

Features

- High-speed: 10, 12, 15 ns
- All inputs and outputs directly TTL compatible
- Three state outputs
- Single 3.3V \pm 10% Power Supply
- Packages
 - 44-pin TSOP (Standard)
 - 44-pin 400 mil SOJ
- Low Power Consumption
 - Active: 140mA
 - Standby: 2mA (CMOS)

Description

The V61C31161024 is a 1,048,576-bit static random-access memory organized as 65,536 words by 16 bits. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Functional Block Diagram**Device Usage Chart**

Operating Temperature Range	Package Outline		Access Time (ns)			Temperature Mark
	T	K	10	12	15	
0°C to 70 °C	•	•	•	•	•	Blank

Pin Descriptions**A₀–A₁₅ Address Inputs**

These 16 address inputs select one of the 64K x 16 bit segments in the RAM.

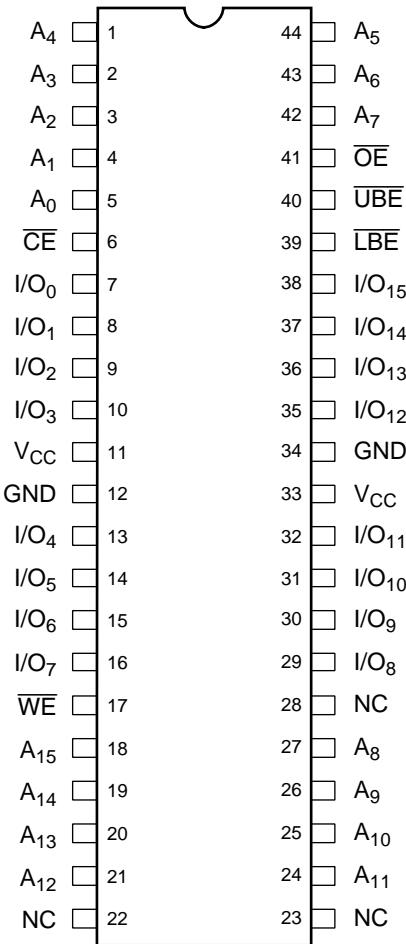
CE Chip Enable Input

CE is active LOW. It must be active to read from or write to the device. If chip enable is not active, the device is deselected and is in a standby power mode. The I/O pins will be in the high-impedance state when deselected.

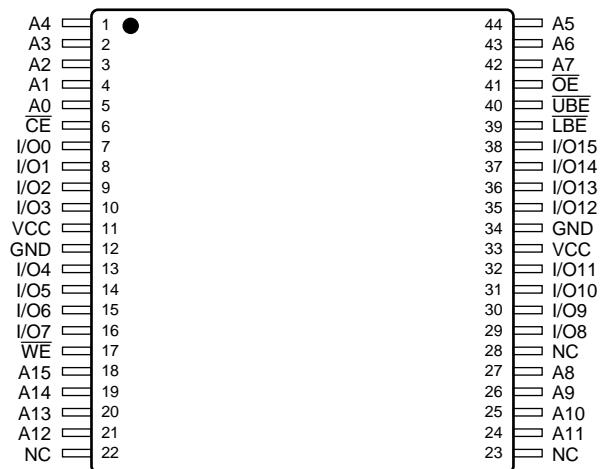
OE Output Enable Input

The output enable input is active LOW. When \overline{OE} is Low with \overline{CE} Low and \overline{WE} High, data will be presented on the I/O pins. The I/O pins will be in the high impedance state when \overline{OE} is High.

