	6300Vdc	27pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J270JC4B	6300Vdc	27pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J330JA3B	6300Vdc	33pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J330JC4B	6300Vdc	33pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J390JA3B	6300Vdc	39pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J390JC4B	6300Vdc	39pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J470JA3B	6300Vdc	47pF±5%	9.0mm max.	7.5	7.0mm max.
DEC1X3J470JC4B	6300Vdc	47pF±5%	9.0mm max.	10.0	7.0mm max.
DEC1X3J560JC4B	6300Vdc	56pF±5%	10.0mm max.	10.0	7.0mm max.
DEC1X3J680JC4B	6300Vdc	68pF±5%	12.0mm max.	10.0	7.0mm max.
DEC1X3J820JC4B	6300Vdc	82pF±5%	12.0mm max.	10.0	7.0mm max.
DEC1X3J101JC4B	6300Vdc	100pF±5%	13.0mm max.	10.0	7.0mm max.
DEC1X3J121JC4B	6300Vdc	120pF±5%	14.0mm max.	10.0	7.0mm max.
DEC1X3J151JC4B	6300Vdc	150pF±5%	15.0mm max.	10.0	7.0mm max.


B Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T
DECB33J101KC4B	6300Vdc	100pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J151KC4B	6300Vdc	150pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J221KC4B	6300Vdc	220pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J331KC4B	6300Vdc	330pF±10%	9.0mm max.	10.0	7.0mm max.
DECB33J471KC4B	6300Vdc	470pF±10%	10.0mm max.	10.0	7.0mm max.
DECB33J681KC4B	6300Vdc	680pF±10%	11.0mm max.	10.0	7.0mm max.
DECB33J102KC4B	6300Vdc	1000pF±10%	13.0mm max.	10.0	7.0mm max.

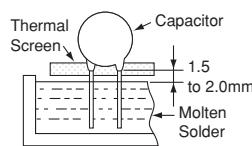
E Characteristics

Part Number	DC Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T
DECE33J102ZC4B	6300Vdc	1000pF+80/-20%	11.0mm max.	10.0	7.0mm max.
DECE33J222ZC4B	6300Vdc	2200pF+80/-20%	15.0mm max.	10.0	7.0mm max.

DEC Series Specifications and Test Methods

No.	Item	Specifications	Test Method										
1	Operating Temperature Range	-25 to +85°C											
2	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.										
3	Marking	To be easily legible	The capacitor should be visually inspected.										
4	Dielectric Strength	Between Lead Wires	No failure										
		Body Insulation	No failure										
5	Insulation Resistance (I.R.)	Between Lead Wires	No failure										
		10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.										
6	Capacitance	Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2kHz (Char. SL: 1±0.2MHz) and AC5V(r.m.s.) max.										
7	Q	Char. SL: 400+20C*2min. (30pF under) 1000 min. (30pF min.)	The dissipation factor and Q should be measured at 20°C with 1±0.2kHz (Char. SL: 1±0.2MHz) and AC5V(r.m.s.) max.										
	Dissipation Factor (D.F.)	Char. B, E: 2.5% max.											
8	Temperature Characteristics	Char. SL: +350 to -1000ppm/°C (Temp. range: +20 to +85°C) Char. B: Within ±10% Char. E: Within +20/-55%	The capacitance measurement should be made at each step specified in the Table.										
		Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition*1 for 24±2 hrs. before measurements. (Char. B, E)	<table border="1"> <thead> <tr> <th>Step</th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th></tr> </thead> <tbody> <tr> <td>Temp. (°C)</td><td>20±2</td><td>-25±3</td><td>20±2</td><td>85±2</td><td>20±2</td></tr> </tbody> </table>	Step	1	2	3	4	5	Temp. (°C)	20±2	-25±3	20±2
Step	1	2	3	4	5								
Temp. (°C)	20±2	-25±3	20±2	85±2	20±2								
9	Strength of Lead	Pull	Lead wire should not be cut off. Capacitor should not be broken.										
		Bending	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.										
10	Vibration Resistance	Appearance	No marked defect										
		Capacitance	Within specified tolerance										
		Q	Char. SL: 400+20C*2min. (30pF under) 1000 min. (30pF min.)										
		D.F.	Char. B, E: 2.5% max.										
11	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C										
12	Soldering Effect (Non-Preheat)	Appearance	No marked defect										
		Capacitance Change	Char. SL: Within ±2.5% Char. B: Within ±5% Char. E: Within ±15%										
		Dielectric Strength (Between Lead Wires)	Per item 4.										
10													
			The lead wire should be immersed into the melted solder of 350±10°C up to about 1.5 to 2mm from the main body for 3.5±0.5 sec.										
			Pre-treatment: Capacitor should be stored at 85±2°C for 1 hr., then placed at room condition*1 for 24±2 hrs. before initial measurements. (Char. B, E)										
			Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition*1 (Char. SL)										
			Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition*1 (Char. B, E)										

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa


*2 "C" expresses nominal capacitance value (pF).

Continued on the following page.

DEC Series Specifications and Test Methods

Continued from the preceding page.

No.	Item	Specifications	Test Method
13	Soldering Effect (On-Preheat)	Appearance	No marked defect
		Capacitance Change	Char. SL: Within $\pm 2.5\%$ Char. B: Within $\pm 5\%$ Char. E: Within $\pm 15\%$
		Dielectric Strength (Between Lead Wires)	Per item 4.
14	Temperature and Immersion Cycle	Appearance	No marked defect
		Capacitance Change	Char. SL: Within $\pm 3\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$
		Q	Char. SL: $275+5/2C^{*2}\text{min.}$ (30pF under) 350 min. (30pF min.)
		D.F.	Char. B, E: 4.0% max.
		I.R.	$2000M\Omega$ min.
		Dielectric Strength (Between Lead Wires)	Per item 4.
15	Humidity (Under Steady State)	Appearance	No marked defect
		Capacitance Change	Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$
		Q	Char. SL: $275+5/2C^{*2}\text{min.}$ (30pF under) 350 min. (30pF min.)
		D.F.	Char. B, E: 5.0% max.
		I.R.	$1000M\Omega$ min.
16	Humidity Loading	Appearance	No marked defect
		Capacitance Change	Char. SL: Within $\pm 7.5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$
		Q	Char. SL: $100+10/3C^{*2}\text{min.}$ (30pF under) 200 min. (30pF min.)
		D.F.	Char. B, E: 5.0% max.
		I.R.	$500M\Omega$ min.
17	Life	Appearance	No marked defect
		Capacitance Change	Char. SL: Within $\pm 3\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 20\%$
		Q	Char. SL: $275+5/2C^{*2}\text{min.}$ (30pF under) 350 min. (30pF min.)
		D.F.	Char. B, E: 4.0% max.
		I.R.	$2000M\Omega$ min.

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

High Voltage Ceramic Capacitors

muRata

DEF Series (Only for LCD Backlight Inverter Circuit/6.3kVp-p)

■ Features

1. Compact size: Diameter is 20% less than DEC series.
2. Low self-heating at high frequency and high voltage due to low dielectric loss of the ceramic material.
3. Operating temperature range is guaranteed up to 105 degrees C.
4. Coated with flame-retardant epoxy resin (equivalent to UL94V-0 standard).

Please contact us when a halogen-free product* is necessary.

* Cl=900ppm max., Br=900ppm max. and Cl+Br=1500ppm max.

5. Taping available for automatic insertion.

■ Applications

Ideal for use in LCD backlight inverters.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Only Murata products clearly stipulated as "for Automotive use" on its catalog can be used for automobile applications such as power train and safety equipment.

■ Marking

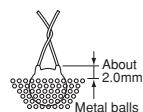
Temp. Char.	CH	SL
Nominal Body Diameter		
ø7-9mm	10J 6K~ 66	33J 6K~ 66
Temperature Characteristics	Upper horizontal line	—
Nominal Capacitance	Actual value	
Capacitance Tolerance	Marked with code	
Rated Voltage	Marked with code (Marked with 6K~)	
Manufactured Date Code	Abbreviation	

SL Characteristics

Part Number	Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEF1XLH100J□□□	6300Vdc(p-p)	10pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH120J□□□	6300Vdc(p-p)	12pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH150J□□□	6300Vdc(p-p)	15pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH180J□□□	6300Vdc(p-p)	18pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH220J□□□	6300Vdc(p-p)	22pF±5%	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH270J□□□	6300Vdc(p-p)	27pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH330J□□□	6300Vdc(p-p)	33pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH390J□□□	6300Vdc(p-p)	39pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF1XLH470J□□□	6300Vdc(p-p)	47pF±5%	9.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

muRata


CH Characteristics

Part Number	Rated Voltage	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DEF2CLH020C□□□	6300Vdc(p-p)	2.0pF±0.25pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH030C□□□	6300Vdc(p-p)	3.0pF±0.25pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH040C□□□	6300Vdc(p-p)	4.0pF±0.25pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH050D□□□	6300Vdc(p-p)	5.0pF±0.5pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH060D□□□	6300Vdc(p-p)	6.0pF±0.5pF	7.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH070D□□□	6300Vdc(p-p)	7.0pF±0.5pF	8.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH080D□□□	6300Vdc(p-p)	8.0pF±0.5pF	8.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH090D□□□	6300Vdc(p-p)	9.0pF±0.5pF	8.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A
DEF2CLH100J□□□	6300Vdc(p-p)	10pF±5%	8.0mm max.	7.5	6.0mm max.	A3B	J3B	N3A

Three blank columns are filled with the lead and packaging codes. Please refer to the three columns on the right for the appropriate code.

