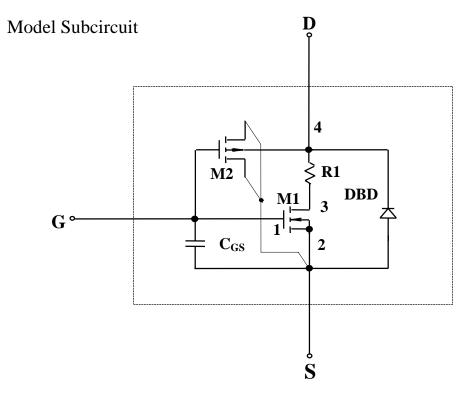


N-Channel 60-V (D-S) Rated MOSFET


Characteristics

- N-channel Vertical DMOS
- Macro-Model (Subcircuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

capacitance network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measured electrical data and are not intended as an exact physical description of a device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

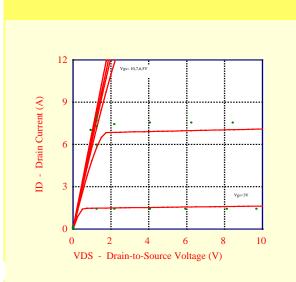
Siliconix 4/17/01

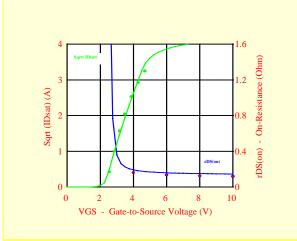
Document: 70902

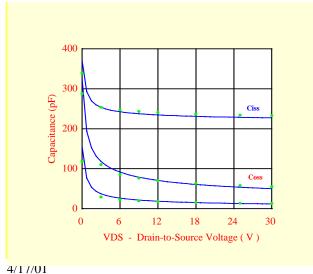
Model Evaluation

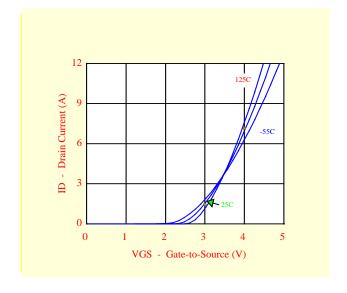
N-Channel Device (T_J=25°C Unless Otherwise Noted)

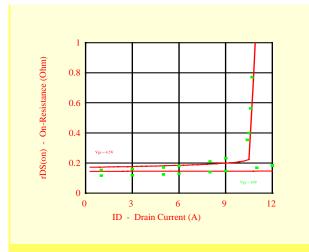
Parameter	Symbol	Test Conditions	Тур	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.82	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 4.5V, V_{GS} = 10V$	30	A
		$V_{DS} \ge 4.5 V, V_{GS} = 4.5 V$	11	A
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10V, I_D = 2A$	0.14	Ω
		$V_{GS} = 4.5 V, I_D = 1.7 A$	0.17	
Forward Transconductance ^a	g_{fs}	$V_{DS} = 4.5V, I_{D} = 2A$	4.2	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 1A, V_{GS} = 0V$	0.77	V
Dynamic				
Total Gate Charge	Q_{g}		4.7	
Gate-Source Charge	Q_{gs}	$V_{DS} = 30V, V_{GS} = 10V,$	0.8	nC
		$I_D = 2A$		
Gate-Drain Charge	Q_{gd}		1	
Input Capacitance	C_{iss}		229	
Output Capacitance	C_{oss}	$V_{DS} = 25V, V_{GS} = 0V,$	48	pF
		f = 1MHz		
Reverse Transfer Capacitance	C_{rss}		13	
Turn-On Delay Time	$t_{d(on)}$		8	
Rise Time	$t_{\rm r}$	$V_{DD} = 30V, R_L = 30\Omega$	6	
Turn-Off Delay Time	$t_{d(off)}$	$I_D \cong 1A$, $V_{GEN} = 4.5V$,	16	ns
		$R_G = 6\Omega$		
Fall Time	t_{f}		6	

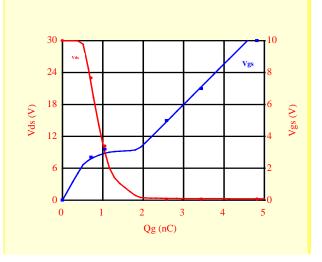

a) Pulse Test: pulse width $\leq 300 \,\mu s$, duty cycle $\leq 2\%$


Siliconix 4/17/01 Document: 70902




Comparison of Model with Measured Data $(T_J=25$ °C Unless Otherwise Noted)





4/17/01 Document: 70902

SPICE Device Model Si2308DS

Siliconix 4/17/01 Document: 70902