

HI-8430, HI-8431

October 2013

8-Channel, Ground /Open, or Supply / Open Sensor 4-channel 200 mA Supply / Open Driver

GENERAL DESCRIPTION

The HI-8430 is a combined 8-channel discrete-to-digital sensor and quad high side driver fabricated with Siliconon-Insulator (SOI) technology for robust latch-up free operation. Sense detection can either be GND/Open or Supply/Open as configured by the SNSE_SEL pin. Supply/Open sensing is also referred to as 28V/Open sensing. The sensing circuit window comparator thresholds can be fixed at the internal programmed values or can be set externally at the HI_SET and LO_SET pins, as selected by the THS_SEL pin. The digital SENSE outputs can be tri-stated by taking the $\overline{\text{OE}}$ pin high.

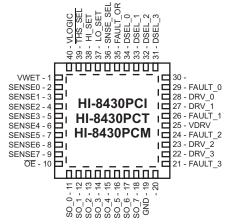
All sense inputs are internally lightning protected to DO160G, Section 22, Cat AZ, BZ and ZZ without external components.

The HI-8430 also offers four high side switches each capable of sourcing 200 mA of current. Each switch transistor is controlled by its own digital input pin and is fully fault protected. Over-current conditions, such as a short circuit, are detected and inhibited while signaling the fault condition at the corresponding logic output. These four FAULT outputs are also available in a combined OR output. The outputs are fully protected from transients when driving relays.

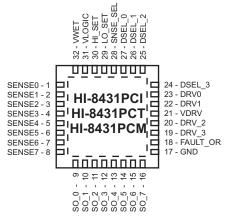
The HI-8431 is a smaller, reduced pin version of the HI-8430 and is available in a 32-pin PQFP or 5mm x 5mm QFN. It has all the features of the HI-8430 except the individual fault detection outputs, tri-state pin selection and fixed internal thresholds.

Interface to the digital subsystem is simple CMOS logic inputs and outputs. The logic pins are compatible with 5V or 3.3V logic allowing direct connection to a wide range of microcontrollers or FPGAs.

FEATURES


- Robust CMOS Silicon-on-Insulator (SOI) technology
- 8-channel Selectable Sense Operation, GND/Open or Supply/Open
- Selectable Thresholds and Hysteresis
- Sense Detection Range 3V to 20V
- Logic Operation from 3.0V to 5.5V
- Lightning Protected Sense Inputs

- Airbus ABD0100H compliant
- 4 High-Side 200 mA Drivers
- 4.5 Ohm On Resistance VLOGIC Inputs Control 5V to 28V High Side Drivers
- Over-Current Fault Detection Signaled by Logic Output
- Max Power Dissipation Automatically Limited by Fault Protection
- Diode Clamps for Discharging Inductive Loads


APPLICATIONS

- · Avionics Discrete to Digital Sensing
- Relay Driver
- · Lamp driver
- Discrete Signaling

PIN CONFIGURATIONS

40 Pin Plastic 6mm x 6mm Chip-scale package

32 Pin Plastic 5mm x 5mm Chip-scale package

(See page 14 for leaded QFP package options)