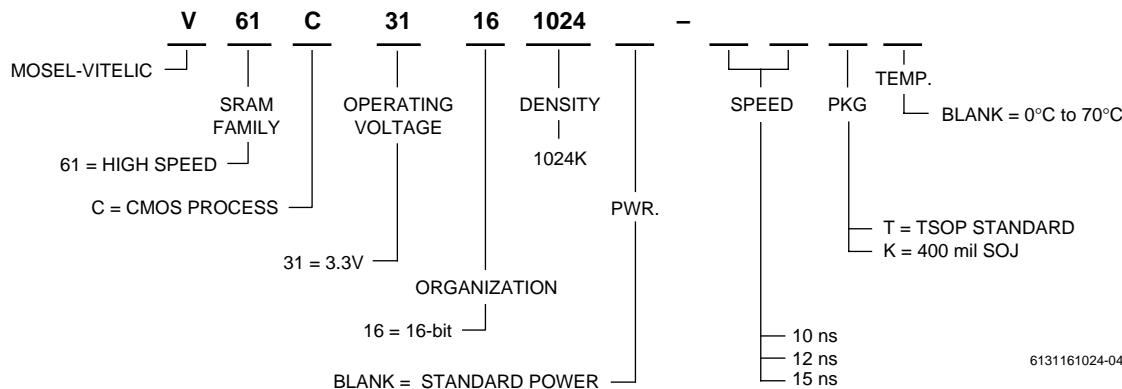
UBE, LEB Byte Enable


Active low inputs. These inputs are used to enable the upper or lower data byte.

WE Write Enable Input


The write enable input is active LOW and controls read and write operations. With the chip enabled, when WE is HIGH and \overline{OE} is LOW, output data will be present at the I/O pins; when WE is LOW and \overline{OE} is HIGH, the data present on the I/O pins will be written into the selected memory locations.

I/O₀–I/O₁₅ Data Input and Data Output Ports


These 16 bidirectional ports are used to read data from and write data into the RAM.

V_{CC} Power Supply**GND Ground****Pin Configurations (Top View)****44-Pin SOJ**

6131161024-02

44-Pin TSOP-II (Standard)

6131161024-03

Part Number Information**Absolute Maximum Ratings (1)**

Symbol	Parameter	Commercial	Units
V_{IN}	Input Voltage	-0.5 to $V_{CC}+0.5$	V
P_T	Power Dissipation	1.0	W
T_{BIAS}	Temperature Under Bias	-10 to +85	°C
T_{STG}	Storage Temperature	-65 to +150	°C

NOTE:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance* $T_A = 25^\circ C$, $f = 1.0MHz$

Symbol	Parameter	Conditions	Max.	Unit
C_{IN}	Input Capacitance	$V_{IN} = 0V$	6	pF
C_{OUT}	Output Capacitance	$V_{I/O} = 0V$	8	pF

NOTE:

1. This parameter is guaranteed and not tested.

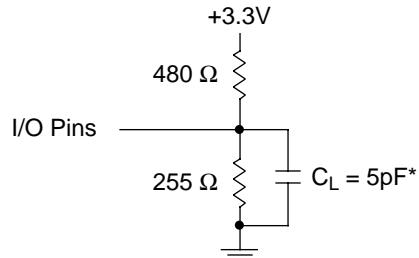
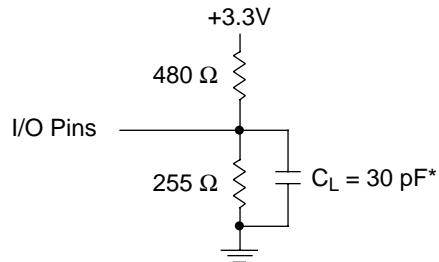
Truth Table

Mode	\overline{CE}	\overline{OE}	\overline{WE}	\overline{UBE}	\overline{LBE}	I/O_{8-15} Operation	I/O_{0-7} Operation
Standby	H	X	X	X	X	High Z	High Z
Output Disable	L	X	X	H	H	High Z	High Z
Output Disable	L	H	H	X	X	High Z	High Z
Read	L	L	H	L	L	D_{OUT}	D_{OUT}
Read	L	L	H	L	H	D_{OUT}	High Z
Read	L	L	H	H	L	High Z	D_{OUT}
Write	L	X	L	L	L	D_{IN}	D_{IN}
Write	L	X	L	L	H	D_{IN}	High Z
Write	L	X	L	H	L	High Z	D_{IN}

NOTE:

X = Don't Care, L = LOW, H = HIGH

DC Electrical Characteristics (over all temperature ranges, $V_{CC} = 3.3V \pm 10\%$)



