
## 4-Bit D Flip-Flop

The MC10E/100E131 is a quad master-slave D-type flip-flop with differential outputs. Each flip-flop may be clocked separately by holding Common Clock ( $C_C$ ) LOW and using the Clock Enable ( $CE$ ) inputs for clocking. Common clocking is achieved by holding the  $CE$  inputs LOW and using  $C_C$  to clock all four flip-flops. In this case, the  $CE$  inputs perform the function of controlling the common clock, to each flip-flop.

Individual asynchronous resets are provided ( $R$ ). Asynchronous set controls ( $S$ ) are ganged together in pairs, with the pairing chosen to reflect physical chip symmetry.

Data enters the master when both  $C_C$  and  $CE$  are LOW, and transfers to the slave when either  $C_C$  or  $CE$  (or both) go HIGH.

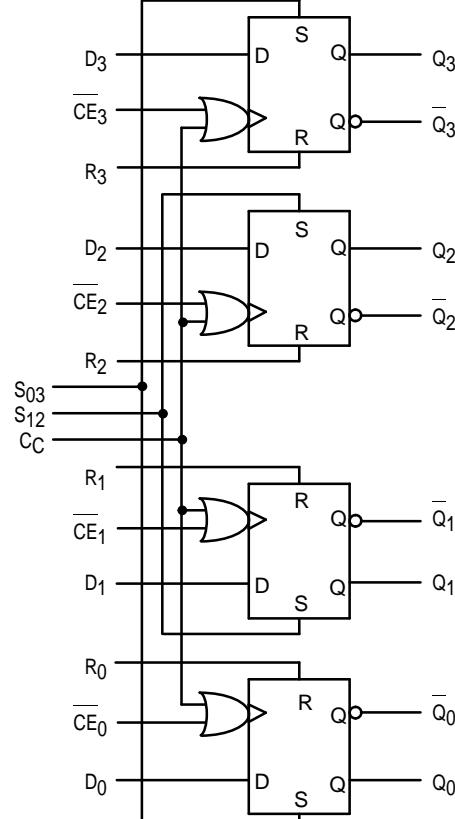
- 1100MHz Min. Toggle Frequency
- Differential Outputs
- Individual and Common Clocks
- Individual Resets (asynchronous)
- Paired Sets (asynchronous)
- Extended 100E  $V_{EE}$  Range of  $-4.2V$  to  $-5.46V$
- $75k\Omega$  Input Pulldown Resistors



\* All  $V_{CC}$  and  $V_{CCO}$  pins are tied together on the die.

### PIN NAMES

| Pin              | Function                   |
|------------------|----------------------------|
| $D_0 - D_3$      | Data Inputs                |
| $CE_0 - CE_3$    | Clock Enables (Individual) |
| $R_0 - R_3$      | Resets                     |
| $C_C$            | Common Clock               |
| $S_{03}, S_{12}$ | Sets (paired)              |
| $Q_0 - Q_3$      | True Outputs               |
| $Q_0 - Q_3$      | Inverting Outputs          |