BLOCK DIAGRAM

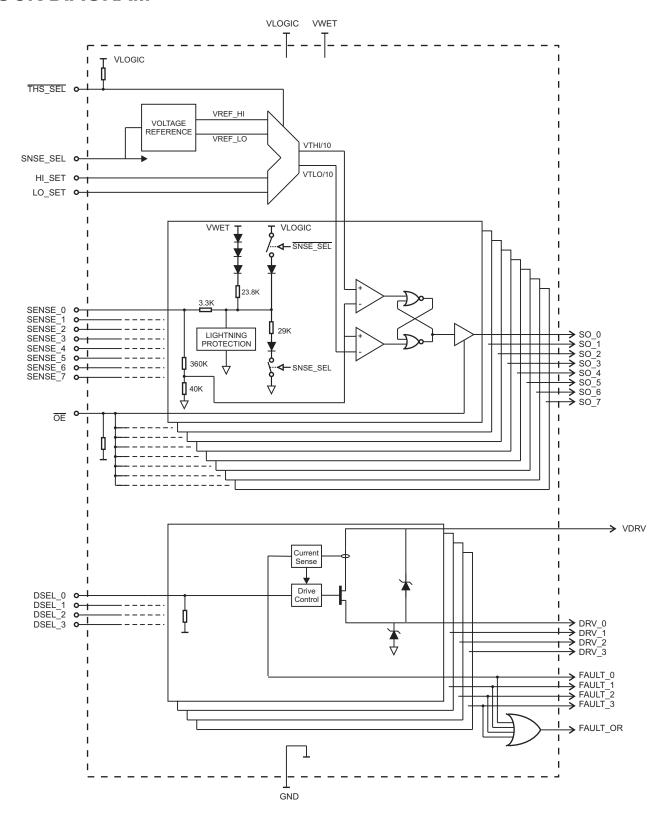


Figure 2

PIN DESCRIPTIONS

VWET	Supply	Optional input to supply relay wetting current to sense lines in GND/Open operation 50KΩ To GND
SENSE_0	Discrete Input	Discrete input 0. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
SENSE_1	Discrete Input	Discrete input 1. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
SENSE_2	Discrete Input	Discrete input 2. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
SENSE_3	Discrete Input	Discrete input 3. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
SENSE_4	Discrete Input	Discrete input 4. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
SENSE_5	Discrete Input	Discrete input 5. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
SENSE_6	Discrete Input	Discrete input 6. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
SENSE_7	Discrete Input	Discrete input 7. If SNSE_SEL = 0 pin senses GND/Open. If SNSE_SEL = 1, senses SUPPLY/Open
ŌĒ	Digital Input	If High, SO_n outputs are high-impedance. OE has internal 30KΩ pull-down resistor
SO_0	Digital output	High if SNSE_SEL=0 and SENSE_0 < VLo, or Low if SNSE_SEL=1 and SENSE_0 > VHI
SO_1	Digital output	High if SNSE_SEL=0 and SENSE_1 < VLo, or Low if SNSE_SEL=1 and SENSE_1 > VHI
SO_2	Digital output	High if SNSE_SEL=0 and SENSE_2 < VLo, or Low if SNSE_SEL=1 and SENSE_2 > VHI
SO_3	Digital output	High if SNSE_SEL=0 and SENSE_3 < VLo, or Low if SNSE_SEL=1 and SENSE_3 > VHI
SO_4	Digital output	High if SNSE_SEL=0 and SENSE_4 < VLo, or Low if SNSE_SEL=1 and SENSE_4 > VHI
SO_5	Digital output	High if SNSE_SEL=0 and SENSE_5 < VLo, or Low if SNSE_SEL=1 and SENSE_5 > VHI
SO_6	Digital output	High if SNSE_SEL=0 and SENSE_6 < VLo, or Low if SNSE_SEL=1 and SENSE_6 > VHI
SO_7	Digital output	High if SNSE_SEL=0 and SENSE_7 < VLo, or Low if SNSE_SEL=1 and SENSE_7 > VHI
GND	Supply	Reference, 0V
FAULT_3	Digital output	High if Driver 3 is attempting to source excess current
DRV_3	Switch Output	Drain node of high switch driver 3
VDRV	Supply	Supply for DRV_0-3. The VDRV pin and the isolated backside pad should be connected for optimum performance and power dissipation.
DRV_2	Switch Output	Drain node of high switch driver 2
FAULT_2	Digital output	High if Driver 2 is attempting to source excess current
FAULT_1	Digital output	High if Driver 1 is attempting to source excess current
DRV_1	Switch Output	Drain node of high switch driver 1
DRV_0	Switch Output	Drain node of high switch driver 0
FAULT_0	Digital output	High if Driver 0 is attempting to source excess current
DSEL_3	Digital Input	When high, turns on Driver 3. DSEL_3 has an internal 30KΩ pull-down resistor
DSEL_2	Digital Input	When high, turns on Driver 2. DSEL_2 has an internal 30KΩ pull-down resistor
DSEL_1	Digital Input	When high, turns on Driver 1. DSEL_1 has an internal 30KΩ pull-down resistor
DSEL_0	Digital Input	When high, turns on Driver 0. DSEL_0 has an internal 30KΩ pull-down resistor
FAULT_OR	Digital Output	High if any Driver is attempting to source excess current
SNSE_SEL	Digital Input	If Low, SENSE pins are sensing Open/Gnd. If High, SENSE pins are sensing SUPPLY/Open
LO_SET	Analog input	If THS_SEL is High, this pin sets the lower window comparator threshold
HI_SET	Analog input	If THS_SEL is High, this pin sets the upper window comparator threshold
THS_SEL	Digital Input	If THS_SEL is Low, comparator thresholds are set internally. THS_SEL has an internal 30KΩ pull-up
VLOGIC	Supply	Logic supply. (3.0V - 5.5V)

FUNCTIONAL DESCRIPTION SENSING

The 8 Sense Channels can be configured to meet the requirements of a variety of conditions and applications. Table 1 summarizes basic function selection and Table 2 gives more details on possible threshold values.

GND/OPEN SENSING

For GND/Open sensing, the SNS_SEL pin is connected to GND. Referring to the Block Diagram, Figure 2, this selection will connect a $3.3 \mathrm{K}\Omega$ pull-up resistor through a diode to VLOGIC and a $23.8 \mathrm{K}\Omega$ resistor through 3 diodes to VWET. These resistors give extra noise immunity for detecting the open state while providing relay wetting current. Configuring THS_SEL, HI_SET/LO_SET and VWET as described below sets the window comparator thresholds, VTHI and VTLO, the input voltage when open, and the input current.

HI-8430 (40 pin version) - THRESHOLD SELECT

The HI-8430 offers a choice between internally fixed thresholds or external thresholds provided by the user.

With THS_SEL set to GND, the window comparator thresholds are fixed based on an internal reference. The high threshold, VTHI, and the low threshold, VTLO levels may be found in Table 2. When the internal references are used the HI_SET and LO_SET pins should be connected to GND.

