

Features

- Synchronous or Asynchronous Preset
- Cascadable in Synchronous or Ripple Mode
- Fanout (Over Temperature Range)
 - Standard Outputs 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: $N_{IL} = 30\%$, $N_{IH} = 30\%$ of V_{CC} at $V_{CC} = 5V$
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, $V_{IL} = 0.8V$ (Max), $V_{IH} = 2V$ (Min)
 - CMOS Input Compatibility, $I_L \leq 1\mu A$ at V_{OL}, V_{OH}

Ordering Information

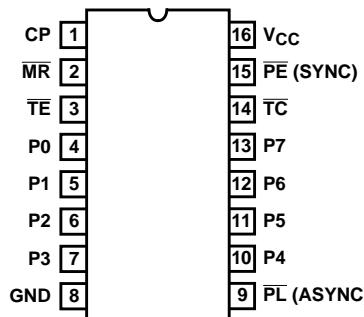
PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC40103F3A	-55 to 125	16 Ld CERDIP
CD74HC40103E	-55 to 125	16 Ld PDIP
CD74HC40103M	-55 to 125	16 Ld SOIC
CD74HC40103MT	-55 to 125	16 Ld SOIC
CD74HC40103M96	-55 to 125	16 Ld SOIC
CD74HCT40103E	-55 to 125	16 Ld PDIP
CD74HCT40103M	-55 to 125	16 Ld SOIC
CD74HCT40103MT	-55 to 125	16 Ld SOIC
CD74HCT40103M96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

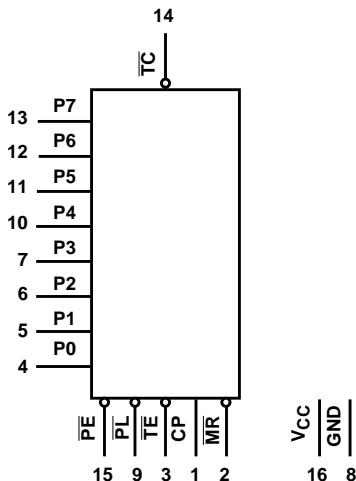
Description

The 'HC40103 and CD74HCT40103 are manufactured with high speed silicon gate technology and consist of an 8-stage synchronous down counter with a single output which is active when the internal count is zero. The 40103 contains a single 8-bit binary counter. Each has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the \overline{TC} output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK (CP). Counting is inhibited when the \overline{TE} input is high. The \overline{TC} output goes low when the count reaches zero if the \overline{TE} input is low, and remains low for one full clock period.


When the \overline{PE} input is low, data at the P0-P7 inputs are clocked into the counter on the next positive clock transition regardless of the state of the \overline{TE} input. When the \overline{PL} input is low, data at the P0-P7 inputs are asynchronously forced into the counter regardless of the state of the \overline{PE} , \overline{TE} , or CLOCK inputs. Input P0-P7 represent a single 8-bit binary word for the 40103. When the MR input is low, the counter is asynchronously cleared to its maximum count of 255₁₀, regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except \overline{TE} are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100₁₆ or 256₁₀ clock pulses long.


The 40103 may be cascaded using the \overline{TE} input and the \overline{TC} output, in either a synchronous or ripple mode. These circuits possess the low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits and can drive up to 10 LSTTL loads.

Pinout

**CD54HC40103
(CERDIP)
CD74HC40103, CD74HCT40103
(PDIP, SOIC)
TOP VIEW**

Functional Diagram

TRUTH TABLE

CONTROL INPUTS				PRESET MODE	ACTION
MR	PL	PE	TE		
1	1	1	1	Synchronous	Inhibit Counter
1	1	1	0		Count Down
1	1	0	X		Preset On Next Positive Clock Transition
1	0	X	X	Asynchronously	Preset Asynchronously
0	X	X	X		Clear to Maximum Count

1 = High Level.

0 = Low Level.

X = Don't Care.

Clock connected to clock input.

Synchronous Operation: changes occur on negative-to-positive clock transitions.

Load Inputs: MSB = P7, LSB = P0.

Absolute Maximum Ratings

DC Supply Voltage, V_{CC}	-0.5V to 7V
DC Input Diode Current, I_{IK} For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$	$\pm 20mA$
DC Output Diode Current, I_{OK} For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$	$\pm 20mA$
DC Output Source or Sink Current per Output Pin, I_O For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$	$\pm 25mA$
DC V_{CC} or Ground Current, I_{CC}	$\pm 50mA$