Symbol	Parameter	Test Conditions	-10		-12		-15		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
I_{IL}	Input Leakage Current	$V_{CC} = \text{MAX}$, $V_{IN} = \text{GND}$ to V_{CC}	—	5	—	5	—	5	μA
I_{OL}	Output Leakage Current	$\overline{CE} = V_{IH}$, $V_{CC} = \text{Max}$, $V_{OUT} = \text{GND}$ to V_{CC}	—	5	—	5	—	5	μA
I_{CC}	Operating Power Supply Current	$\overline{CE} = V_{IL}$, $I_{OUT} = 0$, $f = f_{\text{max}}$	—	140	—	130	—	120	mA
I_{SB}	Standby Power Supply Current (TTL Level)	$\overline{CE} = V_{IH}$, $f = f_{\text{max}}$	—	25	—	20	—	20	mA
I_{SB1}	Standby Power Supply Current (CMOS Level)	$\overline{CE} \geq V_{CC} - 0.2V$, $f = 0$, $V_{IN} \leq 0.2V$ or $V_{IN} > V_{CC} - 0.2V$	—	2	—	2	—	2	mA
V_{IL}	Input Low Voltage ^(1,2)		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
V_{IH}	Input High Voltage ⁽¹⁾		2.2 $V_{CC} + 0.3$	V					
V_{OL}	Output Low Voltage	$I_{OL} = 4\text{mA}$	—	0.4	—	0.4	—	0.4	V
V_{OH}	Output High Voltage	$I_{OH} = -2\text{mA}$	2.4	—	2.4	—	2.4	—	V

NOTES:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. V_{IL} (Min.) = -3.0V for pulse width < 20ns.
3. $f_{\text{MAX}} = 1/t_{\text{RC}}$.
4. Maximum values.

AC Test Conditions

Input Pulse Levels	0 to 3V
Input Rise and Fall Times	3 ns
Timing Reference Levels	1.5V
Output Load	see below

AC Test Loads and Waveforms

for t_{CLZ} , t_{CHZ} , t_{OLZ} , t_{WHz} , t_{OW} , and t_{OHZ}

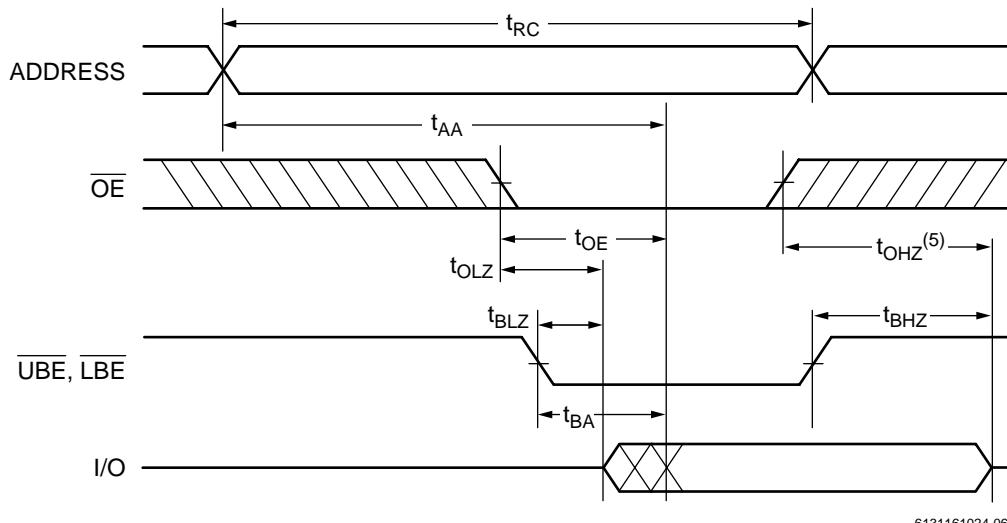
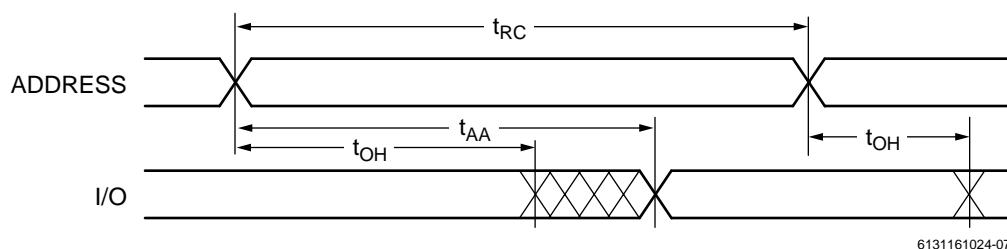
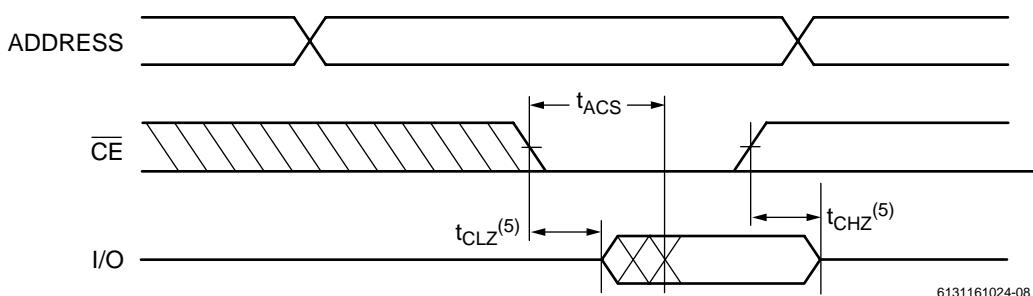
* Includes scope and jig capacitance