For applications with either large GND offsets or thresholds higher than VLOGIC - 0.75V, THS_SEL is set high and the thresholds are set externally, for example by a simple resistor divider off the VLOGIC supply. In this case VTHI is equal to 10X the voltage on the HI_SET pin. VTLO is equal to 10X the voltage on the LO_SET pin. This mode allows the user complete flexibility to define the thresholds and hysteresis levels.

HI-8431 (32 pin version) THRESHOLD SELECT

For applications that can take advantage of the very small 32 pin chip scale package of the HI-8431, THS_SEL is not available and an internal pull-up makes it mandatory to supply HI_SET and LO_SET externally.

OPEN INPUT VOLTAGE

For correct operation, the VSENSE_n when open, must be higher than VTHI so SO_n will be low.

NOTE 1: In the case of 3.3V VLOGIC operation, VWET $\underline{\text{must}}$ be connected to a supply greater than (1.3 x VTHI + 2.25V) to fulfill the above condition. In the case of 5V operation, the above condition may be satisfied with VWET left open (see table 2). In this case, the input floats to VSENSE_n = VLOGIC - 0.75V.

NOTE 2: Various ARINC standards such as ARINC 763 define the standard "Open" signal as characterized by a resistance of $100 \text{K}\Omega$ or more with respect to signal common. The user should consider this $100 \text{K}\Omega$ to ground case when setting the thresholds.

WETTING CURRENT

For GND/Open applications with VWET open, the wetting current with the input voltage at GND is simply (VLOGIC - 0.75)/3.3K. When applying a voltage at the VWET pin the wetting current is (VLOGIC - 0.75)/3.3K + (VWET - 4.2)/127K. Additional wetting current can be achieved by placing an external resistor and a diode between VWET and the individual sense inputs.

SUPPLY/OPEN SENSING

The 8 Sense Channels can be configured to sense Supply/Open by connecting the SNSE_SEL pin to VLOGIC. Refering to Figure 2, a $32 \mathrm{K}\Omega$ resistor is switched in series to provide a pull down in addition to the $400 \mathrm{K}\Omega$ of the comparator input divider to GND. Similar to the GND/Open case configuring THS_SEL, HI_SET/LO_SET and VWET as described below sets the window comparator thresholds, the open input voltage when open and the wetting current.

THRESHOLD SELECT

The threshold selections are handled in the same way as stated above for the GND/OPEN case.

For THS_SEL set low, the internal reference nominally sets the window comparator. See table 2 for the VTHI and VTLO threshold levels.

For THS_SEL set high, the final thresholds are 10X the voltage set on the HI_SET and LO_SET pins. The VWET pin must be left open in the Supply/Open sensing case.

WETTING CURRENT

For the Supply/Open case the wetting current into the sense input is the current sunk by the effective $28K\Omega$ to GND. For VSENSE_n = 28V, IWET is 1ma. See Figure 12.

Table 1. Function Table

SENSE_n	SNSE_SEL	ŌĒ	SO_n
Open or > VTHI	L (GND/OPEN)	L	L
< VTLO	L (GND/OPEN)	L	Н
Х	L (GND/OPEN)	Н	Z
Open or < VTLO	H (V+/OPEN)	L	Н
> VTHI	H (V+/OPEN)	L	L
Х	H (V+/OPEN)	Н	Z

H = VLOGIC, L = GND, Z = Hi-Z, X = Don't Care, V+ = Vsupply See Table 2 for values of VTHI/VTLO

FUNCTIONAL DESCRIPTION

Table 2. Configuration options and allowed threshold values -55C to 125C.

VLOGIC	VWET Pin	SNSE_ SEL	THS_ SEL	Operation	Threshold Selected	Maximum HI_SET (VTHI = HI_SETx10)	Minimum LO_SET (VTLO = LO_SETx10)	Guaranteed High Threshold	Guaranteed Low Threshold
3.0V	8V	L	L	GND/OPEN	Internal	-	-	3.0V	1.0V
3.6V	8V	L	L	GND/OPEN	Internal	-	-	3.25V	1.0V
3.3V	28V	L	L	GND/OPEN	Internal	-	-	3.0V	1.0V
3.0V to 3.6V	8V	L	Н	GND/OPEN	External	0.4V (4.0V)	0.3V (3.0V)	VTHI + 25%	VTLO - 25%
3.0V to 3.6V	28V	L	Н	GND/OPEN	External	2.0V (20V)	0.3V (3.0V)	VTHI + 25%	VTLO - 25%
3.0V to 3.6V	OPEN	Н	L	V+/OPEN	Internal	-	-	18.0V	9.0V
3.0V to 3.6V	OPEN	Н	Н	V+/OPEN	Exernal	2.2V (22V)	0.3V (3.0V)	VTHI + 25%	VTLO - 25%
4.5V	OPEN	L	L	GND/OPEN	Internal	-	-	3.5V	1.0V
5.5V	OPEN	L	L	GND/OPEN	Internal	-	-	4.0V	1.0V
5.0V	28V	L	L	GND/OPEN	Internal	-	-	4.0V	1.0V
4.5V to 5.5V	7V	L	Н	GND/OPEN	External	0.4V (4.0V)	0.3V (3.0V)	VTHI + 25%	VTLO - 25%
4.5V to 5.5V	28V	L	Н	GND/OPEN	External	2.0V (20V)	0.3V (3.0V)	VTHI + 25%	VTLO - 25%
4.5V to 5.5V	OPEN	Н	L	V+/OPEN	Internal	-	-	18.0V	9.0V
4.5V to 5.5V	OPEN	Н	Н	V+/OPEN	External	2.2V (22V)	0.3V (3.0V)	VTHI + 25%	VTLO - 25%