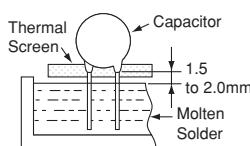
DEF Series Specifications and Test Methods

No.	Item	Specifications	Test Method
1	Operating Temperature Range	-25 to +105°C	
2	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.
3	Marking	To be easily legible	The capacitor should be visually inspected.
4	Dielectric Strength	Between Lead Wires	No failure The capacitor should not be damaged when DC12.6kV is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current \leq 50mA)
		Body Insulation	No failure The capacitor is placed in the container with metal balls of diameter 1mm so that each lead wire, short circuited, is kept about 2.0mm off the metal balls as shown in the figure at right, and DC voltage of 1.3kV is applied for 1 to 5 sec. between capacitor lead wires and metal balls. (Charge/Discharge current \leq 50mA)
5	Insulation Resistance (I.R.)	Between Lead Wires	10000MΩ min. The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging.
6	Capacitance	Within specified tolerance	The capacitance should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max.
7	Q	400+20C*2 min. (30pF under) 1000 min. (30pF min.)	The Q should be measured at 20°C with 1±0.2MHz and AC5V(r.m.s.) max.
8	Temperature Characteristics	Char. CH: 0±60ppm/°C Char. SL: +350 to -1000ppm/°C (Temp. range: +20 to +85°C)	The capacitance measurement should be made at each step specified in the Table.
		Step Temp. (°C)	1 25±3 2 20±2 3 85±2 4 20±2 5
9	Strength of Lead	Pull	Lead wire should not be cut off. Capacitor should not be broken. As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10±1 sec.
		Bending	Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.
10	Vibration Resistance	Appearance	No marked defect
		Capacitance	Within specified tolerance
		Q	400+20C*2 min. (30pF under) 1000 min. (30pF min.)
11	Solderability of Leads	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 sec. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C
12	Soldering Effect (Non-Preheat)	Appearance	No marked defect
		Capacitance Change	Within ±2.5%
		Dielectric Strength (Between Lead Wires)	Per item 4.

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).

Continued on the following page.


DEF Series Specifications and Test Methods

Continued from the preceding page.

No.	Item	Specifications	Test Method
13	Soldering Effect (On-Preheat)	Appearance	No marked defect
		Capacitance Change	Within $\pm 2.5\%$
		Dielectric Strength (Between Lead Wires)	Per item 4.
14	Temperature and Immersion Cycle	Appearance	No marked defect
		Capacitance Change	Within $\pm 3\%$
		Q	200+10C ^{*2} min. (10pF under) 275+5/2C ^{*2} min. (10pF min. and 30pF under) 350 min. (30pF min.)
		I.R.	2000MΩ min.
		Dielectric Strength (Between Lead Wires)	Per item 4.
15	Humidity (Under Steady State)	Appearance	No marked defect
		Capacitance Change	Within $\pm 5\%$
		Q	200+10C ^{*2} min. (10pF under) 275+5/2C ^{*2} min. (10pF min. and 30pF under) 350 min. (30pF min.)
		I.R.	1000MΩ min.
16	Life	Appearance	No marked defect
		Capacitance Change	Within $\pm 3\%$
		Q	200+10C ^{*2} min. (10pF under) 275+5/2C ^{*2} min. (10pF min. and 30pF under) 350 min. (30pF min.)
		I.R.	2000MΩ min.

First the capacitor should be stored at 120+0/-5°C for 60+0/-5 sec.

Then, as in the figure, the lead wires should be immersed in solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 sec.

Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*¹

The capacitor should be subjected to 5 temperature cycles, then consecutively to 2 immersion cycles.

<Temperature Cycle>

Step	Temperature (°C)	Time (min)
1	-25±3	30
2	Room Temp.	3
3	105±3	30
4	Room Temp.	3

Cycle time: 5 cycles

<Immersion Cycle>

Step	Temperature (°C)	Time (min)	Immersion Water
1	65+5/-0	15	Clean water
2	0±3	15	Salt water

Cycle time: 2 cycles

Post-treatment: Capacitor should be stored for 4 to 24 hrs. at room condition.*¹

Set the capacitor for 500+24/-0 hrs. at 40±2°C in 90 to 95% relative humidity.

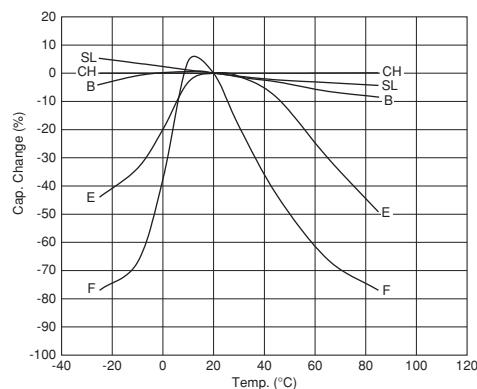
Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*¹

Apply 6.3kVp-p at the frequency in the Table for 1000+48/-0 hrs. at 105±2°C with a relative humidity of 50% max.
 (Charge/Discharge current≤50mA.)

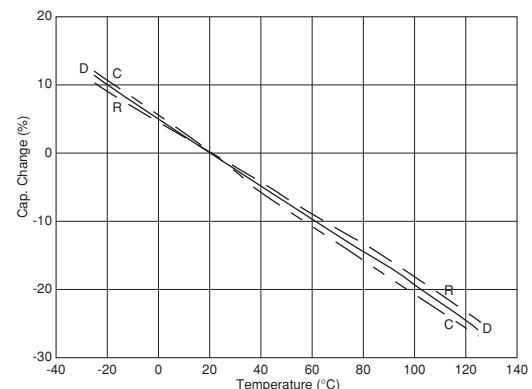
<Frequency>

Capacitance (pF)	Frequency (kHz)
to 10	100
12 to 22	45
27 to 47	33

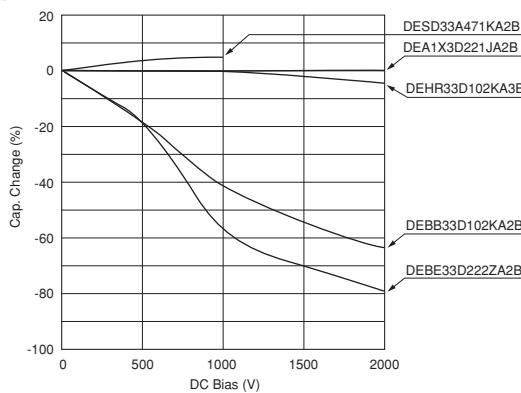
Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*¹


*¹ "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

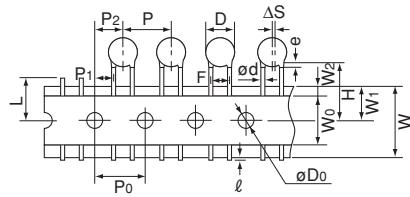
*² "C" expresses nominal capacitance value (pF).

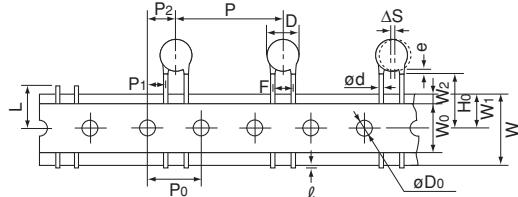

High Voltage Ceramic Capacitors Characteristics Data (Typical Example)

■ Capacitance - Temperature Characteristics

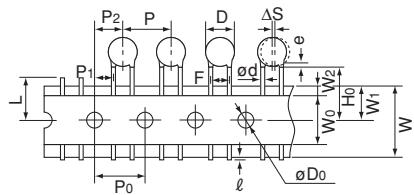

CH, SL, B, E, F char.

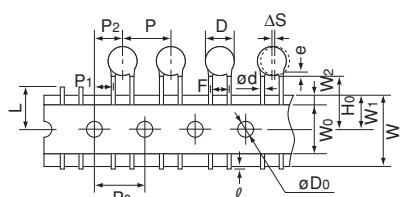
C, D, R char.

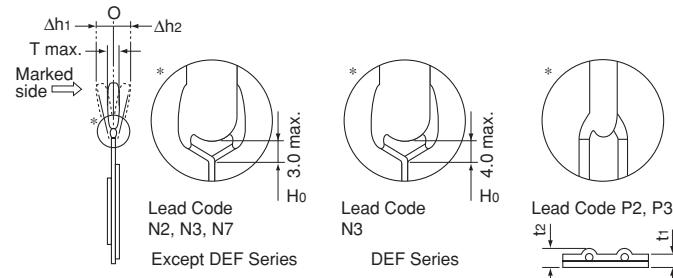
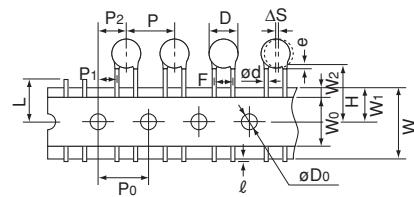

■ Capacitance - DC Bias Characteristics


High Voltage Ceramic Capacitors Packaging

■ Taping Specifications


- 15.0mm pitch / lead spacing 7.5mm taping
 Straight type
 (Lead Code: P3)


- 30.0mm pitch / lead spacing 7.5mm taping
 Vertical crimp type
 (Lead Code: N7)



- 12.7mm pitch / lead spacing 5.0mm taping
 Vertical crimp type
 (Lead Code: N2)

- 15.0mm pitch / lead spacing 7.5mm taping
 Vertical crimp type
 (Lead Code: N3)

- 12.7mm pitch / lead spacing 5.0mm taping
 Straight type
 (Lead Code: P2)