6131161024-05

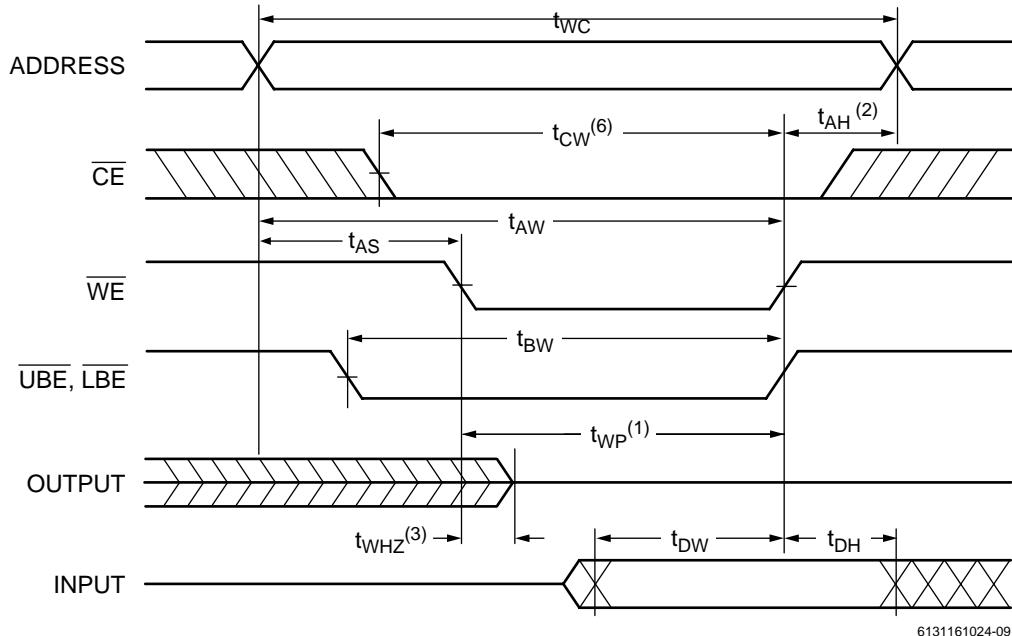
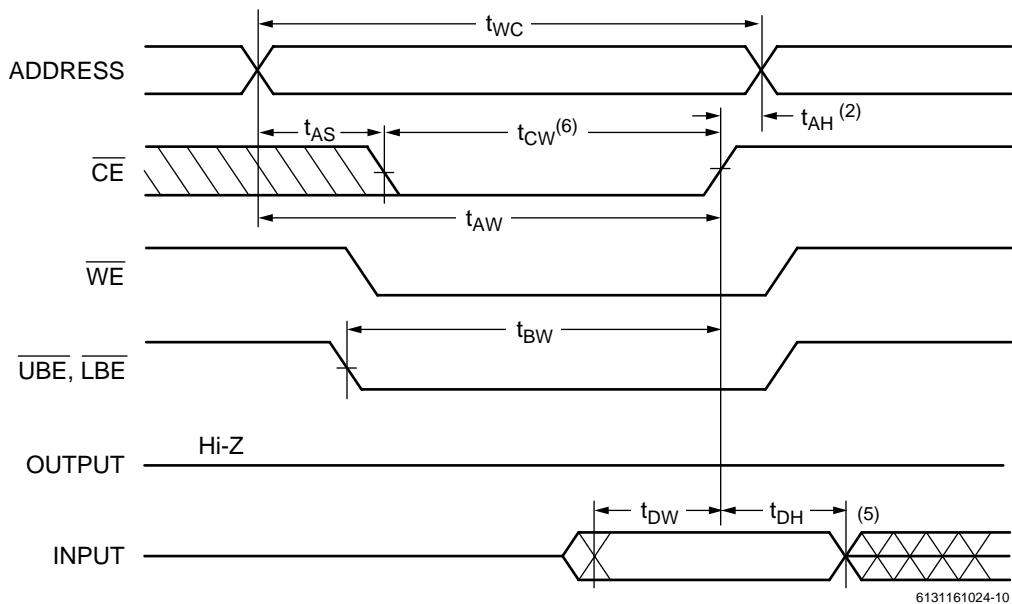
Key to Switching Waveforms