NOTE: VTHI = Sense pin high threshold (HI_SET x 10), VTLO = Sense pin low threshold (LO_SET x 10)

OUTPUT ENABLE

The output enable pin, $\overline{\text{OE}}$, available on the HI-8430, tristates all Sense Outputs and High Side Driver Fault Outputs to allow connecting the tri-state outputs in parallel with other tri-stated chips. The $\overline{\text{OE}}$ pin has a pull-down and when left open will cause these digital outputs to be driven to their logic levels. If the $\overline{\text{OE}}$ pin is High, these digital outputs are high impedance.

OUTPUT DRIVERS

HIGH SIDE DRIVERS

Both product versions offer four High Side Drivers. Each driver (PMOS switch) is capable of sourcing a minimum of 200mA while exhibiting a $R_{\mbox{\tiny on}}$ of 4.5Ω typical. VDRV, the high side rail, may range from 5V to 28V independent of VLOGIC, which may range from 3V to 5.5V. Each output has diode clamps for protection during inductive kick-back for relay applications. Off-state leakage is typically less than 10nA at room temperature. The inputs, DSEL0 through DSEL3, have internal pull-downs which hold off the drivers until logic highs are presented.

OVER-CURRENT SHUTDOWN

Maximum DC power dissipation per driver is approximately 0.5W at room temperature. Conditions that would cause the power to exceed this amount will result in a shut down of the driver. Over-current shutdown is initiated when the driver pin voltage is more than approximately 1.5V from the VDRV rail. However there is a delay of approximately 11µsec before the shutdown actually occurs giving the driver an opportunity to charge capacitive loads and thereby avoid shutdown. Similarly, if the driver is on and a high load is suddenly switched on, the over-current shutdown will be delayed in activation. Note that even when the over-current fault condition is present, the driver pin is still sourcing a few milliamps. This low current condition continues until the input is taken low or the load is removed.

FAULT CONDITIONS

Each driver has a converter that translates an over-current detection into a logic high output at its FAULT output. The FAULT_OR output goes high if one or more FAULT outputs are high. These outputs can be tri-stated by setting \overline{OE} high.

FUNCTIONAL DESCRIPTION

LIGHTNING PROTECTION

All SENSE_n inputs are protected to RTCA/DO-160G, Section 22, Categories AZ and BZ, Waveforms 3, 4, 5A, with no external components. In addition, all inputs are also protected to ZZ, Waveforms 3 and 5B, to provide more robustness in composite airframe applications. Table 3 and Figure 3 give values and waveforms. See Application Note AN-305 for recommendations on lightning protection of Holt's family of Discrete-to-Digital devices.

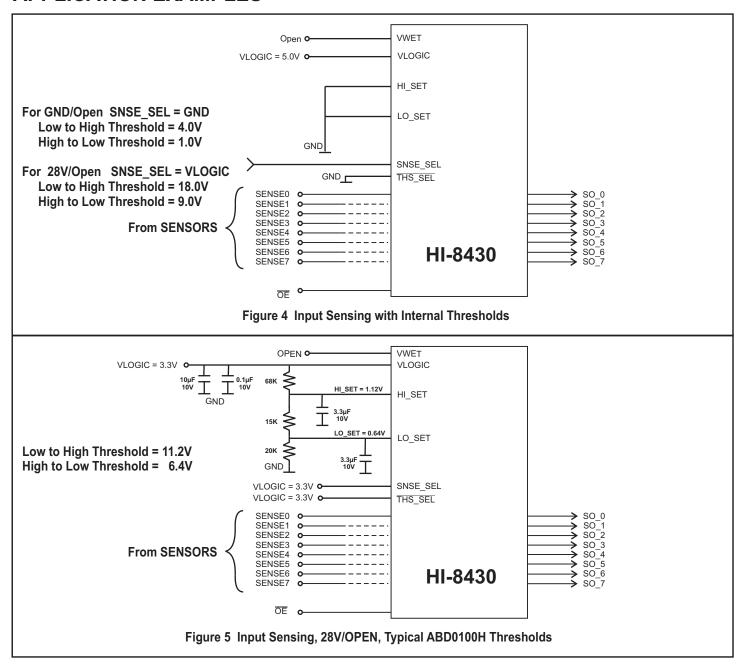

	Waveforms						
Level	3/3	4/1	5A/5A	5B/5B			
	Voc (V) / Isc (A)						
2	250/10	125/25	125/125	125/125			
Z	500/20	300/60	300/300	300/300			
3	600/24	300/60	300/300	300/300			