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} ($^{\circ}C/W$)
E (PDIP) Package	67
M (SOIC) Package	73
Maximum Junction Temperature	150 $^{\circ}C$
Maximum Storage Temperature Range	-65 $^{\circ}C$ to 150 $^{\circ}C$
Maximum Lead Temperature (Soldering 10s)	300 $^{\circ}C$
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range, T_A	-55 $^{\circ}C$ to 125 $^{\circ}C$
Supply Voltage Range, V_{CC}		
HC Types	2V to 6V
HCT Types	4.5V to 5.5V
DC Input or Output Voltage, V_I, V_O	0V to V_{CC}
Input Rise and Fall Time		
2V	1000ns (Max)
4.5V	500ns (Max)
6V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		V_{CC} (V)	25 $^{\circ}C$			-40 $^{\circ}C$ TO 85 $^{\circ}C$		-55 $^{\circ}C$ TO 125 $^{\circ}C$		UNITS		
		V_I (V)	I_O (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX			
HC TYPES														
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V		
				4.5	3.15	-	-	3.15	-	3.15	-	V		
				6	4.2	-	-	4.2	-	4.2	-	V		
Low Level Input Voltage	V_{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V		
				4.5	-	-	1.35	-	1.35	-	1.35	V		
				6	-	-	1.8	-	1.8	-	1.8	V		
High Level Output Voltage CMOS Loads	V_{OH}	V_{IH} or V_{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V		
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V		
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V		
High Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V		
			-4	4.5	3.98	-	-	3.84	-	3.7	-	V		
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V		
Low Level Output Voltage CMOS Loads	V_{OL}	V_{IH} or V_{IL}	0.02	2	-	-	0.1	-	0.1	-	0.1	V		
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V		
			0.02	6	-	-	0.1	-	0.1	-	0.1	V		
Low Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V		
			4	4.5	-	-	0.26	-	0.33	-	0.4	V		
			5.2	6	-	-	0.26	-	0.33	-	0.4	V		
Input Leakage Current	I_I	V_{CC} or GND	-	6	-	-	± 0.1	-	± 1	-	± 1	μA		
Quiescent Device Current	I_{CC}	V_{CC} or GND	0	6	-	-	8	-	80	-	160	μA		

CD54HC40103, CD74HC40103, CD74HCT40103

DC Electrical Specifications (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		V _{CC} (V)	25°C			-40°C TO 85°C		-55°C TO 125°C		UNITS
		V _I (V)	I _O (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	I _I	V _{CC} and GND	0	5.5	-	-	±0.1	-	±1	-	±1	µA
Quiescent Device Current	I _{CC}	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	µA
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 2)	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	µA

NOTE:

2. For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS (NOTE)
P0-P7	0.20
TE, MR	0.40
CP	0.60
PE	0.80
PL	1.35

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., 360µA max at 25°C.

Prerequisite for Switching Specifications

PARAMETER	SYMBOL	V _{CC} (V)	25°C			-40°C TO 85°C		-55°C TO 125°C		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES										
CP Pulse Width	t _W	2	165	-	-	205	-	250	-	ns
		4.5	33	-	-	41	-	50	-	ns
		6	28	-	-	35	-	43	-	ns
PL Pulse Width	t _W	2	125	-	-	155	-	190	-	ns
		4.5	25	-	-	31	-	38	-	ns
		6	21	-	-	26	-	32	-	ns

CD54HC40103, CD74HC40103, CD74HCT40103

Prerequisite for Switching Specifications (Continued)

PARAMETER	SYMBOL	V _{CC} (V)	25°C			-40°C TO 85°C		-55°C TO 125°C		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
MR Pulse Width	t _W	2	125	-	-	135	-	190	-	ns
		4.5	25	-	-	31	-	38	-	ns
		6	21	-	-	26	-	32	-	ns
CP Max. Frequency (Note 3)	f _{CP(MAX)}	2	3	-	-	2	-	2	-	MHz
		4.5	15	-	-	12	-	10	-	MHz
		6	18	-	-	14	-	12	-	MHz
P to CP Set-up Time	t _{SU}	2	100	-	-	125	-	150	-	ns
		4.5	20	-	-	25	-	30	-	ns
		6	17	-	-	21	-	26	-	ns
P̄E to CP Set-up Time	t _{SU}	2	75	-	-	95	-	110	-	ns
		4.5	15	-	-	19	-	22	-	ns
		6	13	-	-	16	-	19	-	ns
T̄E to CP Set-up Time	t _{SU}	2	150	-	-	190	-	225	-	ns
		4.5	30	-	-	38	-	45	-	ns
		6	26	-	-	33	-	38	-	ns
P to CP Hold Time	t _H	2	5	-	-	5	-	5	-	ns
		4.5	5	-	-	5	-	5	-	ns
		6	5	-	-	5	-	5	-	ns
T̄E to CP̄ Hold Time	t _H	2	0	-	-	0	-	0	-	ns
		4.5	0	-	-	0	-	0	-	ns
		6	0	-	-	0	-	0	-	ns
MR to CP Removal Time	t _{REM}	2	50	-	-	65	-	75	-	ns
		4.5	10	-	-	13	-	15	-	ns
		6	9	-	-	11	-	13	-	ns
P̄E to CP̄ Hold Time	t _H	2	2	-	-	2	-	2	-	ns
		4.5	2	-	-	2	-	2	-	ns
		6	2	-	-	2	-	2	-	ns
HCT TYPES										
CP Pulse Width	t _W	4.5	35	-	-	44	-	53	-	ns
PL Pulse Width	t _W	4.5	43	-	-	54	-	65	-	ns
MR Pulse Width	t _W	4.5	35	-	-	44	-	53	-	ns
CP Max. Frequency (Note 3)	f _{CP(MAX)}	4.5	14	-	-	11	-	9	-	MHz
P to CP Set-up Time	t _{SU}	4.5	24	-	-	30	-	36	-	ns
P̄E to CP Set-up Time	t _{SU}	4.5	20	-	-	25	-	30	-	ns
T̄E to CP Set-up Time	t _{SU}	4.5	40	-	-	50	-	60	-	ns
P to CP Hold Time	t _H	4.5	5	-	-	5	-	5	-	ns
T̄E to CP Hold Time	t _H	4.5	0	-	-	0	-	0	-	ns
MR to CP̄ Removal Time	t _{REM}	4.5	10	-	-	13	-	15	-	ns
P̄E to CP Hold Time	t _H	4.5	2	-	-	2	-	2	-	ns

