74LVT646

FEATURES

- Combines 74LVT245 and 74LVT374 type functions in one device
- · Independent registers for A and B buses
- Multiplexed real-time and stored data
- Output capability: +64mA/–32mA
- TTL input and output switching levels
- . Input and output interface capability to systems at 5V supply
- · Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- No bus current loading when output is tied
- Latch-up protection exceeds 500mA per **JEDEC JC40.2 Std 17**

 ESD protection exceeds 2000V per MIL. STD 883C Method 3015.6 and 200V per Machine Model

DESCRIPTION

The LVT646 is a high-performance BiCMOS product designed for V_{CC} operation at 3.3V.

This device consists of bus transceiver circuits with 3-State outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes High.

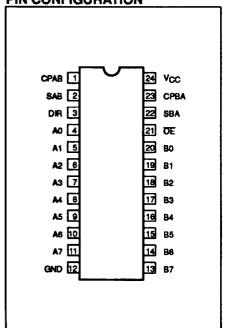
Output Enable (OE) and DIR pins are provided to control the transceiver function. In the transceiver mode, data present at the

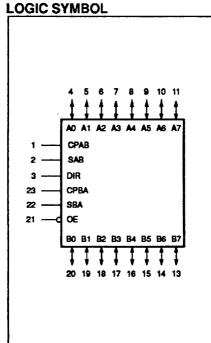
high impedance port may be stored in either the A or B register or both.

The Select (SAB, SBA) pins determine whether data is stored or transferred through the device in real-time. The DIR determines which bus will receive data when the OE is active (Low).

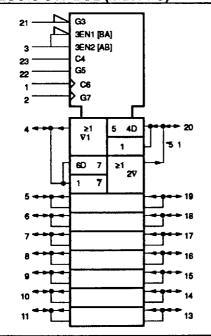
In the isolation mode ($\overline{OE} = High$), data from Bus A may be stored in the B register and/or data from Bus B may be stored in the A register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B may be driven at a time. The examples on the next page demonstrate the four fundamental bus management functions that can be performed with the 74LVT646.

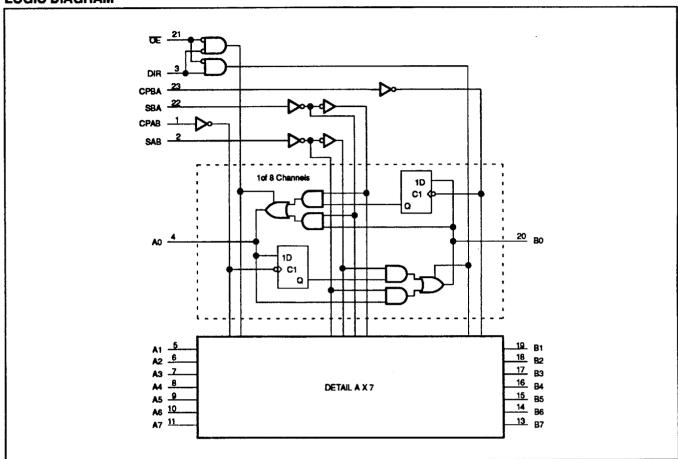

OHICK DEEEDENCE DATA

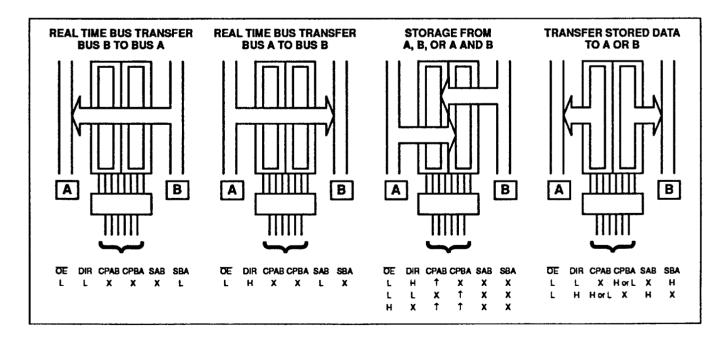

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT	
фин фил	Propagation delay An to Bn or Bn to An	$C_L = 50 pF; V_{CC} = 3.3 V \pm 0.3 V$	2.8		
C _{IN}	Input capacitance CP, S, OE, DIR	V _I = 0V or 3.0V	4.5	pF	
C _{VO}	I/O capacitance	V ₁ = 0V or 3.0V	11	рF	
lccz	Total supply current	Outputs disabled; V _{CC} = 3.6V	.13	mA	

ORDERING INFORMATION


PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER
24-Pin plastic Small Outline Large (300mil) (SOL)	-40°C to +85°C	74LVT646D	0173D
24-Pin Plastic Shrink Small Outline SSOP Type II	-40°C to +85°C	74LVT646DB	1641A
24-Pin Plastic Thin Shrink Small Outline TSSOP Type I	-40°C to +85°C	74LVT646PW	TBD