Table 3. Waveform Peak Amplitudes

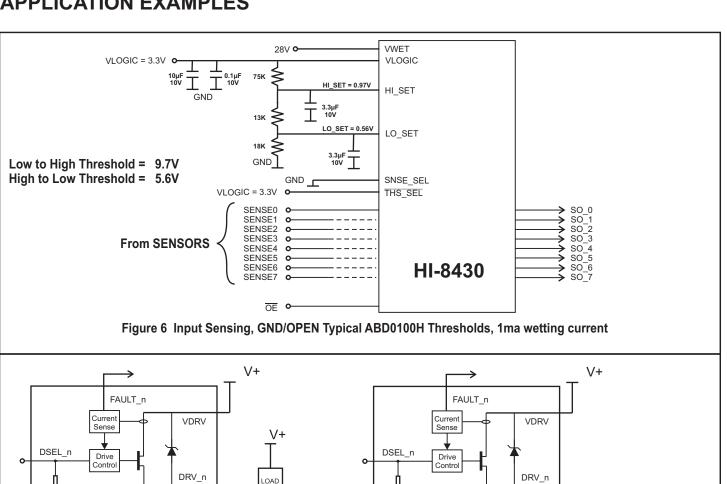


Figure 3. Lightning Waveforms

APPLICATION EXAMPLES

APPLICATION EXAMPLES

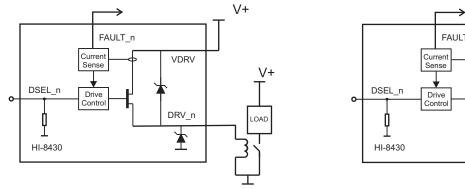


Figure 7 Highside Output Driving Relay

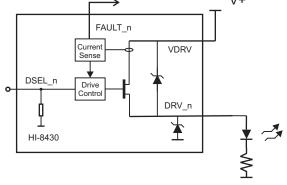


Figure 8 Highside Output Driving LED

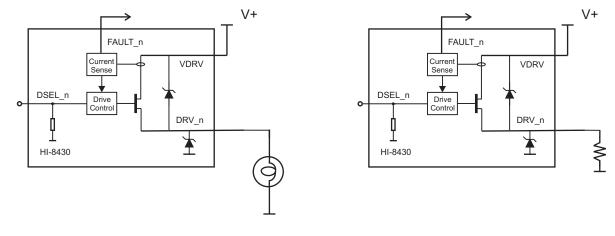
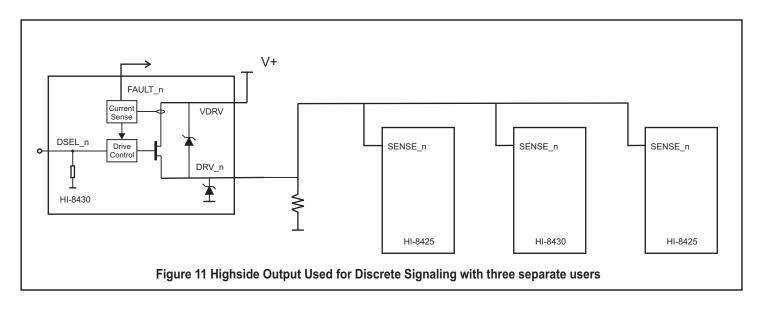
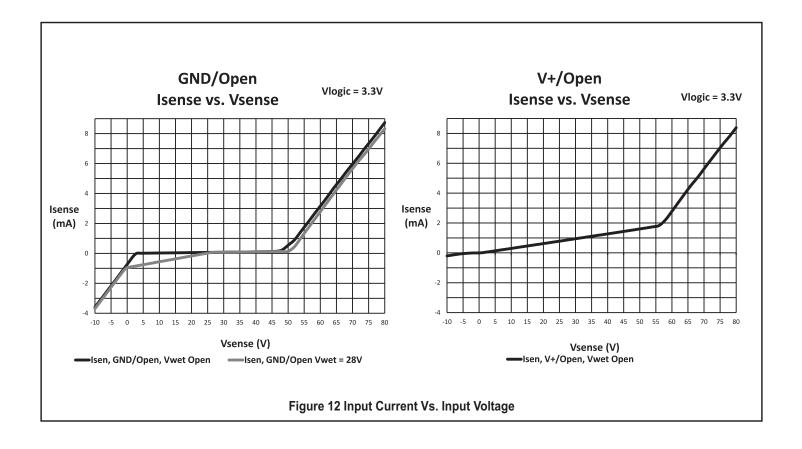




Figure 9 Highside Output Driving Lamp

Figure 10 Highside Output Driving Resistive Load

APPLICATION EXAMPLES

ABSOLUTE MAXIMUM RATINGS

Voltages referenced to Ground
Supply Voltage (VLOGIC) -0.3V to +7V
VDRV 50V
VWET0.3V to +50V
DC Driver Current per pin
Logic Input Voltage Range0.3V to VLOGIC+0.3V
Discrete Input Voltage Range80V to +80V
Continuous Power Dissipation (TA=+70°C) QFN (derate 21.3mW/°C above +70°C) 1.7W QFP (derate 10.0mW/°C above +70°C) 1.5W
Solder Temperature (reflow)
Junction Temperature175°C
Storage Temperature65°C to -150°C