Item	Code	P3	N3	N7	P2	N2
Pitch of component	P	15.0 ± 2.0		30.0 ± 2.0		12.7 ± 1.0
Pitch of sprocket hole	P ₀		15.0 ± 0.3			12.7 ± 0.3
Lead spacing	F		7.5 ± 1.0			$5.0^{+0.8}_{-0.2}$
Length from hole center to component center	P ₂		7.5 ± 1.5			6.35 ± 1.3
Length from hole center to lead	P ₁		3.75 ± 1.0			3.85 ± 0.7
Body diameter	D					See the individual product specifications.
Deviation along tape, left or right	ΔS		0 ± 2.0			0 ± 1.0
Carrier tape width	W					18.0 ± 0.5
Position of sprocket hole	W ₁					9.0 ± 0.5
Lead distance between reference and bottom planes	H	$20.0^{+1.5}_{-1.0}$	—	—	$20.0^{+1.5}_{-1.0}$	—
	H ₀	—	$18.0^{+2.0}_{-0}$	—	—	$18.0^{+2.0}_{-0}$
Protrusion length	l					$+0.5$ to -1.0
Diameter of sprocket hole	øD ₀					4.0 ± 0.1
Lead diameter	ød					0.6 ± 0.05
Total tape thickness	t ₁					0.6 ± 0.3
Total thickness, tape and lead wire	t ₂					1.5 max.
Body thickness	T					See the individual product specifications.
Portion to cut in case of defect	L					$11.0^{+0}_{-1.0}$
Hold down tape width	W ₀					11.5 min.
Hold down tape position	W ₂					1.5 ± 1.5
Coating extension on lead	e					3.0 max. (Vertical crimp type: Up to the end of crimp)
Deviation across tape, front	Δh ₁					2.0 max.
Deviation across tape, rear	Δh ₂					1.0 max.

(in : mm)

Continued on the following page.

High Voltage Ceramic Capacitors Packaging

◀ Continued from the preceding page.

■ Packaging Styles

Bulk	Taping
Polyethylene Bag 	Ammo Pack

■ Minimum Quantity (Order in Sets Only)

[Bulk]		(pcs./Bag)	
	Body Dia. D (mm)	Lead Code A□, C□	Lead Code B□, D□, J□
		Long	Short
DES Series	4.5 to 6	500	500
	7	250 *1	500
	8 to 11	250	500
	12	200 *2	250 *3
	13, 14	200	250
	15 to 18	100	200
	19 to 21	50	100
DEC Series	7 to 9	250	500
	10, 11	100	—
DEF Series	12 to 15	100	—

*1 Lead Spacing F=5.0mm (Code: A2): 500pcs.

*2 Rated Voltage DC500V (Code: 2H): 250pcs.

*3 Rated Voltage DC500V (Code: 2H): 500pcs.

[Taping]			
Lead Code	N2, P2	N3, P3	N7
DES Series	1,500	1,000	500
DEH Series	1,500	900 *4	500
DEA Series	1,500	900 *4	500
DEB Series	1,500	900 *4	500
DEF Series	—	900	—

*4 Rated Voltage DC1kV (Code: 3A): 1,000pcs.

High Voltage Ceramic Capacitors ⚠Caution

■ ⚠Caution (Rating)

<DES/DEH/DEA/DEB/DEC Series>

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the V_{p-p} value of the applied voltage or the V_{o-p} that contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When using the low-dissipation DEA (SL Char.) /DEC (SL Char.) /DEH (C, R Char.) /DES (D Char.) series in a high-frequency and high-voltage circuit, be sure to read the instructions in item 4.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Certified Capacitors because various regulations on withstand voltage or impulse withstand established for each type of equipment should be taken into consideration.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement					

2. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 300kHz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20°C in an atmospheric temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

*Before using the low-dissipation DEA/DEC (SL Char.) /DEH/DES series, be sure to read the instructions in item 4.

3. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could follow an electric shock, fire or fume.

Continued on the following page.

High Voltage Ceramic Capacitors ⚠ Caution

Continued from the preceding page.

4. Load Reduction and Self-generated Heat During Application of High-frequency and High-voltage

Due to the low self-heating characteristics of low-dissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of B characteristic capacitors. However, if the self-heating temperature is 20°C under a high-frequency voltage whose peak-to-peak value equals the capacitor's rated voltage, the capacitor's power consumption may exceed its allowable electric power.

Therefore, when using the DEA/DEC (SL Char.) /DEH /DES series in a high-frequency and high-voltage circuit with a frequency of 1kHz or higher, make sure that the V_{p-p} values including the DC bias, do not exceed the applied voltage value specified in Table 1. Also make sure that the self-heating temperature (the difference between the capacitor's surface temperature and the capacitor's ambient temperature) at an ambient temperature of 25°C does not exceed the value specified in Table 1.

As shown in Fig. 2, the self-heating temperature depends on the ambient temperature. Therefore, if you are not able to set the ambient temperature to approximately 25°C, please contact our sales representatives or product engineers.

<Table 1> Allowable Conditions at High frequency

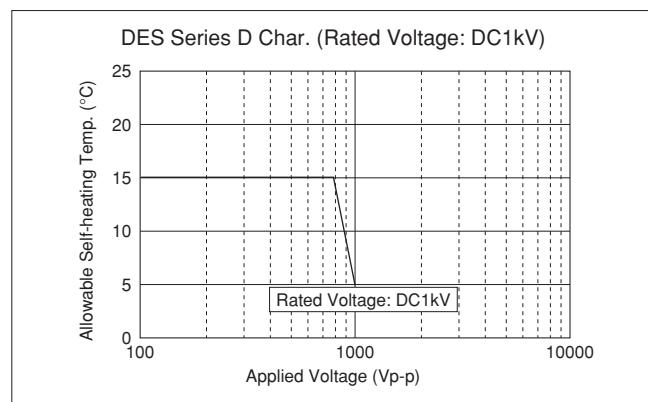
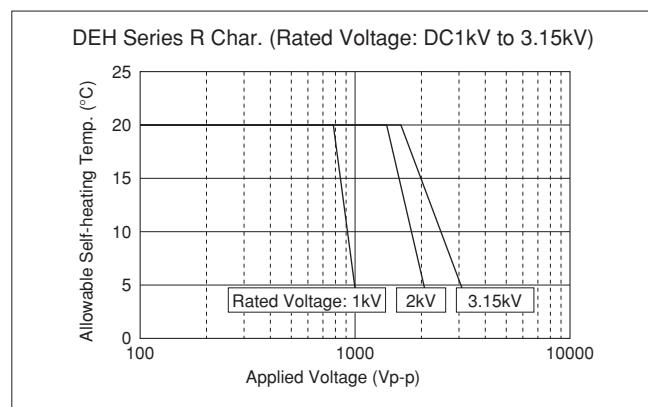
Series	Temp. Char.	DC Rated Voltage	Allowable Conditions at High-frequency *3		Capacitor's Ambient Temp. *2	
			Applied Voltage (Max.)	Self-heating Temp. (25°C Ambient Temp.) *1		
DEH	C	500V	500V _{p-p}	20°C Max.	-25 to +85°C	
		1kV	800V _{p-p}	20°C Max.		
		1000V _{p-p}		5°C Max.		
	R	2kV	1400V _{p-p}	20°C Max.		
		2000V _{p-p}		5°C Max.		
		3.15kV	1600V _{p-p}	20°C Max.		
	SL	3150V _{p-p}		5°C Max.		
		1kV	1000V _{p-p}	5°C Max.		
		2kV	2000V _{p-p}			
DEC	SL	3.15kV	3150V _{p-p}			
DEC	SL	6.3kV	6300V _{p-p}	5°C Max.		
DES	D	500V	500V _{p-p}	15°C Max.		
		1kV	800V _{p-p}			
		1000V _{p-p}		5°C Max.		

*1 Fig. 1 shows the relationship between the applied voltage and the allowable self-heating temperature regarding 1 to 3.15kV rated voltage of the DEH series R characteristic and 1kV rated voltage of the DES series D characteristic.

*2 When the ambient temperature is 85 to 125°C, the applied voltage needs to be further reduced. If the DEA/DEH/DES series needs to be used at an ambient temperature of 85 to 125°C, please contact our sales representatives or product engineers.

*3 Fig. 3 shows reference data on the allowable voltage - frequency characteristics for a sine wave voltage.

We are offering free software, The Capacitor Selection Tool: by Voltage Form, which will assist you in selecting a suitable capacitor.

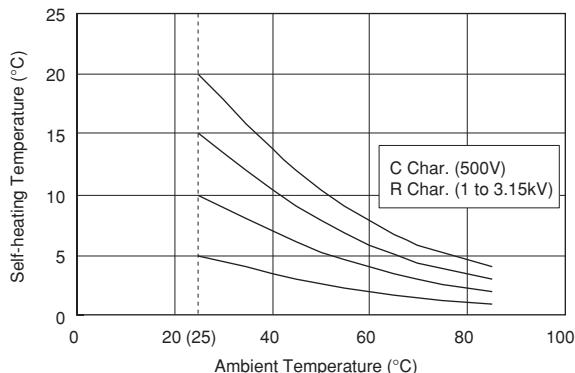


The software can be downloaded from Murata's Web site (http://www.murata.com/products/design_support/mmcsv/index.html).

By inputting capacitance values and applied voltage waveform of the specific capacitor series, this software will calculate the capacitor's power consumption and list suitable capacitors.

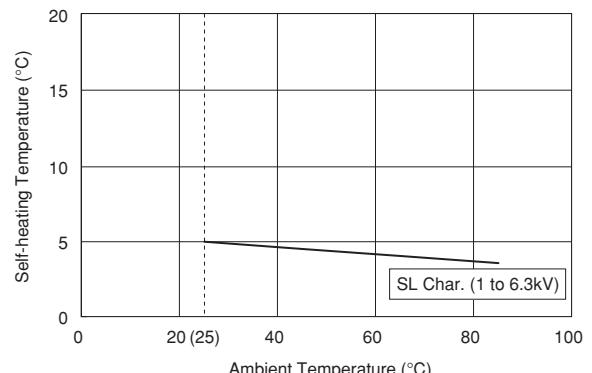
When the result of this software is different from the measurement result of the self-heating temperature on your side, please contact our sales representatives or product engineers.