CD54HC40103, CD74HC40103, CD74HCT40103

Switching Specifications Input $t_r, t_f = 6\text{ns}$

PARAMETER	SYMBOL	TEST CONDITIONS	V _{CC} (V)	25°C			-40°C TO 85°C		-55°C TO 125°C		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES											
Propagation Delay CP to any $\overline{\text{TC}}$ (Async Preset)	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	300	-	375	-	450	ns
		C _L = 50pF	4.5	-	-	60	-	75	-	90	ns
		C _L = 15pF	5	-	25	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	51	-	64	-	77	ns
CP to $\overline{\text{TC}}$ (Sync Preset)	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	300	-	375	-	450	ns
		C _L = 50pF	4.5	-	-	60	-	75	-	90	ns
		C _L = 15pF	5	-	25	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	51	-	64	-	77	ns
$\overline{\text{TE}}$ to $\overline{\text{TC}}$	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	200	-	250	-	300	ns
		C _L = 50pF	4.5	-	-	40	-	50	-	60	ns
		C _L = 15pF	5	-	17	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	34	-	43	-	51	ns
PL to $\overline{\text{TC}}$	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	275	-	345	-	415	ns
		C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	47	-	59	-	71	ns
MR to $\overline{\text{TC}}$	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	275	-	345	-	415	ns
		C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	47	-	59	-	71	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
		C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
		C _L = 50pF	6	-	-	13	-	16	-	19	ns
Input Capacitance	C _I	C _L = 50pF	-	-	-	10	-	10	-	10	pF
CP Maximum Frequency	f _{MAX}	C _L = 15pF	5	-	25	-	-	-	-	-	MHz
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	-	5	-	25	-	-	-	-	-	pF
HCT TYPES											
Propagation Delay CP to $\overline{\text{TC}}$ (Async Preset)	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	60	-	75	-	90	ns
		C _L = 15pF	5	-	25	-	-	-	-	-	ns
$\overline{\text{CE}}$ to $\overline{\text{TC}}$ (Sync Preset)	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	63	-	79	-	95	ns
		C _L = 15pF	5	-	26	-	-	-	-	-	ns
$\overline{\text{TE}}$ to $\overline{\text{TC}}$	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
PL to $\overline{\text{TC}}$	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	68	-	85	-	102	ns
		C _L = 15pF	5	-	28	-	-	-	-	-	ns

Switching Specifications Input $t_r, t_f = 6\text{ns}$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	V _{CC} (V)	25°C			-40°C TO 85°C		-55°C TO 125°C		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
MR to $\overline{\text{TC}}$	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns
Output Transition Time	t _{THL} , t _{TLH}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	C _{IN}	C _L = 50pF	-	-	-	10	-	10	-	10	pF
CP Maximum Frequency	f _{MAX}	C _L = 15pF	5	-	25	-	-	-	-	-	MHz
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	-	5	-	27	-	-	-	-	-	pF

NOTES:

3. Noncascaded operation only. With cascaded counters clock-to-terminal count propagation delays, count enables ($\overline{\text{PE}}$ or $\overline{\text{TE}}$)-to-clock SET UP TIMES, and count enables ($\overline{\text{PE}}$ or $\overline{\text{TE}}$)-to-clock HOLD TIMES determine maximum clock frequency. For example, with these HC devices:

$$C_P f_{MAX} = \frac{1}{\text{CP-to-}\overline{\text{TC}} \text{ prop delay} + \overline{\text{TE}}\text{-to-CP Setup Time} + \overline{\text{TE}}\text{-to-CP Hold Time}} = \frac{1}{60 + 30 + 0} \approx 11\text{MHz}$$

4. C_{PD} is used to determine the dynamic power consumption, per package.

5. P_D = V_{CC}² f_i + C_L V_{CC}² f_o where f_i = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage, f_o = Output Frequency.