RECOMMENDED OPERATING CONDITIONS

Supply Voltage		
VLOGIC		3.0V to 5.5V
VDRV		7.0V to 36V
VWET		8.0V to 36V
Operating Tempera	ature Range	
Industrial Sc	reening	40°C to +85°C
Hi-Temp Scr	eening	55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

D.C. ELECTRICAL CHARACTERISTICS

VDD = 3.3V or 5V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
DISCRETE INPUTS						
SENSE V+/OPEN		SEN_SEL = High, VWET open				
Resistance to Ground	Rin			30		ΚΩ
Case 1: THS_SEL = GND		Internal Threshold Mode				
Open State Input Voltage	Vos	Input voltage to give High output			9.0	V
V+ State Input Voltage	Vv+	Input voltage to give Low output	18.0			V
Input Current at 28V	lın28	VIN = 28V		0.95		mA
Hysteresis	VHY		1.5			V
Case 2: THS_SEL = Open or VLOGIC		HI_SET/LO_SET pin set Thresholds				
HI_SET Threshold Range	VHR	HI Threshold is set to HI_SET X 10	0.4		2.2	V
LO_SET Threshold Range	VLR	LO Threshold is set to LO_SET X 10	0.3		2.1	V
Min Threshold Window	VTHW	HI_SET > LO_SET	0.1			V
10:1 Division Accuracy		As measured by Sense Output Change	VLR - 25%		VHR + 25%	V

D.C. ELECTRICAL CHARACTERISTICS (cont) VDD = 3.3V or 5V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
DISCRETE INPUTS						
SENSE GND/OPEN						
Resistance in series with diode to VLOGIC	Rin			3.3		ΚΩ
Resistance in series with diode to VWET	Rw			23.8		ΚΩ
Case 1: THS_SEL = GND		Internal Threshold Mode				
Ground State Input Voltage	Vgs	Input voltage to give High output			1.0	V
Open State Input Voltage	Vos	Input voltage to give Low output VDD = 5.5V VDD = 3.0V	4.0 3.0			٧
Input Current at 0V	lin28	$V_{IN} = 0V, VDD = 3.0V$ $V_{IN} = 0V, VDD = 5.5V$		-0.65 -1.65		mA mA
Hysteresis	VHY		0.15			V
Case 2: THS_SEL = Open or VLOGIC		HI_SET/LO_SET pins set Thresholds				
HI_SET Threshold Range	VHR	HI Threshold is set to HI_SET X 10	0.4		2.0	٧
LO_SET Threshold Range	VLR	LO Threshod is set to LO_SET X 10	0.3		1.9	V
Min Threshold Window	VTHW	HI_SET > LO_SET	0.1			V
10:1 Division Accuracy		As measured by Sense Output Change	VLR - 25%		VHR + 25%	V

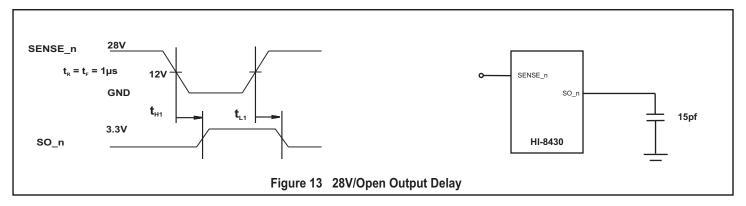
LOGIC INPUTS						
Input Voltage	ViH	Input Voltage HI	80%			VLOGIC
	VIL	Input Votage LO			20%	VLOGIC
Input Current, OE, DSEL_n	Isink	VIN = VLOGIC, 30KΩ pull down		125		μA
	Isource	VIN = GND			0.1	μA
Input Current, THS_SEL	Isink	VIN = VLOGIC	0.1			μΑ
	Isource	Vin = GND , 30KΩ pull up		125		μA
Input Current, SNSE_SEL	Isink	VIN = VLOGIC	0.1			μA
	Isource	VIN = GND,	0.1			μA

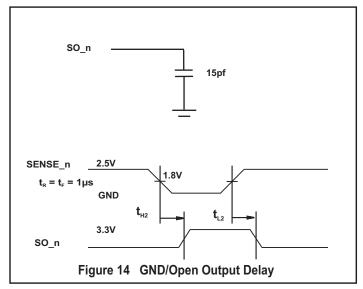
D.C. ELECTRICAL CHARACTERISTICS (cont)

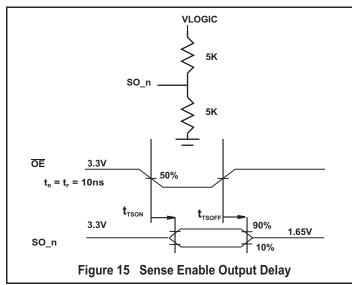
VDD = 3.3V or 5V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