WAVEFORM	INPUTS	OUTPUTS
—	MUST BE STEADY	WILL BE STEADY
	MAY CHANGE FROM H TO L	WILL BE CHANGING FROM H TO L
	MAY CHANGE FROM L TO H	WILL BE CHANGING FROM L TO H
	DON'T CARE: ANY CHANGE PERMITTED	CHANGING: STATE UNKNOWN
	DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE "OFF" STATE

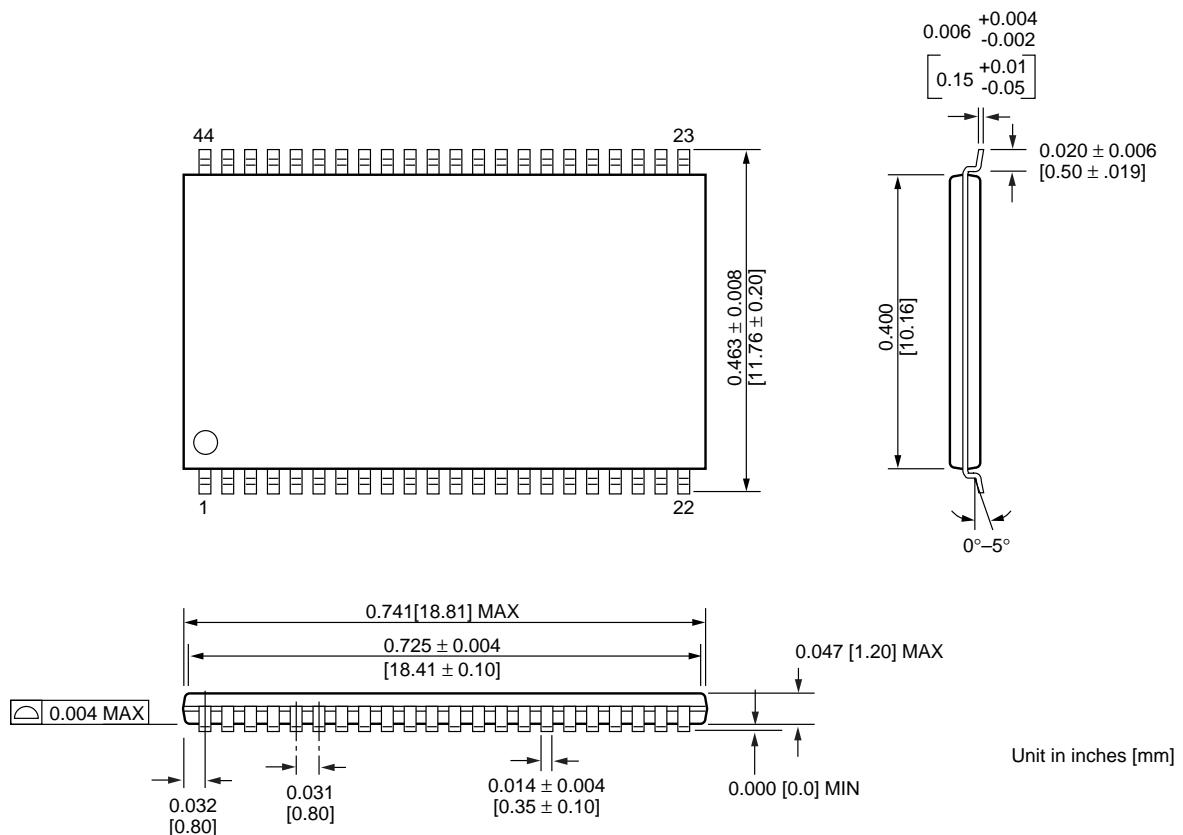
AC Electrical Characteristics

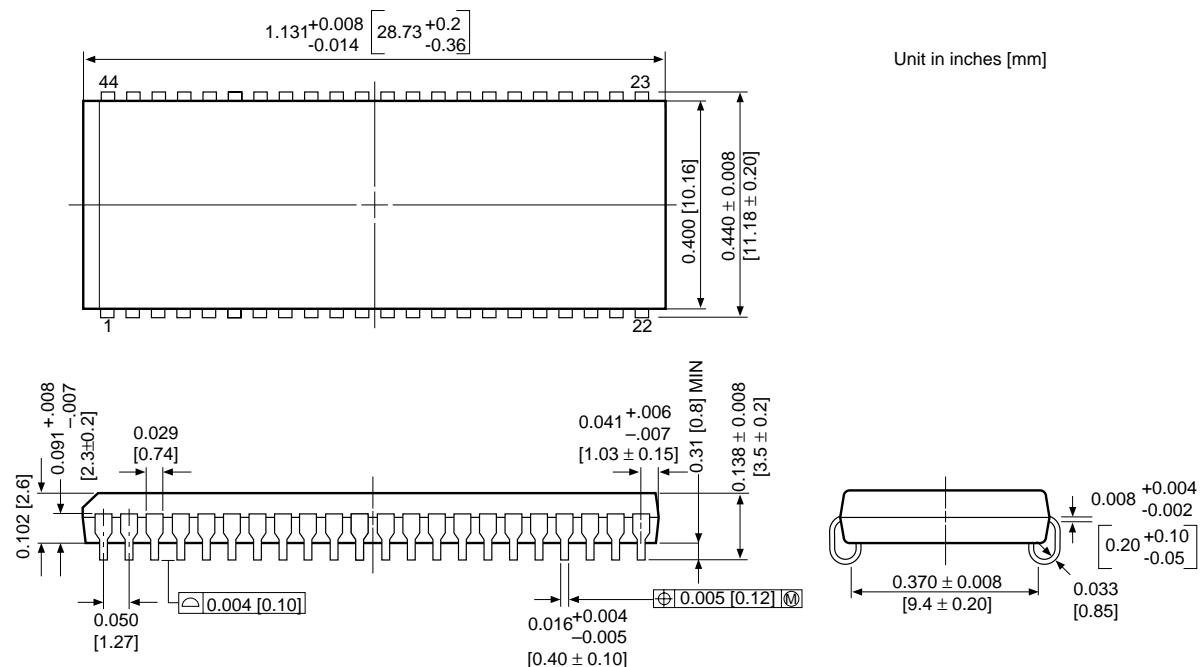



(over all temperature ranges)

Read Cycle



Parameter Name	Parameter	-10		-12		-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	10	—	12	—	15	—	ns
t_{AA}	Address Access Time	—	10	—	12	—	15	ns
t_{ACS}	Chip Enable Access Time	—	10	—	12	—	15	ns
t_{BA}	\bar{UBE} , \bar{LBE} Access Time	—	5	—	6	—	7	ns
t_{OE}	Output Enable to Output Valid	—	5	—	6	—	7	ns
t_{CLZ}	Chip Enable to Output in Low Z	2	—	3	—	3	—	ns
t_{BLZ}	\bar{UBE} , \bar{LBE} to Output in Low Z	0	—	0	—	0	—	ns
t_{OLZ}	Output Enable to Output in Low Z	0	—	0	—	0	—	ns
t_{CHZ}	Chip Disable to Output in High Z	0	5	0	6	0	7	ns
t_{OHZ}	Output Disable to Output in High Z	0	5	0	6	0	7	ns
t_{BHZ}	\bar{UBE} , \bar{LBE} to Output in High Z	0	5	0	6	0	7	ns
t_{OH}	Output Hold from Address Change	2	—	3	—	3	—	ns