PIN CONFIGURATION




LOGIC SYMBOL (IEEE/IEC)

74LVT646

LOGIC DIAGRAM

74LVT646

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1, 23	CPAB / CPBA	A to B clock input / B to A clock input
2, 22	SAB / SBA	A to B select input / B to A select input
3	DIR	Direction control input
4, 5, 6, 7, 8, 9, 10, 11	A0 – A7	Data inputs/outputs (A side)
20, 19, 18, 17, 16, 15, 14, 13	B0 – B7	Data inputs/outputs (B side)
21	QE	Output enable input (active-low)
12	GND	Ground (0V)
24	V _{CC}	Positive supply voltage

FUNCTION TABLE

		INPUTS	3			DAT	A I/O	OPERATING MODE
QE	DIR	CPAB	СРВА	SAB	SBA	An	Bn	
x	х	1	х	х	х	input	Unspecified output*	Store A, B unspecified
x	х	х	1	x	х	Unspecified output*	Input	Store B, A unspecified
Н	X	↑ HorL	↑ HorL	X	X	Input	input	Store A and B data Isolation, hold storage
L	L L	X	X H or L	X	L H	Output	Input	Real time B data to A bus Stored B data to A bus
L	H	X H or L	X	L H	X	Input	Output	Real time A data to B bus Stored A data to B bus

High voltage level

Low voltage level

Don't care

Low-to-High clock transition

The data output function may be enabled or disabled by various signals at the OE input. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.

74LVT646

ARSOLUTE MAXIMUM RATINGG1, 2

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
Vcc	DC supply voltage		-0.5 to +4.6	V
l _{iK}	DC input diode current	V ₁ < 0	-50	mA
Vı	DC input voltage ³		-0.5 to +7.0	V
lok	DC output diode current	V ₀ < 0	–5 0	mA
Vout	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
lout	DC output current	Output in Low state	128	mA
T _{stg}	Storage temperature range		-65 to 150	•€

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to

absolute—maximum—rated conditions for extended periods may affect device reliability.
 The performance capability of a high—performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
 The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT
		MIN	MAX	1
Vcc	DC supply voltage	2.7	3.6	٧
VI	Input voltage	0	5.5	V
VIH	High-level input voltage	2.0		V
V _{IL}	Input voltage		0.8	V
l _{OH}	High-level output current		-32	mA
l _{OL}	Low-level output current		32	mA
	Low-level output current; current duty cycle ≤ 50%, f ≥ 1kHz		64	1
Δt/Δν	Input transition rise or fall rate; Outputs enabled		10	ns/V
Tamb	Operating free-air temperature range	-40	+85	~℃

74LVT646

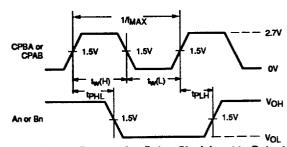
DC ELECTRICAL CHARACTERISTICS

					LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	TEST CONDITIONS			+85°C	┥
						MAX	
V _{IK}	Input clamp voltage	V _{CC} = 2.7V; I _K = -18mA	1		-1.2	٧	
		$V_{CC} = 2.7 \text{ to } 3.6 \text{ V}; I_{OH} = -100 \mu\text{A}$		V _{CC} -0.2			
V _{OH}	High-level output voltage	V _{CC} = 2.7V; l _{OH} = -8mA		2.4			V
		V _{CC} = 3.0V; l _{OH} = -32mA		2.0			1
		V _{CC} = 2.7V; I _{OL} = 100μA				0.2	
		V _{CC} = 2.7V; I _{OL} = 24mA				0.5	1
VOL	Low-level output voltage	V _{CC} = 3.0V; l _{OL} = 16mA	······································	1		0.4	1 v
		V _{CC} = 3.0V; l _{OL} = 32mA				0.5	
		V _{CC} = 3.0V; I _{OL} = 64mA				0.55	
		V _{CC} = 3.6V; V _I = V _{CC} or GND	Control pins			±1	μА
		V _{CC} = 0 or 3.6V; V _I = 5.5V				10	
łį	input leakage current	V _{CC} = 3.6V; V _I = 5.5V				20	
		$V_{CC} = 3.6V; V_1 = V_{CC}$ Data pins ⁴	Data pins4			1	
		V _{CC} = 3.6V; V _I = 0				-5	
loff	Output off current	$V_{CC} = 0V$; V_{I} or $V_{O} = 0$ to 4.5V				±100	μΑ
HOLD	Bus Hold current A	V _{CC} = 3V; V _I = 0.8V		75			μА
	or B ports	V _{CC} = 3V; V _I = 2.0V		-75			μА
I _{EX}	Current into an ouptut in the High state when V _O > V _{CC}	V _O = 5.5V; V _{CC} = 3.0V				100	μА
Іссн		V _{CC} = 3.6V; Outputs High, V _I = GND or	V _{CC,} I _O _ 0		0.13	0.19	
lccL	Quiescent supply current	V _{CC} = 3.6V; Outputs Low, V _I = GND or V	V _{CC} = 3.6V; Outputs Low, V _I = GND or V _{CC} , I _O = 0		3	12	mA
lccz		V _{CC} = 3.6V; Outputs Disabled; V _I = GNI	O or V _{CC} , lo_0		0.13	0.19	1
Δlcc	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} -0.6 Other inputs at V_{CC} or GND			0.2	mA	
I _{PU/PD}	Power up/down 3-State output current ³	$V_{CC} \le 1.2V$; $V_O = 0.5V$ to V_{CC} ; $V_I = GNE$ OE/OE = X			±100	μА	
Cı	Input capacitance	V _I = 3V or 0		4		pF	
Co	Output capacitance	V _O = 3V or 0		11		ρF	