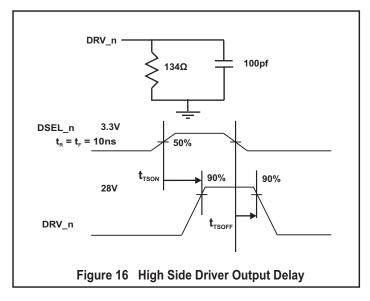
LOGIC OUTPUTS						
Output Voltage	Vон	Іон = -100µА	90%			VLOGIC
	Vol	IoL = 100μA			10%	VLOGIC
Output Current	lol	Vout= 0.4V	1.6			mA
	Іон	Vout = VLOGIC - 0.4V			-1.0	mA
Tri-State Leakage Current	ITSL	VLOGIC > V _{out} > GND	-1.0		1.0	μΑ
Output Capacitance	Co			15		pF

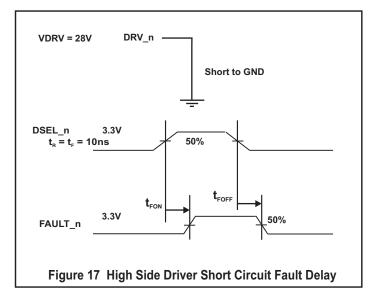
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
ANALOG INPUTS						
HI_SET/LO_SET Leakage Current	lL	Max leakage for VLOGIC > V _{input} > GND	-0.1		1.0	μΑ
HIGH SIDE DRIVERS						
On Resistance	Ron	I _{SOURCE} = 200mA See Figure 16		4.5	8	Ω
Over Current Threshold	VDSMAX	Maximum V _{DS} before current limiting. VDRV = 28V See Figure 17	1.5			V
Over Current Delay	Toc	Period that Driver sinks max current. VDRV = 28V See Figure 17	5	11		μs

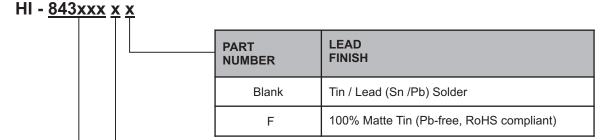

SUPPLY					
Operating VLOGIC range	VLOGIC		3.0	5.5	V
Operating VDRV range	VDRV		0	28	V
Operation VWET range	VWET		0	28	V
VLOGIC Current	IDD1	All Sense Pins Open		10	mA
VDRV Current	IVDRV	All Drivers off, VDRV = 28V		3	mA
VWET Current	Ivwet	All Sense Inputs = 0V, VWET = 28V		20	mA

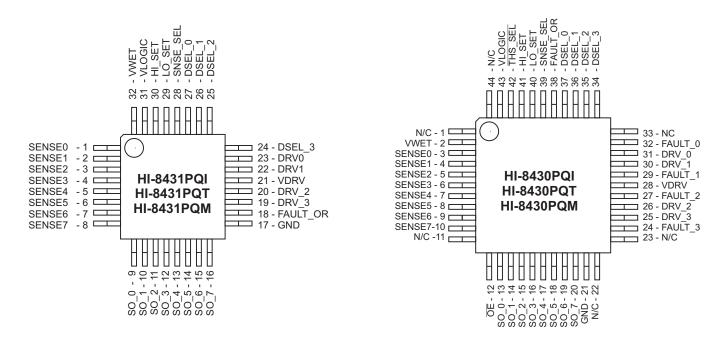

AC ELECTRICAL CHARACTERISTICS


 $\mbox{VDD} = 3.3 \mbox{V or 5V}, \ \mbox{GND} = \mbox{OV}, \ \mbox{TA} = \mbox{Operating Temperature Range} \ \ \mbox{(unless otherwise specified)}.$


PARAMETER	SYMBOL CONDITION		MIN	TYP	MAX	UNITS
SENSE V+/OPEN						
Delay, Output going High	tH1	See Figure 13, THS_SEL = GND, 25°C		1.0		μs
Delay, Output going Low	tL1	See Figure 13, THS_SEL = GND, 25°C		1.0		μs
SENSE GND/OPEN						
Delay, Output going High	tH2	See Figure 14, THS_SEL = GND, 25°C		1.0		μs
Delay, Output going Low	tL2	See Figure 14, THS_SEL = GND, 25°C		1.0		μs
TRI-STATE DELAY						
Tri-state Delay, On	trson	See Figure 15, THS_SEL = GND, 25°C			40	ns
Tri-state Delay, Off	ttsoff	See Figure 15, THS_SEL = GND, 25°C			40	ns
HIGH SIDE DRIVERS						
Turn On Delay, DSEL_N	tson	See Figure 16, VLOGIC = 3.3V, 25°C	400			ns
Turn Off Delay, DSEL_N	tsoff	See Figure 16, VLOGIC = 3.3V, 25°C			900	ns
Fault Output Delay, On	tron	See Figure 17, VLOGIC = 3.3V, 25°C			15	μs
Fault Output Delay, Off	troff	See Figure 17, VLOGIC = 3.3V, 25°C			15	μs