**MC10E131  
MC100E131**

**4-BIT  
D FLIP-FLOP**



**FN SUFFIX**  
PLASTIC PACKAGE  
CASE 776-02

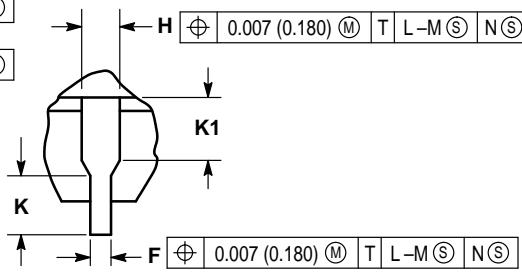
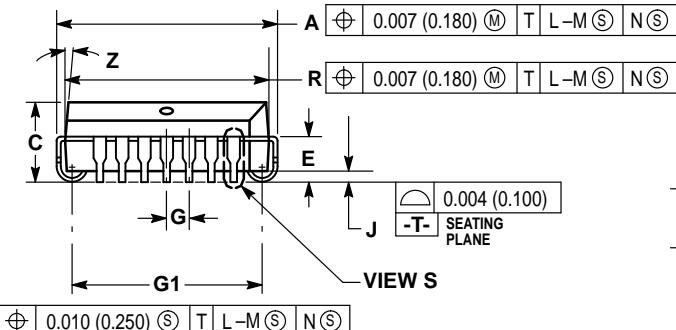
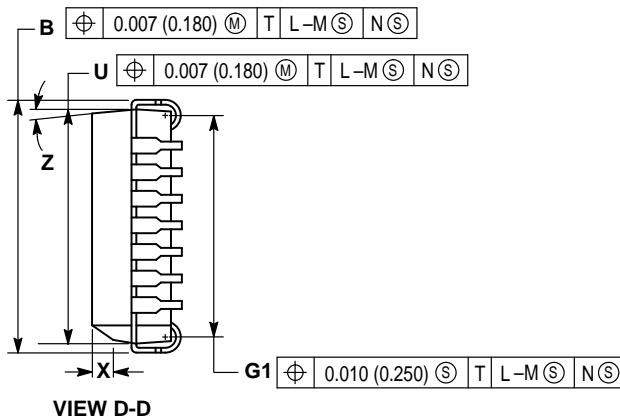
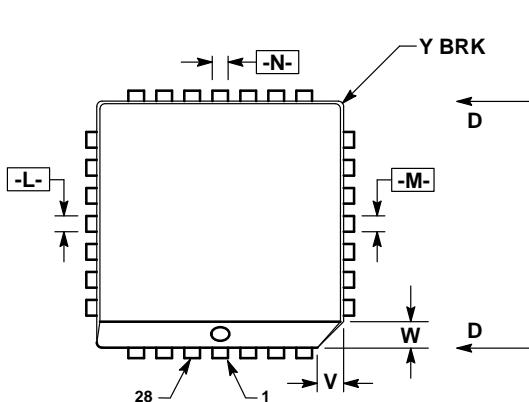
### LOGIC DIAGRAM



DC CHARACTERISTICS ( $V_{EE} = V_{EE(\min)} \text{ to } V_{EE(\max)}$ ;  $V_{CC} = V_{CCO} = GND$ )

| Symbol    | Characteristic       | -40°C                      |     |     | 0°C |     |     | 25°C |     |     | 85°C |     |     | Unit    | Cond |
|-----------|----------------------|----------------------------|-----|-----|-----|-----|-----|------|-----|-----|------|-----|-----|---------|------|
|           |                      | Min                        | Typ | Max | Min | Typ | Max | Min  | Typ | Max | Min  | Typ | Max |         |      |
| $I_{IH}$  | Input HIGH Current   | $C_C$<br>$S$<br>R, CE<br>D | 350 |     | 350 |     | 350 |      | 350 |     | 350  |     | 350 | $\mu A$ |      |
|           |                      |                            | 450 |     | 450 |     | 450 |      | 450 |     | 450  |     | 450 |         |      |
|           |                      |                            | 300 |     | 300 |     | 300 |      | 300 |     | 300  |     | 300 |         |      |
|           |                      |                            | 150 |     | 150 |     | 150 |      | 150 |     | 150  |     | 150 |         |      |
| $I_{IEE}$ | Power Supply Current | 10E                        | 58  | 70  | 58  | 70  | 58  | 70   | 58  | 70  | 58   | 70  | 67  | 81      | mA   |
|           |                      | 100E                       | 58  | 70  | 58  | 70  | 58  | 70   | 58  | 70  | 58   | 70  | 67  | 81      |      |