Timing Diagrams

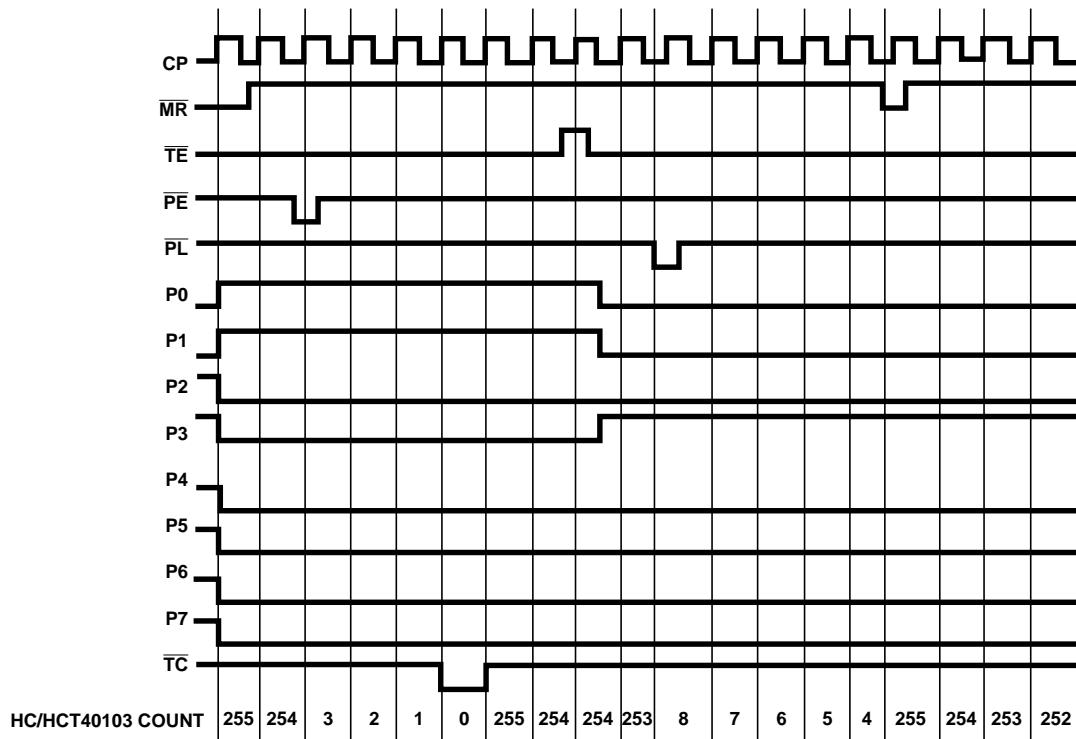


FIGURE 1.

Test Circuits and Waveforms

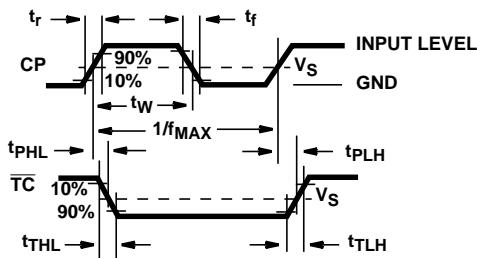


FIGURE 2.

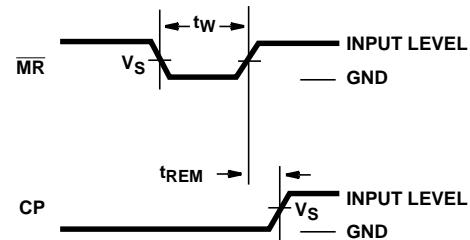


FIGURE 3.

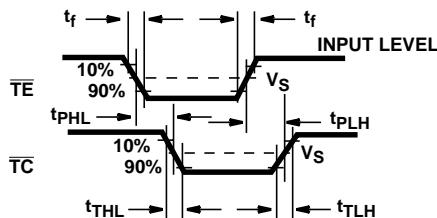


FIGURE 4.

FIGURE 5.

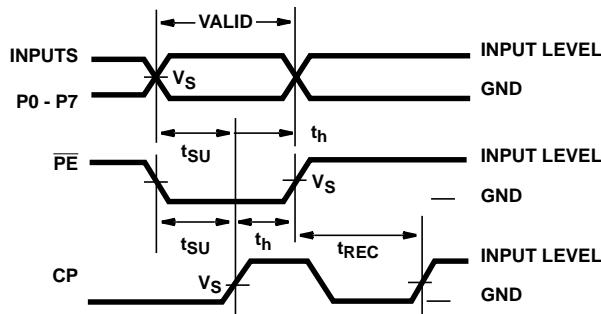


FIGURE 6.