FAILURE TO FOLLOW THE ABOVE CAUTIONS (ITEMS 1 TO 4) MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

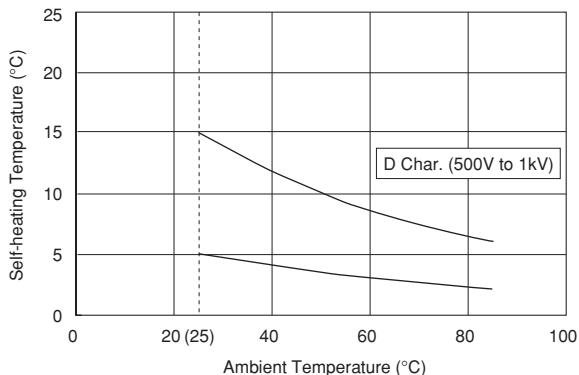
<Fig. 1> Relationship Between Applied Voltage and Self-heating Temperature (Allowable Self-heating Temp. at 25°C Ambient Temp.)


Continued on the following page.

High Voltage Ceramic Capacitors ⚠ Caution


Continued from the preceding page.

<Fig. 2> Dependence of Self-heating Temperature on Ambient Temperature


DEH Series C Char. and R Char. (Rated Voltage: DC1kV to 3.15kV)

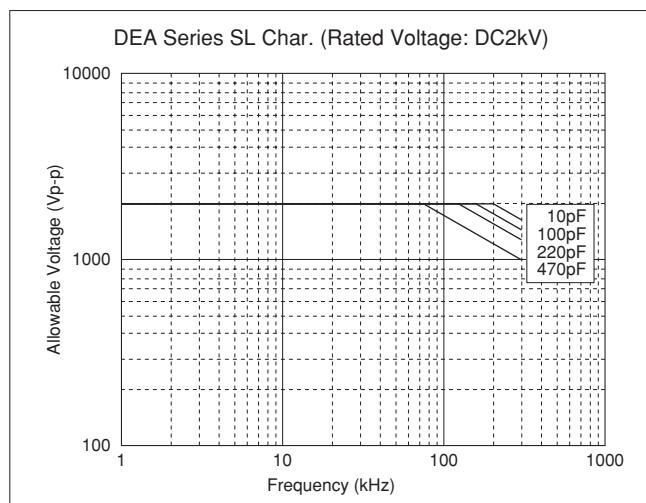
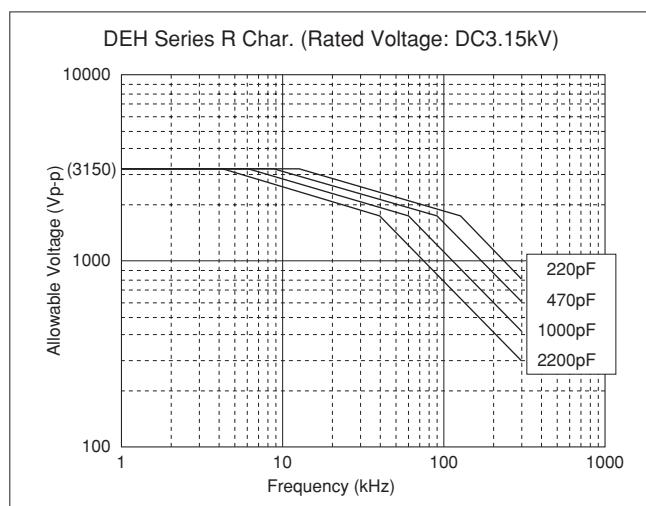
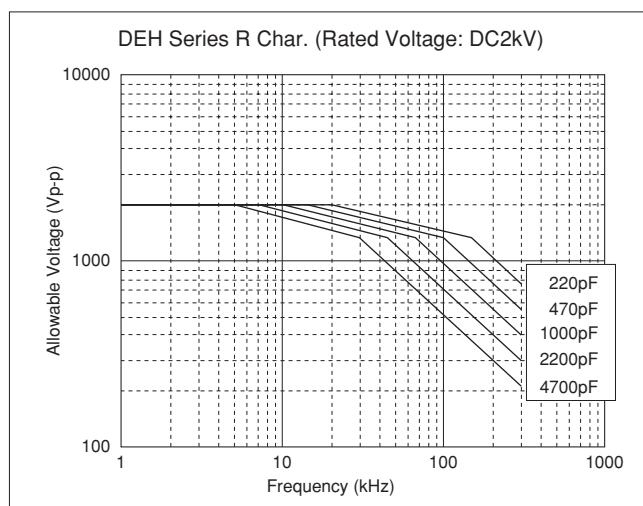
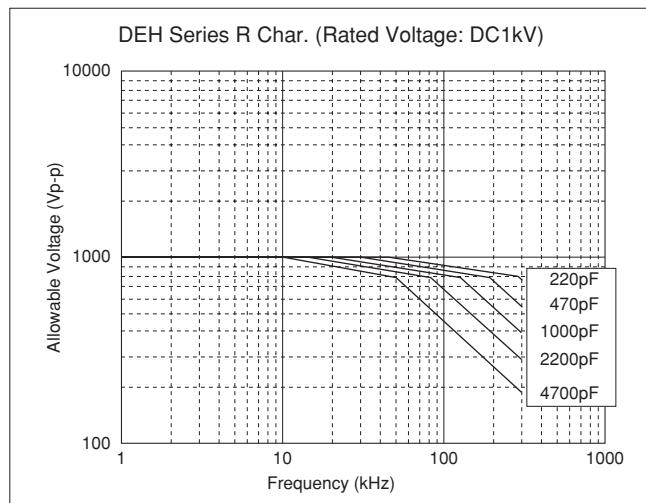
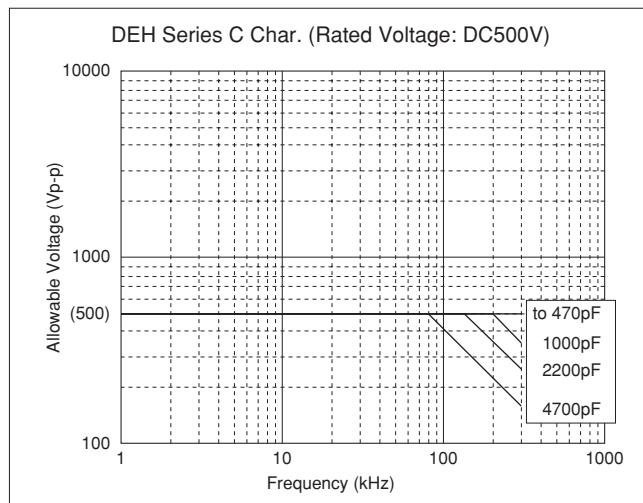
DEA/DEC Series SL Char. (Rated Voltage: DC1kV to 6.3kV)

DES Series D Char.
(Rated Voltage: DC500V to 1kV)

Continued on the following page.

High Voltage Ceramic Capacitors ⚠ Caution

Continued from the preceding page.






<Fig. 3> Allowable Voltage (Sine Wave Voltage) - Frequency Characteristics (At Ambient Temperature of 85°C or less)

Because of the influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency.

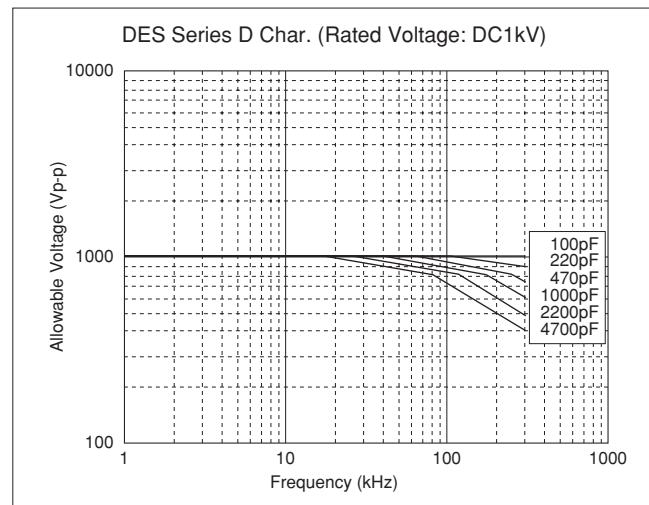
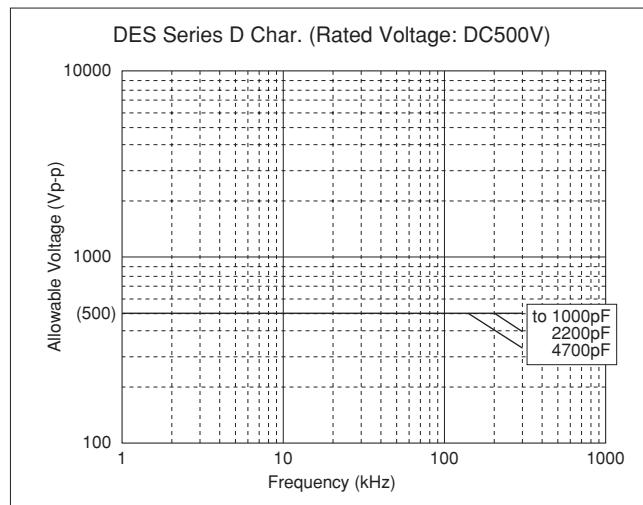
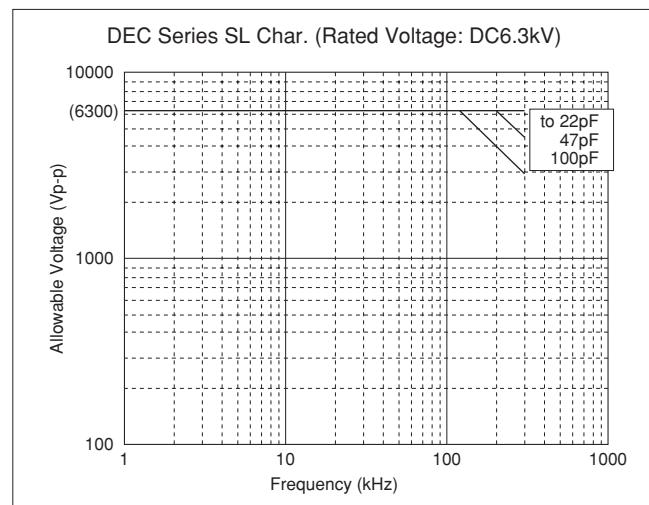
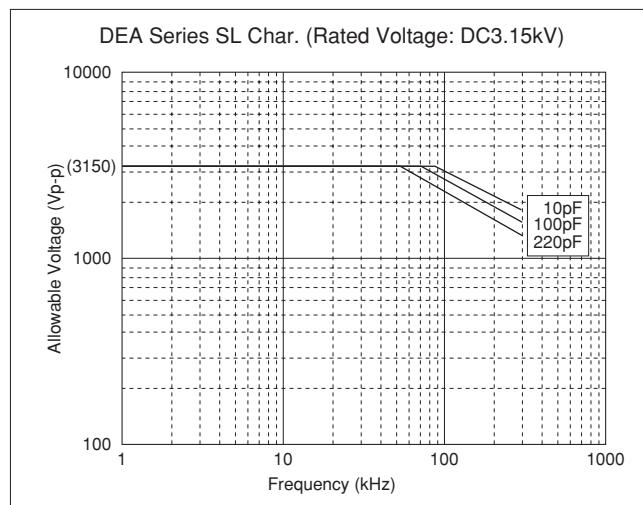
Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately

to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms.

Therefore, you are requested to make sure that the self-heating temperature is not higher than the value specified in Table 1.

Continued on the following page.

High Voltage Ceramic Capacitors ⚠ Caution

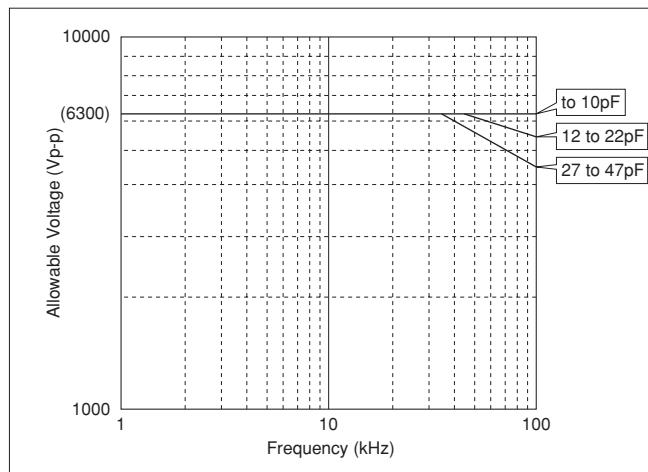




Continued from the preceding page.

<Fig. 3 (continued)> Allowable Voltage (Sine Wave Voltage) - Frequency Characteristics (At Ambient Temperature of 85°C or less)

Because of the influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency.

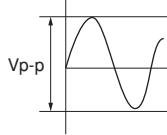
Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds

approximately to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms. Therefore, you are requested to make sure that the self-heating temperature is not higher than the value specified in Table 1.


High Voltage Ceramic Capacitors ⚠Caution

◀ Continued from the preceding page.

<DEF Series>


1. Operating Voltage

The frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in the figure below. For non-sine wave that includes a harmonic frequency, please contact our sales representatives or product engineers.

The temperature of the surface of the capacitor: below the upper limit of its rated operating temperature range (including self-heating).

The capacitor can be applied at a maximum of 6.3kVp-p at 100kHz when the lamp is turned on.

Voltage	AC Voltage
Positional Measurement	

2. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could result in an electric shock, fire or fume.

High Voltage Ceramic Capacitors ⚠Caution

■ ⚠Caution (Storage and Operating Condition)

Operating and Storage Environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Also, avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%.

Use capacitors within 6 months after delivery.
Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ ⚠Caution (Soldering and Mounting)

1. Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use.

Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Soldering the capacitor with a soldering iron should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max.

Soldering time: 3.5 sec. max.

3. Bonding, Resin Molding and Coating

For bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment. When the amount of applications, dryness/hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc). are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

4. Treatment after Bonding, Resin Molding and Coating

When the outer coating is hot (over 100 degrees C.) after soldering, it becomes soft and fragile.

Therefore, please be careful not to give it mechanical stress.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ ⚠Caution (Handling)

Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use.

Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board.

Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

High Voltage Ceramic Capacitors Notice

■ Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

■ Notice (Rating)

Capacitance Change of Capacitors

1. DEA/DEC/DEF Series (Temp. Char. CH, SL)

Capacitance might change a little depending on the surrounding temperature or an applied voltage.

Please contact us if you intend to use this product in a strict time constant circuit.

2. DEB/DEC Series (Temp. Char. B, E, F)

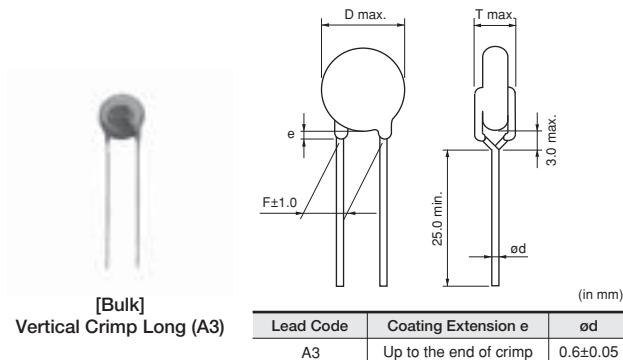
Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. Therefore, it is not likely to be suitable for use in a time constant circuit.

Please contact us if you need detailed information.

3. DEH/DES Series

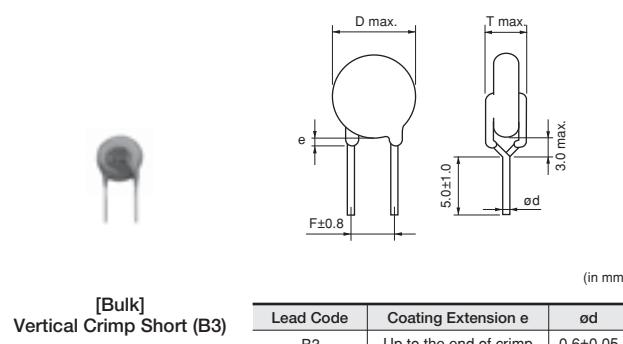
Capacitance might change greatly depending on the surrounding temperature or an applied voltage.

Therefore, it is not likely to be suitable for use in a time constant circuit. Please contact us if you need detailed information.


Safety Standard Certified Ceramic Capacitors for Automotive

muRata

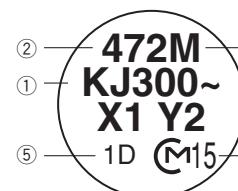
Type KJ -Class X1, Y2- (For Automotive Use/AC Line Filter of PHEV/EV Charger)


■ Features

1. Capacitors designed for AC line filters for PHEV/EV.
2. Meet AEC-Q200
3. Heat cycle: 1000cycle (-55/+125 deg.)
4. Class X1/Y2 capacitors certified by UL/ENEC(VDE).
5. Rated Voltage: AC300V
6. Coated with flame-retardant epoxy resin (conforming to UL94V-0 standard).
7. Available product for RoHS Restriction (EU Directive 2002/95/EC).
8. Taping available for automatic insertion.

■ Applications

1. Ideal for use as Y capacitors for AC line filters and primary-secondary coupling on battery chargers for PHEV/EV.
2. Ideal for use as a filter capacitor for DC-DC converters for PHEV/EV and HEV.



■ Standard Certification

	Standard No.	Certified No.	Rated Voltage
UL	UL 60384-14	E37921	AC300V(r.m.s.)
ENEC (VDE)	EN 60384-14	40031217	

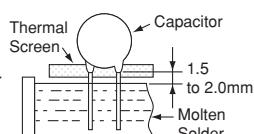
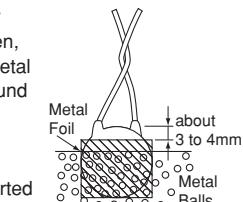
■ Marking

Example	Item
① Type Designation KJ	
② Nominal Capacitance (Marked with 3 figures)	
③ Capacitance Tolerance	
④ Company Name Code M15: Made in Thailand	
⑤ Manufactured Date Code Class Code X1Y2	
	Rated Voltage Mark 300~

Part Number	AC Rated Voltage	Temp. Char.	Capacitance	Body Dia. D	Lead Spacing F (mm)	Body Thickness T	Lead Package Long Bulk	Lead Package Short Bulk	Lead Package Taping
DE6B3KJ101K□□□	300Vac(r.m.s.)	B	100pF ± 10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ151K□□□	300Vac(r.m.s.)	B	150pF ± 10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ221K□□□	300Vac(r.m.s.)	B	220pF ± 10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ331K□□□	300Vac(r.m.s.)	B	330pF ± 10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ471K□□□	300Vac(r.m.s.)	B	470pF ± 10%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6B3KJ681K□□□	300Vac(r.m.s.)	B	680pF ± 10%	9.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ102M□□□	300Vac(r.m.s.)	E	1000pF ± 20%	7.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ152M□□□	300Vac(r.m.s.)	E	1500pF ± 20%	8.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ222M□□□	300Vac(r.m.s.)	E	2200pF ± 20%	9.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ332M□□□	300Vac(r.m.s.)	E	3300pF ± 20%	10.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A
DE6E3KJ472M□□□	300Vac(r.m.s.)	E	4700pF ± 20%	12.0mm max.	7.5	7.0mm max.	A3B	B3B	N3A

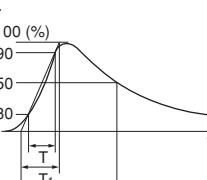
Three blank columns are filled with the lead and packaging codes. Please refer to the 3 columns on the right for the appropriate code.

Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name (KJ) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.



Type KJ Specifications and Test Methods

Operating Temperature Range: -40 to +125°C

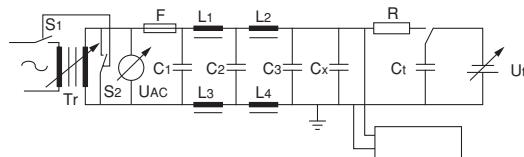
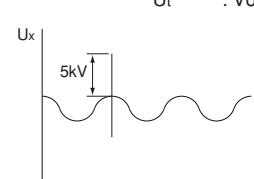
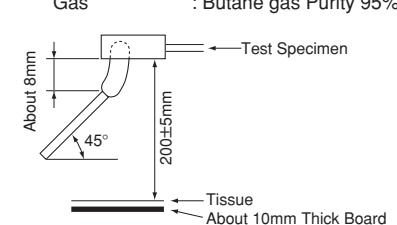
No.	Item	Specifications	Test Method																		
1	Appearance and Dimensions	No visible defect, and dimensions are within specified range.	The capacitor should be visually inspected for evidence of defect. Dimensions should be measured with slide calipers.																		
2	Marking	To be easily legible	The capacitor should be visually inspected.																		
3	Capacitance	Within specified tolerance																			
4	Dissipation Factor (D.F.)	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>B, E</td> <td>D.F.≤2.5%</td> </tr> </tbody> </table>	Char.	Specifications	B, E	D.F.≤2.5%	The dissipation factor should be measured at 20°C with 1±0.1kHz and AC5V(r.m.s.) max.														
Char.	Specifications																				
B, E	D.F.≤2.5%																				
5	Insulation Resistance (I.R.)	10000MΩ min.	The insulation resistance should be measured with DC500±50V within 60±5 sec. of charging. The voltage should be applied to the capacitor through a resistor of 1MΩ.																		
6	Between Lead Wires	No failure	The capacitor should not be damaged when the test voltages from Table 1 are applied between the lead wires for 60 sec. <Table 1> <table border="1"> <thead> <tr> <th>Type</th> <th>Test Voltage</th> </tr> </thead> <tbody> <tr> <td>KJ</td> <td>AC2600V(r.m.s.)</td> </tr> </tbody> </table>	Type	Test Voltage	KJ	AC2600V(r.m.s.)														
Type	Test Voltage																				
KJ	AC2600V(r.m.s.)																				
Body Insulation	No failure	<p>First, the terminals of the capacitor should be connected together. Then, as shown in the figure at right, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 4mm from each terminal.</p> <p>Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC voltage from Table 2 is applied for 60 sec. between the capacitor lead wires and metal balls.</p> <Table 2> <table border="1"> <thead> <tr> <th>Type</th> <th>Test Voltage</th> </tr> </thead> <tbody> <tr> <td>KJ</td> <td>AC2600V(r.m.s.)</td> </tr> </tbody> </table>	Type	Test Voltage	KJ	AC2600V(r.m.s.)															
Type	Test Voltage																				
KJ	AC2600V(r.m.s.)																				
7	Temperature Characteristics	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>B</td> <td>Within ±10%</td> </tr> <tr> <td>E</td> <td>Within $^{+20}_{-55}\%$</td> </tr> </tbody> </table> <p>(Temp. range: -25 to +85°C)</p>	Char.	Capacitance Change	B	Within ±10%	E	Within $^{+20}_{-55}\%$	<p>The capacitance measurement should be made at each step specified in Table 3.</p> <Table 3> <table border="1"> <thead> <tr> <th>Step</th> <th>Temperature (°C)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>20±2</td> </tr> <tr> <td>2</td> <td>-25±2</td> </tr> <tr> <td>3</td> <td>20±2</td> </tr> <tr> <td>4</td> <td>85±2</td> </tr> <tr> <td>5</td> <td>20±2</td> </tr> </tbody> </table> <p>Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed at room condition* for 24±2 hrs. before initial measurements.</p>	Step	Temperature (°C)	1	20±2	2	-25±2	3	20±2	4	85±2	5	20±2
Char.	Capacitance Change																				
B	Within ±10%																				
E	Within $^{+20}_{-55}\%$																				
Step	Temperature (°C)																				
1	20±2																				
2	-25±2																				
3	20±2																				
4	85±2																				
5	20±2																				
8	Solderability	Lead wire should be soldered with uniform coating on the axial direction over 3/4 of the circumferential direction.	<p>Should be placed into steam aging for 8 hrs.±15 min. After the steam aging, the lead wire of a capacitor should be dipped into an ethanol solution of 25% rosin and then into molten solder for 5.0±0.5 sec.</p> <p>The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.</p> <p>Temp. of solder: Lead Free Solder (Sn-3Ag-0.5Cu) 245±5°C H63 Eutectic Solder 235±5°C</p>																		
9	Resistance to Soldering Heat	Appearance	No marked defect																		
		Capacitance Change	Within ±10%																		
		I.R.	1000MΩ min.																		
		Dielectric Strength	Per Item 6																		


* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.

Type KJ Specifications and Test Methods

Continued from the preceding page.




No.	Item	Specifications	Test Method				
10	Vibration	Appearance	No marked defect				
		Capacitance	Within the specified tolerance				
		D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>B, E</td> <td>D.F. $\leq 2.5\%$</td> </tr> </tbody> </table>	Char.	Specifications	B, E	D.F. $\leq 2.5\%$
Char.	Specifications						
B, E	D.F. $\leq 2.5\%$						
11	Mechanical Shock	Appearance	No marked defect				
		Capacitance	Within the specified tolerance				
		D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>B, E</td> <td>D.F. $\leq 5.0\%$</td> </tr> </tbody> </table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$
Char.	Specifications						
B, E	D.F. $\leq 5.0\%$						
I.R.	10000MΩ min.						
12	Humidity (Under Steady State)	Appearance	No marked defect				
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>B</td> <td>Within $\pm 10\%$</td> </tr> <tr> <td>E</td> <td>Within $\pm 15\%$</td> </tr> </tbody> </table>	Char.	Capacitance Change	B	Within $\pm 10\%$
Char.	Capacitance Change						
B	Within $\pm 10\%$						
E	Within $\pm 15\%$						
D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>B, E</td> <td>D.F. $\leq 5.0\%$</td> </tr> </tbody> </table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$		
Char.	Specifications						
B, E	D.F. $\leq 5.0\%$						
I.R.	3000MΩ min.						
Dielectric Strength	Per Item 6						
13	Humidity Loading	Appearance	No marked defect				
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>B</td> <td>Within $\pm 10\%$</td> </tr> <tr> <td>E</td> <td>Within $\pm 15\%$</td> </tr> </tbody> </table>	Char.	Capacitance Change	B	Within $\pm 10\%$
Char.	Capacitance Change						
B	Within $\pm 10\%$						
E	Within $\pm 15\%$						
D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>B, E</td> <td>D.F. $\leq 5.0\%$</td> </tr> </tbody> </table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$		
Char.	Specifications						
B, E	D.F. $\leq 5.0\%$						
I.R.	3000MΩ min.						
Dielectric Strength	Per Item 6						
14	Life	Appearance	No marked defect				
		Capacitance Change	Within $\pm 20\%$				
		I.R.	3000MΩ min.				
		Dielectric Strength	Per Item 6				
			<p>Impulse Voltage Each individual capacitor should be subjected to a 5kV impulses for three times. Then the capacitors are applied to life test.</p> <p>Front time (T1) = $1.2\mu s = 1.67\text{ms}$ Time to half-value (T2) = $50\mu s$</p> <p>Apply a voltage from Table 4 for 1000 hrs. at $125 \pm 2 - 0^\circ\text{C}$, and relative humidity of 50% max.</p> <p><Table 4></p> <p>Applied Voltage</p> <p>AC510V(r.m.s.), except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 sec.</p> <p>Pre-treatment: Capacitor should be stored at $125 \pm 3^\circ\text{C}$ for 1hr., then placed at room condition* for 24 ± 2 hrs. before initial measurements.</p> <p>Post-treatment: Capacitor should be stored for 1 to 2 hrs. at room condition.*</p>				

* "Room condition" Temperature: 15 to 35°C , Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

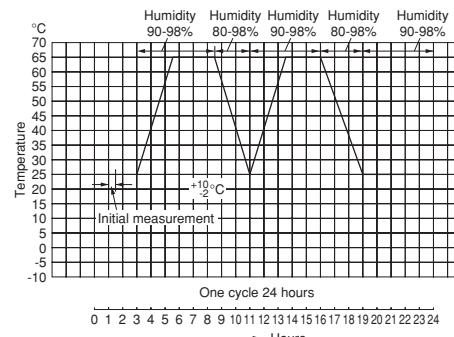
Continued on the following page.

Type KJ Specifications and Test Methods

Continued from the preceding page.