AC CHARACTERISTICS ( $V_{EE} = V_{EE(\min)} \text{ to } V_{EE(\max)}$ ;  $V_{CC} = V_{CCO} = GND$ )





| Symbol     | Characteristic              | -40°C                 |      |     | 0°C to 85°C |      |     | Unit | Condition |        |
|------------|-----------------------------|-----------------------|------|-----|-------------|------|-----|------|-----------|--------|
|            |                             | Min                   | Typ  | Max | Min         | Typ  | Max |      |           |        |
| $f_{MAX}$  | Maximum Toggle Frequency    | 1000                  | 1400 |     | 1100        | 1400 |     | MHz  |           |        |
| $t_{PLH}$  | Propagation Delay to Output | CE<br>$C_C$<br>R<br>S | 310  | 600 | 750         | 360  | 500 | 700  | ps        |        |
|            |                             |                       | 275  | 600 | 725         | 325  | 500 | 675  |           |        |
|            |                             |                       | 300  | 625 | 775         | 350  | 550 | 725  |           |        |
|            |                             |                       | 300  | 550 | 775         | 350  | 550 | 725  |           |        |
| $t_S$      | Setup Time                  | D                     | 200  | 20  |             | 150  | 20  |      | ps        | 1      |
| $t_H$      | Hold Time                   | D                     | 225  | -20 |             | 175  | -20 |      | ps        | 1      |
| $t_{RR}$   | Reset Recovery Time         |                       | 450  | 150 |             | 400  | 150 |      | ps        |        |
| $t_{PW}$   | Minimum Pulse Width         | CLK<br>R, S           | 400  |     |             | 400  |     |      | ps        |        |
|            |                             |                       | 400  |     |             | 400  |     |      |           |        |
| $t_{SKEW}$ | Within-Device Skew          |                       |      | 60  |             |      | 60  |      | ps        | 2      |
| $t_r/t_f$  | Rise/Fall Time              |                       | 275  | 460 | 725         | 300  | 480 | 675  | ps        | 20–80% |

1. Setup/hold times guaranteed for both  $C_C$  and CE.

2. Within-device skew is defined as identical transitions on similar paths through a device.

## OUTLINE DIMENSIONS

**FN SUFFIX**  
**PLASTIC PLCC PACKAGE**  
**CASE 776-02**  
**ISSUE D**



## NOTES:

1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
2. DIM G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
3. DIM R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH.
6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

| DIM | INCHES |       | MILLIMETERS |       |
|-----|--------|-------|-------------|-------|
|     | MIN    | MAX   | MIN         | MAX   |
| A   | 0.485  | 0.495 | 12.32       | 12.57 |
| B   | 0.485  | 0.495 | 12.32       | 12.57 |
| C   | 0.165  | 0.180 | 4.20        | 4.57  |
| E   | 0.090  | 0.110 | 2.29        | 2.79  |
| F   | 0.013  | 0.019 | 0.33        | 0.48  |
| G   | 0.050  | BSC   | 1.27        | BSC   |
| H   | 0.026  | 0.032 | 0.66        | 0.81  |
| J   | 0.020  | —     | 0.51        | —     |
| K   | 0.025  | —     | 0.64        | —     |
| R   | 0.450  | 0.456 | 11.43       | 11.58 |
| U   | 0.450  | 0.456 | 11.43       | 11.58 |
| V   | 0.042  | 0.048 | 1.07        | 1.21  |
| W   | 0.042  | 0.048 | 1.07        | 1.21  |
| X   | 0.042  | 0.056 | 1.07        | 1.42  |
| Y   | —      | 0.020 | —           | 0.50  |
| Z   | 2°     | 10°   | 2°          | 10°   |
| G1  | 0.410  | 0.430 | 10.42       | 10.92 |
| K1  | 0.040  | —     | 1.02        | —     |

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and  are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

**How to reach us:**

**USA/EUROPE/Locations Not Listed:** Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

**MFAX:** RMFAX0@email.sps.mot.com – **TOUCHTONE** 602-244-6609  
**INTERNET:** <http://Design-NET.com>

**JAPAN:** Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center,  
3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

**ASIA/PACIFIC:** Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