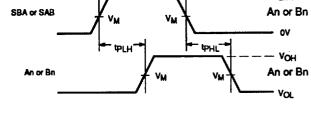
All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.
 This is the increase in supply current for each input at the specificed voltage level other than V_{CC} or GND
 This parameter is valid for any V_{CC} between 0V and 1.3V with a transition time of up to 10msec. From V_{CC} = 1.3V to V_{CC} = 3.3V ± 0.3V a transition time of 100µsec is permitted. X = Don't care.
 Unused pins at V_{CC} or GND.

74LVT646

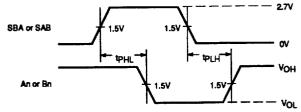
AC CHARACTERISTICS GND = 0V, $t_R = t_F = 2.5$ ns, $C_L = 50$ pF, $R_L = 500\Omega$; $T_{amb} = -40$ °C to +85°C.

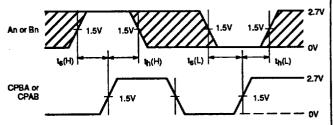

				LIMITS					
SYMBOL	PARAMETER	WAVEFORM	Vcc	$V_{CC} = 3.3V \pm 0.3V$			UNIT		
			MIN	TYP¹	MAX	MAX			
f _{MAX}	Maximum clock frequency	1					MHz		
telu teul	Propagation delay CPAB to Bn or CPBA to An	1		3.8 3.8			ns		
фелн фенг	Propagation delay An to Bn or Bn to An	2		2.8 2.7			ns		
tplH tpHL	Propagation delay SAB to Bn or SBA to An	2, 3		3.7 3.8			ns		
l ezн tezL	Output enable time OE to An or Bn	5 6		3.0 3.2			ns		
tenz telz	Output disable time OE to An or Bn	5 6		4.3 3.8			ns		
фzн фz,	Output enable time DIR to An or Bn	5 6		3.4 3.4			ns		
tenz tenz	Output disable time DIR to An or Bn	5 6		4.1 3.5			ns		

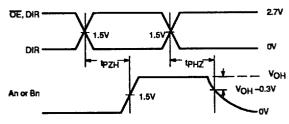
^{1.} All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

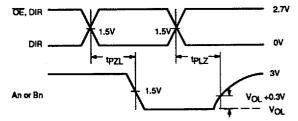

74LVT646

AC WAVEFORMS


 $V_{M} = 1.5V$, $V_{IN} = GND$ to 2.7V


Waveform 1. Propagation Delay, Clock input to Output, Clock Pulse Width, and Maximum Clock Frequency

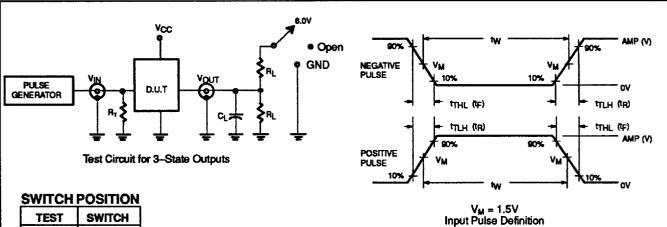

Waveform 2. Propagation Delay, SAB to Bn or SBA to An, An to Bn or Bn to An


Waveform 3. Propagation Delay, SBA to An or SAB to Bn

Waveform 4. Data Setup and Hold Times

Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level


NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance.

Objective specification

3.3V ABT Octal bus transceiver/register (3-State)

74LVT646

TEST CIRCUIT AND WAVEFORM

TEST	SWITCH
\$РЦН√ФНL	Open
tplz/tpzi	6V
фнг/фгн	GND

DEFINITIONS

- R_L = Load resistor; see AC CHARACTERISTICS for value.
- C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
- R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS						
FAMILY	Amplitude	Rep. Rate	tw	t _R	Ų.		
74LVT	2.7V	≤10MHz	500ns	≤2.5ns	≤2.5ns		