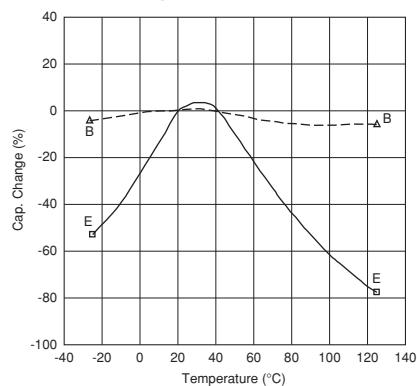
No.	Item	Specifications	Test Method				
15	Robustness of Terminations	Tensile Lead wire should not be cut off. Capacitor should not be broken.	As shown in the figure at right, fix the body of the capacitor and apply a tensile weight gradually to each lead wire in the radial direction of the capacitor up to 10N and keep it for 10 ± 1 sec.				
			Each lead wire should be subjected to 5N of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.				
16	Active Flammability	The cheesecloth should not catch on fire.	<p>The capacitor should be individually wrapped in at least one, but not more than two, complete layers of cheesecloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge.</p> <p> $C_{1,2} : 1\mu F \pm 10\%$ $C_3 : 0.033\mu F \pm 5\% 10kV$ $L_{1 to 4} : 1.5mH \pm 20\% 16A$ Rod core choke $C_t : 3\mu F \pm 5\% 10kV$ $R : 100\Omega \pm 2\%$ $C_x : \text{Capacitor under test}$ $U_{AC} : U_R \pm 5\%$ $F : \text{Fuse, Rated 10A}$ $U_R : \text{Rated Voltage}$ $U_t : \text{Voltage applied to } C_t$ </p>				
17	Passive Flammability	The burning time should not exceed 30 sec. The tissue paper should not ignite.	<p>The capacitor under test should be held in the flame in the position that best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec.</p> <p> $\text{Length of flame} : 12 \pm 1\text{mm}$ $\text{Gas burner} : \text{Length } 35\text{mm min.}$ $\text{Inside Dia.} : 0.5 \pm 0.1\text{mm}$ $\text{Outside Dia.} : 0.9\text{mm max.}$ $\text{Gas} : \text{Butane gas Purity } 95\% \text{ min.}$ </p>				
18	Temperature Cycle	Appearance	No marked defect				
		Capacitance Change	<table border="1"> <thead> <tr> <th>Char.</th> <th>Capacitance Change</th> </tr> </thead> <tbody> <tr> <td>B</td> <td>Within $\pm 10\%$</td> </tr> <tr> <td>E</td> <td>Within $\pm 20\%$</td> </tr> </tbody> </table>	Char.	Capacitance Change	B	Within $\pm 10\%$
Char.	Capacitance Change						
B	Within $\pm 10\%$						
E	Within $\pm 20\%$						
D.F.	<table border="1"> <thead> <tr> <th>Char.</th> <th>Specifications</th> </tr> </thead> <tbody> <tr> <td>B, E</td> <td>D.F. $\leq 5.0\%$</td> </tr> </tbody> </table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$		
Char.	Specifications						
B, E	D.F. $\leq 5.0\%$						
I.R.	3000MΩ min.						
Dielectric Strength	Per Item 6						

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

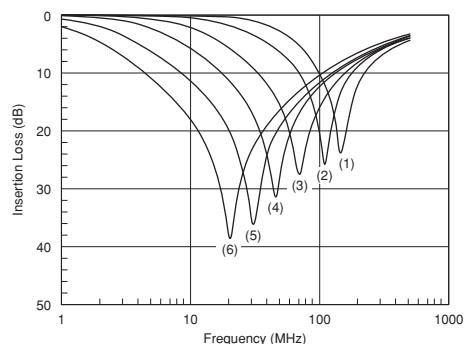

Continued on the following page.

Type KJ Specifications and Test Methods

Continued from the preceding page.

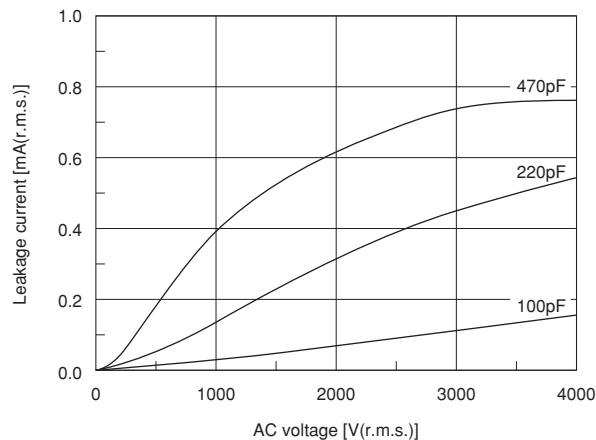

No.	Item	Specifications	Test Method									
19	High Temperature Exposure (Storage)	Capacitance Change Within $\pm 20\%$	Set the capacitor for 1000 ± 12 hrs. at $150 \pm 3^\circ\text{C}$. Pre-treatment: Capacitor should be stored at $125 \pm 3^\circ\text{C}$ for 1 hr., then placed at room condition* for 24 ± 2 hrs. Post-treatment: Capacitor should be stored for 24 ± 2 hrs. at room condition.*									
		D.F. <table border="1"><thead><tr><th>Char.</th><th>Specifications</th></tr></thead><tbody><tr><td>B, E</td><td>D.F. $\leq 5.0\%$</td></tr></tbody></table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$						
Char.	Specifications											
B, E	D.F. $\leq 5.0\%$											
I.R. $1000\text{M}\Omega$ min.												
20	Thermal Shock	Appearance No marked defect except color change of outer coating.	The capacitor should be subjected to 300 cycles. <table border="1"><thead><tr><th>Step</th><th>Temperature ($^\circ\text{C}$)</th><th>Time (min)</th></tr></thead><tbody><tr><td>1</td><td>-55+0/-3</td><td>30</td></tr><tr><td>2</td><td>125+3/-0</td><td>30</td></tr></tbody></table>	Step	Temperature ($^\circ\text{C}$)	Time (min)	1	-55+0/-3	30	2	125+3/-0	30
Step	Temperature ($^\circ\text{C}$)	Time (min)										
1	-55+0/-3	30										
2	125+3/-0	30										
Capacitance Change <table border="1"><thead><tr><th>Char.</th><th>Capacitance Change</th></tr></thead><tbody><tr><td>B</td><td>Within $\pm 10\%$</td></tr><tr><td>E</td><td>Within $\pm 20\%$</td></tr></tbody></table>	Char.	Capacitance Change	B	Within $\pm 10\%$	E	Within $\pm 20\%$						
Char.	Capacitance Change											
B	Within $\pm 10\%$											
E	Within $\pm 20\%$											
D.F. <table border="1"><thead><tr><th>Char.</th><th>Specifications</th></tr></thead><tbody><tr><td>B, E</td><td>D.F. $\leq 5.0\%$</td></tr></tbody></table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$								
Char.	Specifications											
B, E	D.F. $\leq 5.0\%$											
I.R. $3000\text{M}\Omega$ min.												
21	Resistance to Solvents	Appearance No marked defect	Per MIL-STD-202 Method 215 Solvent 1: 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits Solvent 2: Terpene defluxer Solvent 3: 42 parts (by volume) of water 1 part (by volume) of propylene glycol monomethyl ether 1 part (by volume) of monoethanolamine									
		Capacitance Change <table border="1"><thead><tr><th>Char.</th><th>Capacitance Change</th></tr></thead><tbody><tr><td>B</td><td>Within $\pm 10\%$</td></tr><tr><td>E</td><td>Within $\pm 20\%$</td></tr></tbody></table>	Char.	Capacitance Change	B	Within $\pm 10\%$	E	Within $\pm 20\%$				
Char.	Capacitance Change											
B	Within $\pm 10\%$											
E	Within $\pm 20\%$											
D.F. <table border="1"><thead><tr><th>Char.</th><th>Specifications</th></tr></thead><tbody><tr><td>B, E</td><td>D.F. $\leq 5.0\%$</td></tr></tbody></table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$								
Char.	Specifications											
B, E	D.F. $\leq 5.0\%$											
I.R. $3000\text{M}\Omega$ min.												
22	Biased Humidity	Appearance No marked defect	Apply the rated voltage and DC1.3+0.2/-0V (add $6.8\text{k}\Omega$ resistor) at $85 \pm 3^\circ\text{C}$ and 80 to 85% humidity for 1000 ± 12 hrs.									
		Capacitance Change <table border="1"><thead><tr><th>Char.</th><th>Capacitance Change</th></tr></thead><tbody><tr><td>B</td><td>Within $\pm 10\%$</td></tr><tr><td>E</td><td>Within $\pm 15\%$</td></tr></tbody></table>	Char.	Capacitance Change	B	Within $\pm 10\%$	E	Within $\pm 15\%$				
Char.	Capacitance Change											
B	Within $\pm 10\%$											
E	Within $\pm 15\%$											
D.F. <table border="1"><thead><tr><th>Char.</th><th>Specifications</th></tr></thead><tbody><tr><td>B, E</td><td>D.F. $\leq 5.0\%$</td></tr></tbody></table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$								
Char.	Specifications											
B, E	D.F. $\leq 5.0\%$											
I.R. $3000\text{M}\Omega$ min.												
23	Moisture Resistance	Appearance No marked defect	Apply 24 hrs. of heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.									
		Capacitance Change <table border="1"><thead><tr><th>Char.</th><th>Capacitance Change</th></tr></thead><tbody><tr><td>B</td><td>Within $\pm 10\%$</td></tr><tr><td>E</td><td>Within $\pm 20\%$</td></tr></tbody></table>	Char.	Capacitance Change	B	Within $\pm 10\%$	E	Within $\pm 20\%$				
Char.	Capacitance Change											
B	Within $\pm 10\%$											
E	Within $\pm 20\%$											
D.F. <table border="1"><thead><tr><th>Char.</th><th>Specifications</th></tr></thead><tbody><tr><td>B, E</td><td>D.F. $\leq 5.0\%$</td></tr></tbody></table>	Char.	Specifications	B, E	D.F. $\leq 5.0\%$								
Char.	Specifications											
B, E	D.F. $\leq 5.0\%$											
I.R. $3000\text{M}\Omega$ min.												