Write Cycle


Parameter Name	Parameter	-10		-12		-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{WC}	Write Cycle Time	10	—	12	—	15	—	ns
t_{CW}	Chip Enable to End of Write	7	—	8	—	10	—	ns
t_{AS}	Address Setup Time	0	—	0	—	0	—	ns
t_{AW}	Address Valid to End of Write	7	—	8	—	10	—	ns
t_{WP}	Write Pulse Width	7	—	8	—	10	—	ns
t_{AH}	Address Hold from End of Write	0	—	0	—	0	—	ns
t_{WHZ}	Write to Output High-Z	0	5	0	6	0	7	ns
t_{WLZ}	Write to Output Low Z	3	—	3	—	5	—	ns
t_{DW}	Data Setup to End of Write	5	—	6	—	7	—	ns
t_{DH}	Data Hold from End of Write	0	—	0	—	0	—	ns
t_{BW}	\bar{UBE} , \bar{LBE} to End of Write	7	—	8	—	10	—	ns


Switching Waveforms (Read Cycle)**Read Cycle 1^(1, 2)****Read Cycle 2^(1, 2, 4)****Read Cycle 3^(1, 3, 4)****NOTES:**

1. $\overline{WE} = V_{IH}$.
2. $\overline{CE}_1 = V_{IL}$.
3. Address valid prior to or coincident with \overline{CE} transition LOW.
4. $\overline{OE} = V_{IL}$.
5. Transition is measured $\pm 500\text{mV}$ from steady state with $C_L = 5\text{pF}$. This parameter is guaranteed and not 100% tested.
6. $UBE = V_{IL}$, $LBE = V_{IL}$.

Switching Waveforms (Write Cycle)**Write Cycle 1 (\overline{WE} Controlled)⁽⁴⁾****Write Cycle 2 (\overline{CE} Controlled)⁽⁴⁾****NOTES:**

1. The internal write time of the memory is defined by the overlap of \overline{CE} active and \overline{WE} low. All signals must be active to initiate and any one signal can terminate a write by going inactive. The data input setup and hold timing should be referenced to the second transition edge of the signal that terminates the write.
2. t_{AH} is measured from the earlier of \overline{CE} or \overline{WE} going high.
3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
4. $\overline{OE} = V_{IL}$ or V_{IH} . However it is recommended to keep \overline{OE} at V_{IH} during write cycle to avoid bus contention.
5. If \overline{CE} is LOW during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
6. t_{CW} is measured from \overline{CE} going low to the end of write.

Package Diagrams**44-pin 400 mil TSOP-II**

Package Diagrams**44-pin 400 mil SOJ (450 mil pin-to-pin)**

U.S.A.

3910 NORTH FIRST STREET
 SAN JOSE, CA 95134
 PHONE: 408-433-6000
 FAX: 408-433-0952

HONG KONG

19 DAI FU STREET
 TAIPOL INDUSTRIAL ESTATE
 TAIPOL, NT, HONG KONG
 PHONE: 852-2666-3307
 FAX: 852-2770-8011

TAIWAN

7F, NO. 102
 MIN-CHUAN E. ROAD, SEC. 3
 TAIPEI
 PHONE: 886-2-2545-1213
 FAX: 886-2-2545-1209

SINGAPORE

10 ANSON ROAD #23-13
 INTERNATIONAL PLAZA
 SINGAPORE 079903
 PHONE: 65-3231801
 FAX: 65-3237013

IRELAND & UK

BLOCK A UNIT 2
 BROOMFIELD BUSINESS PARK
 MALAHIDE
 CO. DUBLIN, IRELAND
 PHONE: +353 1 8038020
 FAX: +353 1 8038049

GERMANY

(CONTINENTAL
 EUROPE & ISRAEL)
 71083 HERRENBERG
 BENZSTR. 32
 GERMANY
 PHONE: +49 7032 2796-0
 FAX: +49 7032 2796 22

U.S. SALES OFFICES**NORTHWESTERN**

3910 NORTH FIRST STREET
 SAN JOSE, CA 95134
 PHONE: 408-433-6000
 FAX: 408-433-0952

NORTHEASTERN

SUITE 436
 20 TRAFALGAR SQUARE
 NASHUA, NH 03063
 PHONE: 603-889-4393
 FAX: 603-889-9347

SOUTHWESTERN

302 N. EL CAMINO REAL #200
 SAN CLEMENTE, CA 92672
 PHONE: 949-361-7873
 FAX: 949-361-7807

**CENTRAL &
 SOUTHEASTERN**

604 FIELDWOOD CIRCLE
 RICHARDSON, TX 75081
 PHONE: 972-690-1402
 FAX: 972-690-0341

The information in this document is subject to change without notice.

MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC.

MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.