TEST CIRCUIT AND TIMING DIAGRAMS



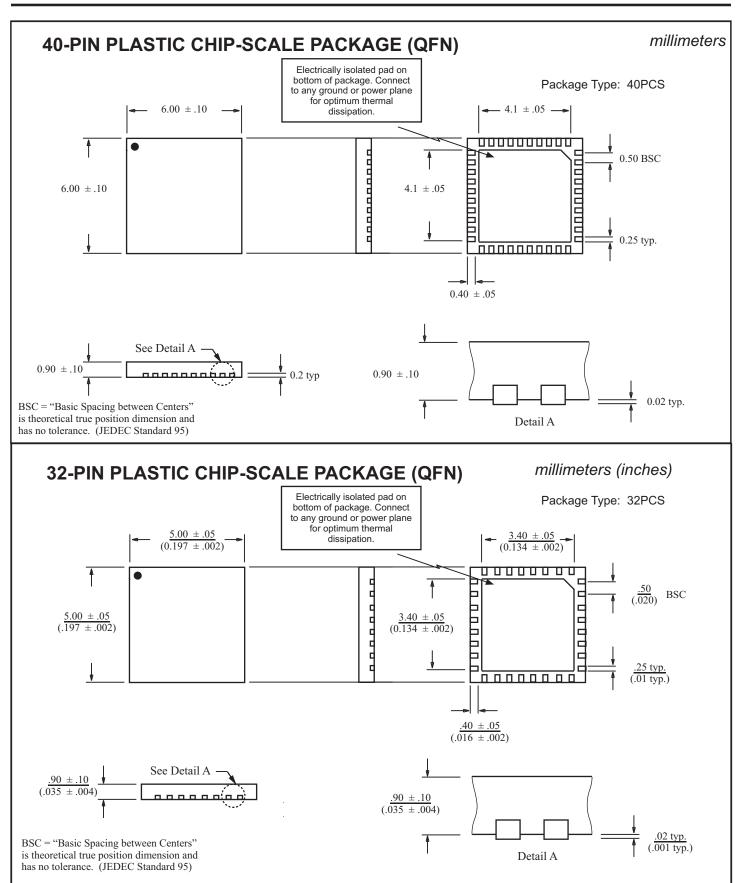


ORDERING INFORMATION

-	PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	
	I	-40°C TO +85°C	I	NO	
	Т	-55°C TO +125°C	Т	NO	
	М	-55°C TO +125°C	М	YES	

PART NUMBER	PACKAGE DESCRIPTION
8430PC	40 PIN PLASTIC CHIP SCALE (40PCS)
8430PQ	44 PIN PLASTIC QUAD FLAT PACK (44PMQS)
8431PC	32 PIN PLASTIC CHIP SCALE (32PCS)
8431PQ	32 PIN PLASTIC QUAD FLAT PACK (32PQS)

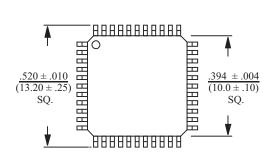
32 - Pin Plastic Quad Flat Pack (PTQFP) 7mm x 7mm body

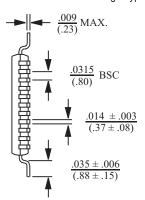

44 - Pin Plastic Quad Flat Pack (PQFP) 10mm x 10mm body

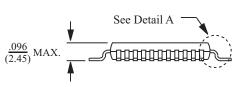
REVISION HISTORY

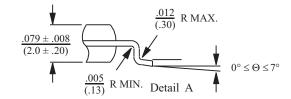
P/N	Rev	Date	Description of Change
DS8430	New	10/4/12	Initial Release
	Α	06/6/13	Correct schematic for sense inputs. Correct reference to pull-up resistor on inputs from 3.5K to 3.3K.
			Update VWET estimation formulas.
			Clarify function of $\overline{\text{OE}}$ pin (tri-states all sense outputs).
			Update Figure 12 Input Current vs. Input Voltage charts.
			Delete Sensing Application Table. Add more detailed Table 2 instead. Update limits.
			Correct threshold ranges in DC Electrical Characteristics Table.
			Update QFN-40 and QFN-32 package drawings.
	В	6/12/13	Clarified VWET open status for 5V VLOGIC operation. Corrected numerous typos. Corrected waveform 5B chart.
	С	08/20/13	Updated Discrete Input Voltage Range from +/-60V to +/-80V.
	D	10/23/13	Add "M-Grade" to PQFP and QFN package options. Reference AN-305 for lightning protection.

PACKAGE DIMENSIONS

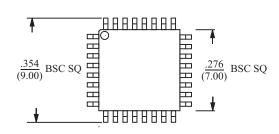


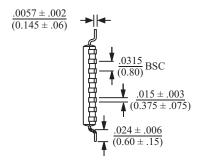

PACKAGE DIMENSIONS

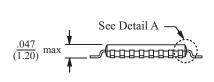

44-PIN PLASTIC QUAD FLAT PACK (PQFP)

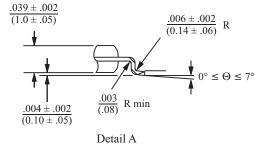

inches (millimeters)

Package Type: 44PMQS




BSC = "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)


32 PIN PLASTIC QUAD FLAT PACK (PQFP)


inches (millimeters)

Package Type: 32PQS

BSC = "Basic Spacing between Centers" is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)