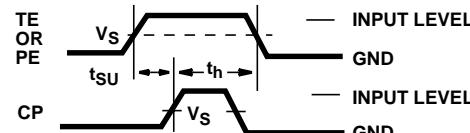
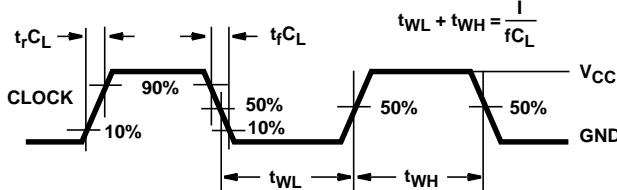
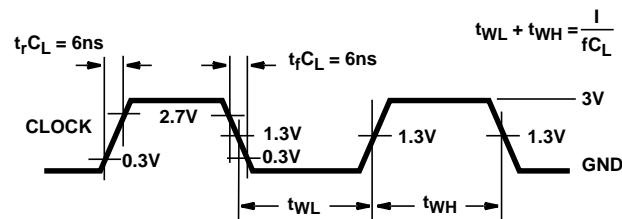




FIGURE 7.

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 8. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 9. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9055301EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9055301EA CD54HC40103F3A	Samples
5HC40103F3AS228	OBsolete	CDIP	J	16		TBD	Call TI	Call TI	-55 to 125		
CD54HC40103F	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HC40103F	Samples
CD54HC40103F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9055301EA CD54HC40103F3A	Samples
CD74HC40103E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC40103E	Samples
CD74HC40103EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC40103E	Samples
CD74HC40103M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC40103M	Samples
CD74HC40103M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC40103M	Samples
CD74HC40103M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC40103M	Samples
CD74HC40103M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC40103M	Samples
CD74HC40103ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC40103M	Samples
CD74HC40103MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC40103M	Samples
CD74HC40103MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC40103M	Samples
CD74HCT40103E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT40103E	Samples
CD74HCT40103EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT40103E	Samples
CD74HCT40103M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT40103M	Samples
CD74HCT40103M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT40103M	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HCT40103M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT40103M	Samples
CD74HCT40103MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT40103M	Samples
CD74HCT40103MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT40103M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

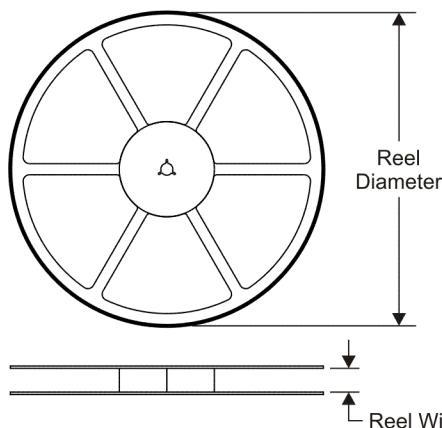
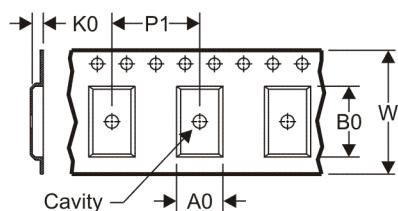
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

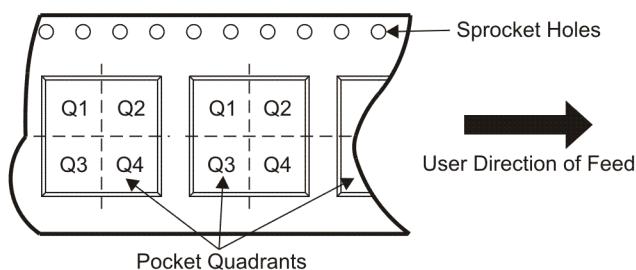
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC40103, CD74HC40103 :

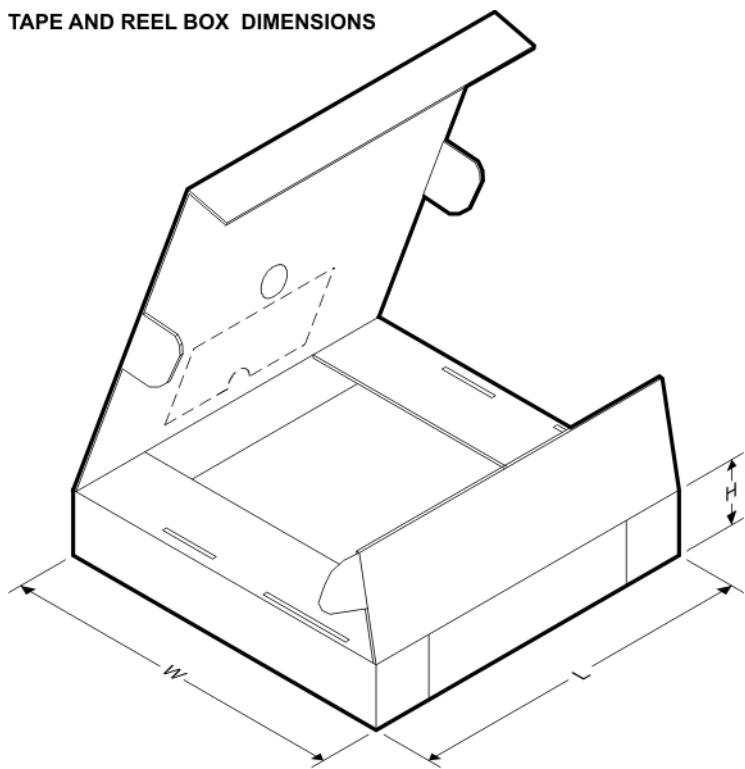

- Catalog: [CD74HC40103](#)
- Automotive: [CD74HC40103-Q1](#), [CD74HC40103-Q1](#)
- Enhanced Product: [CD74HC40103-EP](#), [CD74HC40103-EP](#)
- Military: [CD54HC40103](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product - Supports Defense, Aerospace and Medical Applications
- Military - QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

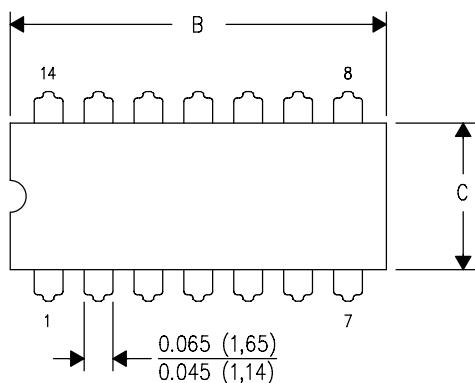

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

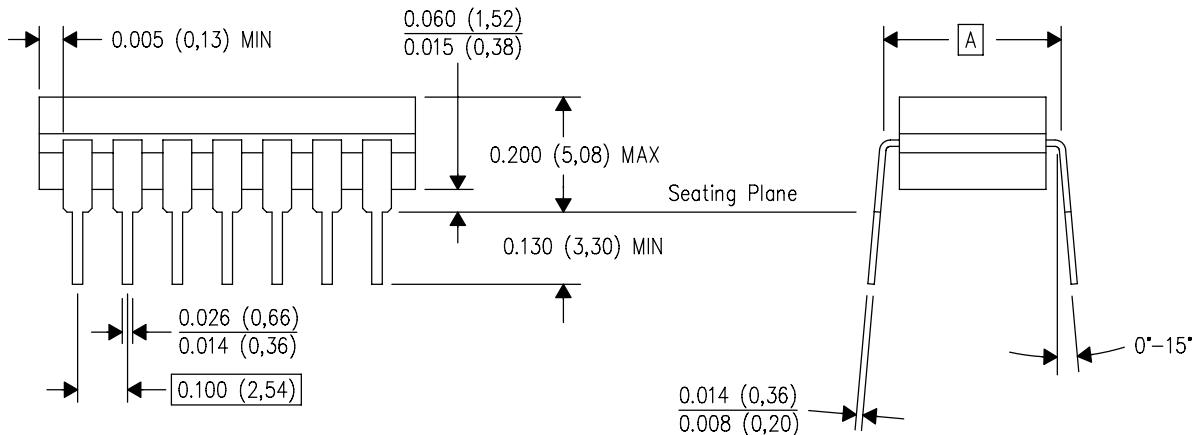
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC40103M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT40103M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS


*All dimensions are nominal

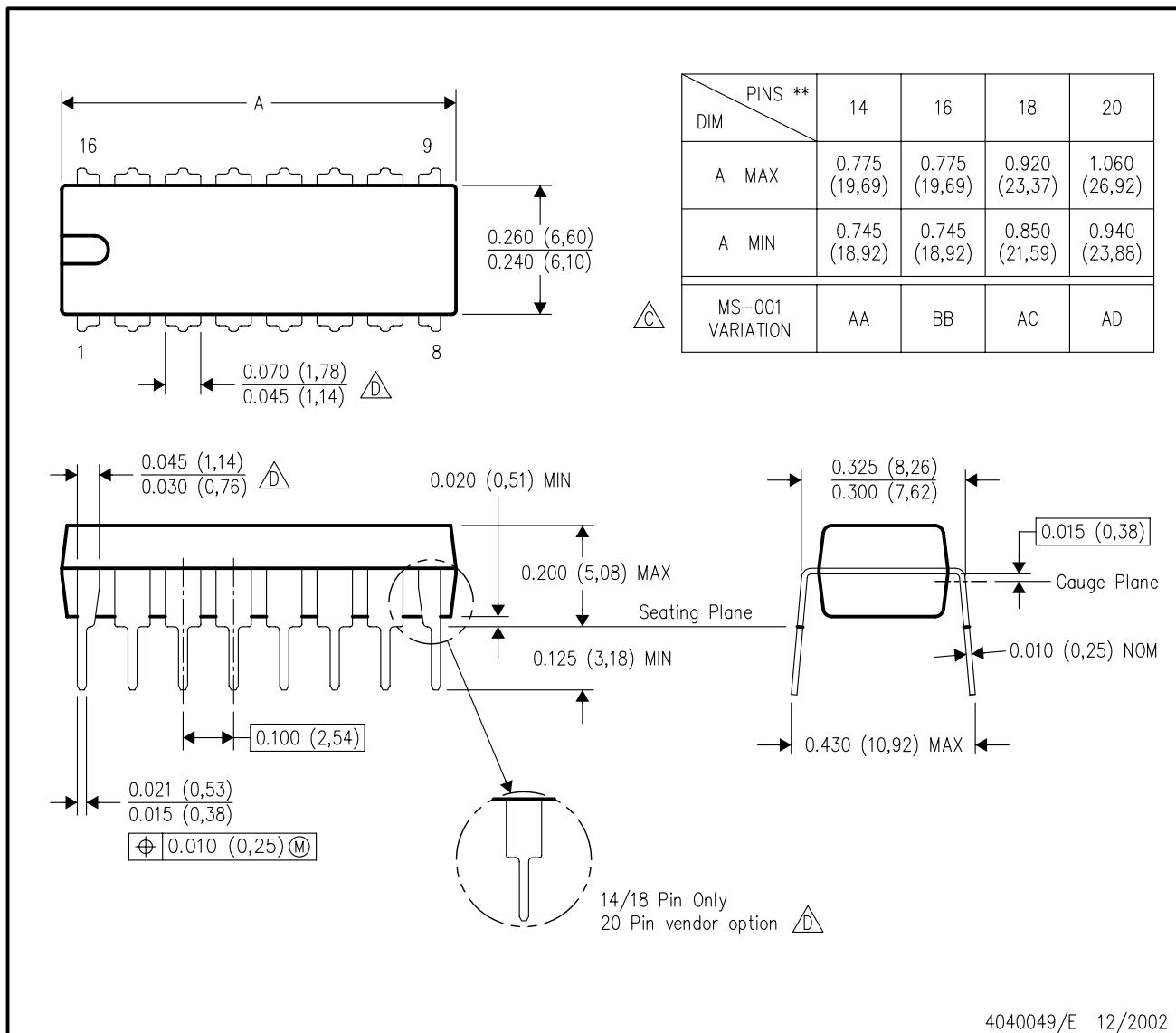
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC40103M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HCT40103M96	SOIC	D	16	2500	333.2	345.9	28.6


J (R-GDIP-T**)

14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

PINS ** DIM	14	16	18	20
A	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC	0.300 (7,62) BSC
B MAX	0.785 (19,94)	.840 (21,34)	0.960 (24,38)	1.060 (26,92)
B MIN	—	—	—	—
C MAX	0.300 (7,62)	0.300 (7,62)	0.310 (7,87)	0.300 (7,62)
C MIN	0.245 (6,22)	0.245 (6,22)	0.220 (5,59)	0.245 (6,22)


4040083/F 03/03

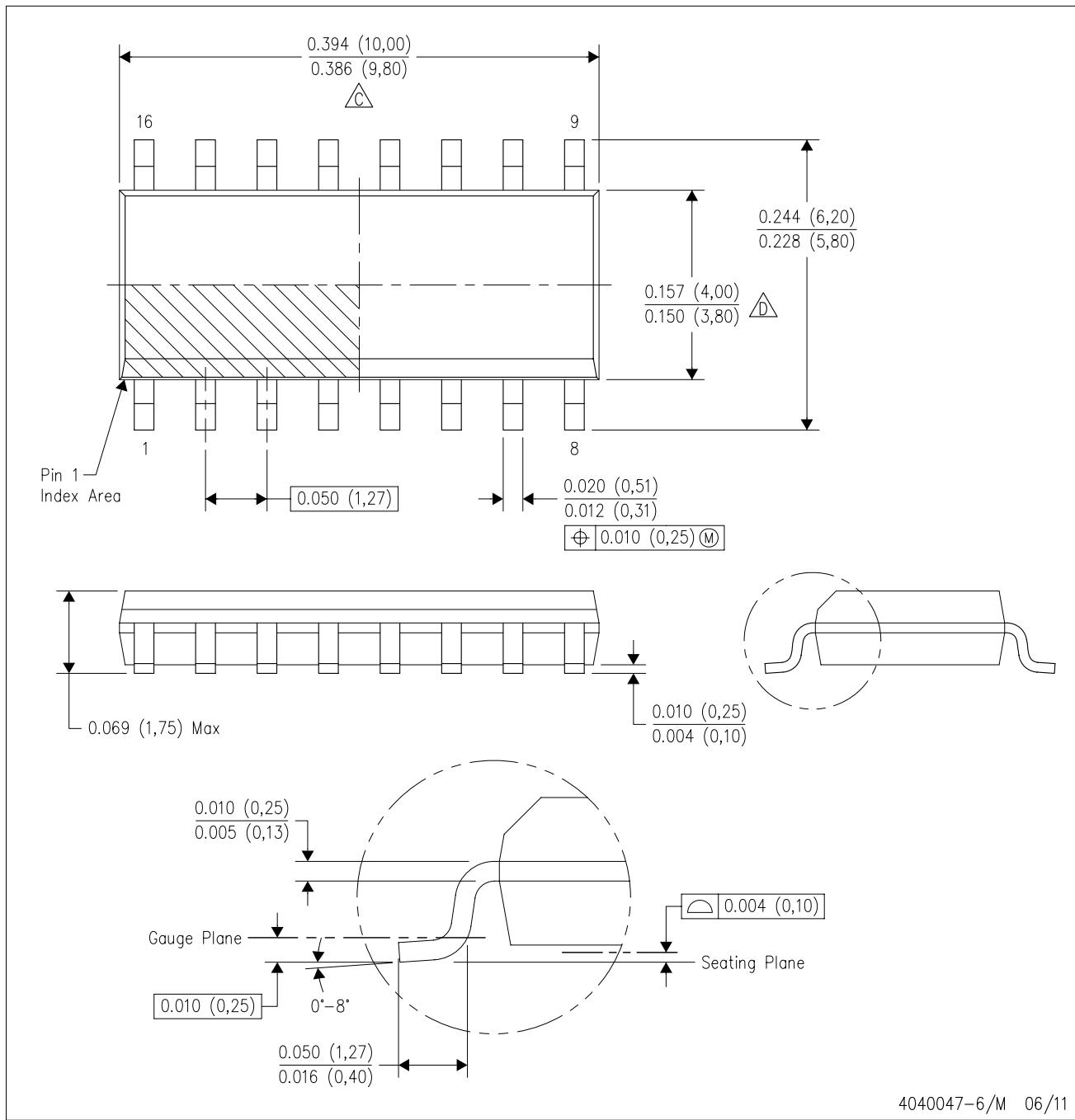
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

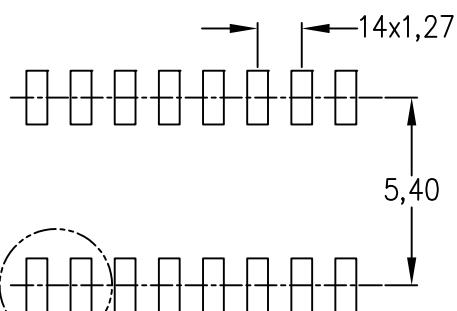
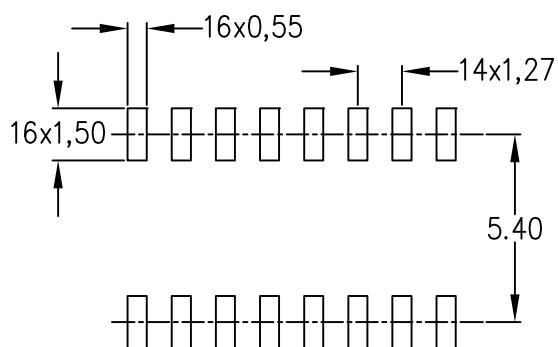
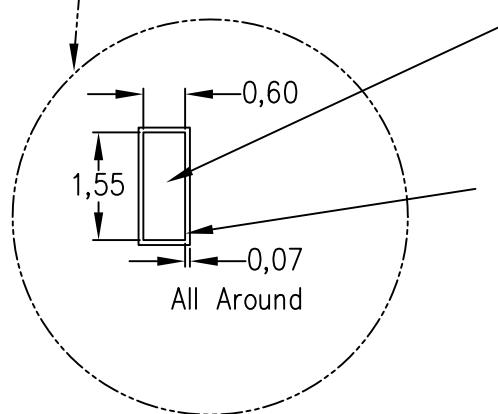
D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.




C. Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.

D. Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.

E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

Example Board Layout
(Note C)Stencil Openings
(Note D)Example
Non Soldermask Defined PadExample
Pad Geometry
(See Note C)Example
Solder Mask Opening
(See Note E)

4211283-4/E 08/12

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Publication IPC-7351 is recommended for alternate designs.
- Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have **not** been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity
	TI E2E Community
	e2e.ti.com