* "Room condition" Temperature: 15 to 35°C , Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

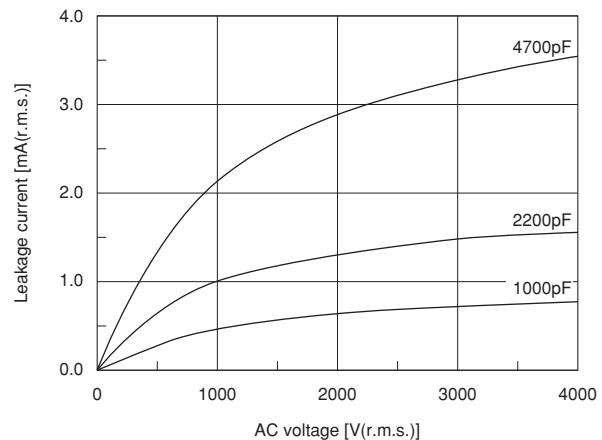


Safety Certified Ceramic Capacitors for Automotive Characteristics Data (Typical Example)

■ Capacitance - Temperature Characteristics

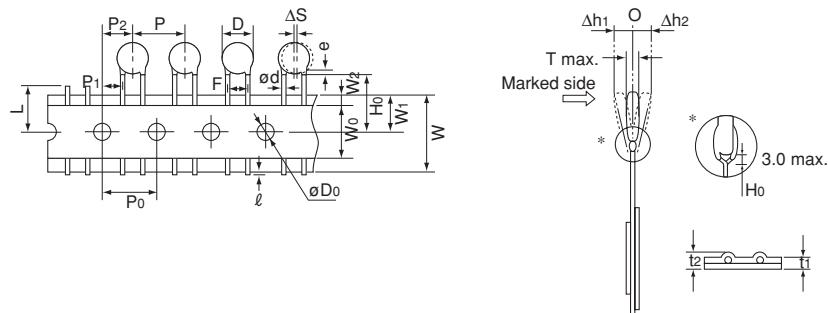

■ Insertion Loss - Frequency Characteristics

■ Leakage Current Characteristics


Type KJ (B char.)

AC voltage : 60Hz
 Temperature : 25°C

Type KJ (E char.)


AC voltage : 60Hz
 Temperature : 25°C

Safety Certified Ceramic Capacitors for Automotive Packaging

■ Taping Specifications

- 15mm pitch / lead spacing 7.5mm taping
 Vertical crimp type
 (Lead Code: N3)

Item	Code	N3
Pitch of component	P	15.0±2.0
Pitch of sprocket hole	P0	15.0±0.3
Lead spacing	F	7.5±1.0
Length from hole center to component center	P2	7.5±1.5
Length from hole center to lead	P1	3.75±1.0
Body diameter	D	See the individual product specifications.
Deviation along tape, left or right	ΔS	0±2.0
Carrier tape width	W	18.0±0.5
Position of sprocket hole	W1	9.0±0.5
Lead distance between reference and bottom planes	H0	18.0 ^{+2.0} ₋₀
Protrusion length	l	+0.5 to -1.0
Diameter of sprocket hole	ØD0	4.0±0.1
Lead diameter	Ød	0.6±0.05
Total tape thickness	t1	0.6±0.3
Total thickness, tape and lead wire	t2	1.5 max.
Body thickness	T	7.0 max.
Portion to cut in case of defect	L	11.0 ⁺⁰ _{-1.0}
Hold down tape width	W0	11.5 min.
Hold down tape position	W2	1.5±1.5
Coating extension on lead	e	Up to the end of crimp
Deviation across tape, front	Δh1	2.0 max.
Deviation across tape, rear	Δh2	

(in mm)

■ Packaging Styles

Bulk	Taping
Polyethylene Bag	Ammo Pack

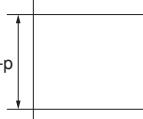
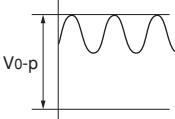
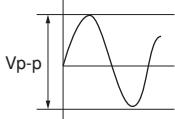
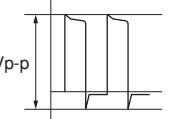
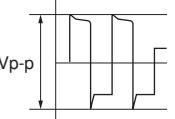
■ Minimum Quantity (Order in Sets Only)

[Bulk]	(pcs./Bag)	
Body Dia. D (mm)	Lead Code A3	Lead Code B3
	Long	Short
7 to 10	250	500
12	200	250

[Taping]

Lead Code: N3

700pcs./Ammo Pack






Safety Certified Ceramic Capacitors for Automotive ⚠Caution

■ ⚠Caution (Rating)

1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the V_{p-p} value of the applied voltage or the V_{o-p} that contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement					

2. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may have self-generated heat due to dielectric loss. Applied voltage load should be such that self-generated heat is within 20°C under the condition where the capacitor is subjected to an atmospheric temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of ø0.1mm under conditions where the capacitor is not affected by radiant heat from other components or wind from surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. Test Condition for Withstanding Voltage

(1) Test Equipment

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

Continued on the following page.

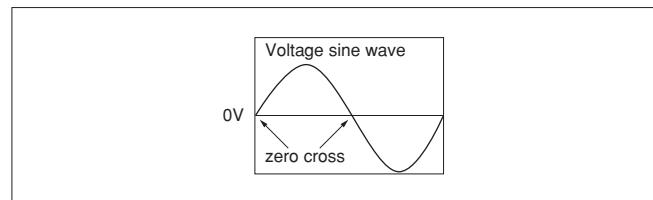
Safety Certified Ceramic Capacitors for Automotive ⚠Caution

Continued from the preceding page.

(2) Voltage Applied Method

When the withstanding voltage is applied, the capacitor's lead or terminal should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the zero cross.* At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the output of the withstanding voltage test equipment.


If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may rise, and therefore, a defect may be caused.

*ZERO CROSS is the point where voltage sine wave passes 0V. See the figure at right.

4. Fail-Safe

When the capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure could result in an electric shock, fire or fuming.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY
RESULT, WORST CASE, IN A SHORT CIRCUIT
AND CAUSE FUMING OR PARTIAL DISPERSION
WHEN THE PRODUCT IS USED.

Safety Certified Ceramic Capacitors for Automotive ⚠Caution

■ ⚠Caution (Storage and Operating Condition)

Operating and Storage Environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Also, avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 degrees centigrade and 15 to 85%.

Use capacitors within 6 months after delivery.
Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ ⚠Caution (Soldering and Mounting)

1. Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board. Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating. Please confirm there is no influence of holding measures on the product with the intended equipment.

2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specifications of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

Soldering the capacitor with a soldering iron should be performed in the following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max.

Soldering time: 3.5 sec. max.

3. Bonding, Resin Molding and Coating

For bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment. When the amount of applications, dryness/hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc). are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

4. Treatment after Bonding, Resin Molding and Coating

When the outer coating is hot (over 100 degrees C.) after soldering, it becomes soft and fragile.

Therefore, please be careful not to give it mechanical stress.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

■ ⚠Caution (Handling)

Vibration and Impact

Do not expose a capacitor or its lead wires to excessive shock or vibration during use. Excessive shock or vibration may cause fatigue destruction of lead wires mounted on the circuit board. Please take measures to hold a capacitor on the circuit boards by adhesive, molding resin or another coating.

Please confirm there is no influence of holding measures on the product with the intended equipment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Safety Certified Ceramic Capacitors for Automotive Notice

■ Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

■ Notice (Rating)

1. Capacitance Change of Capacitors

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. Therefore, it is not likely to be suitable for use in a constant time circuit.

Please contact us if you need detailed information.

2. Performance Check by Equipment

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. Therefore, the capacitance value may change depending on the operating condition in the equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in the capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

Safety Certified Ceramic Capacitors/High Voltage Ceramic Capacitors ISO9000 Certifications

Manufacturing plants that produce the products in this catalog have obtained the ISO9000 quality system certificate.

Plant	Applied Standard
Izumo Murata Manufacturing Co., Ltd.	ISO9001
Murata Electronics (Thailand), Ltd.	ISO9001
Taiwan Murata Electronics Co., Ltd.	ISO9001

⚠Note:

1. Export Control
<For customers outside Japan>
No Murata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction [nuclear, chemical or biological weapons or missiles] or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.
<For customers in Japan>
For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.
2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.

① Aircraft equipment	② Aerospace equipment
③ Undersea equipment	④ Power plant equipment
⑤ Medical equipment	⑥ Transportation equipment (vehicles, trains, ships, etc.)
⑦ Traffic signal equipment	⑧ Disaster prevention / crime prevention equipment
⑨ Data-processing equipment	⑩ Application of similar complexity and/or reliability requirements to the applications listed above
3. Product specifications in this catalog are as of December 2013. They are subject to change or our products in it may be discontinued without advance notice.
Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
4. Please read rating and ⚠CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
5. This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

Murata Manufacturing Co., Ltd.

<http://www.murata.com/>

Head Office

1-10-1, Higashi Kotari, Nagaokakyō-shi, Kyoto 617-8555, Japan
Phone: 81-75-951-9111

International Division

3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan
Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp