

PIN DIODES FOR RF SWITCHING AND ATTENUATING

5082-3001/02
HPND-4165/66
5082-3039(1N5719)
5082-3042/43
5082-3077
5082-3080 (1N5767)
5082-3081
5082-3168/88

Features

LOW HARMONIC DISTORTION

LARGE DYNAMIC RANGE

LOW SERIES RESISTANCE

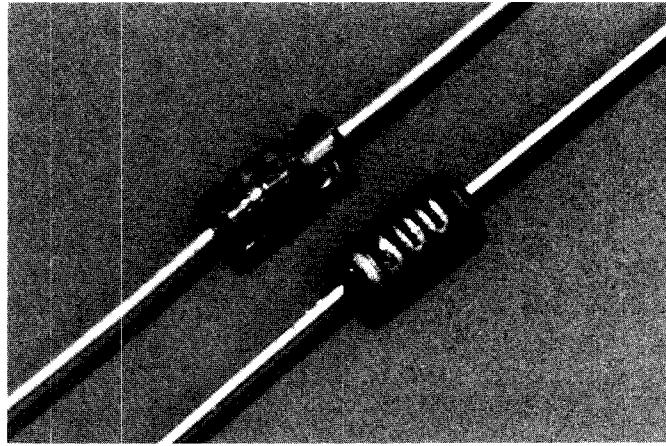
LOW CAPACITANCE

LOW TEMPERATURE

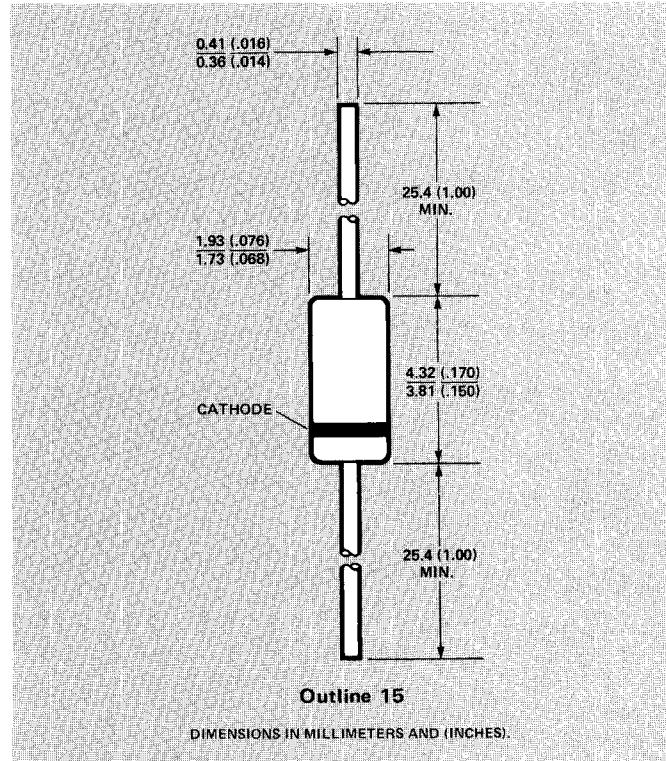
COEFFICIENT

Typically Less Than 20%
Resistance Change from
25°C to 100°C

Description / Applications


These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3168/3188 are optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.


	Lead Finish	Body Finish
5082-3001/02	Tin	Painted
HPND-4165/66	Tin	Painted
5082-3039 (1N5719)	Tin	Painted
5082-3042/43	Gold	Painted
5082-3077	Tin	Clear
5082-3080 (1N5767)	Tin	Clear
5082-3081	Tin	Clear
5082-3168/88	Tin	Clear

Mechanical Specifications

The HP Outline 15 package has a glass hermetic seal with duomet leads. The leads on the Outline 15 package should be restricted so that the bend starts at least 1/16 inch (1.6mm) from the glass body. With this restriction, Outline 15 package will meet MIL-STD-750, Method 2036, Conditions A (4 lbs., 1.8 kg.), tension for 30 minutes) and E. The maximum soldering temperature is 230°C for five seconds. Typical package inductance and capacitance are 2.5 nH and 0.13pF, respectively. Marking is by digital coding with a cathode band.

Package Dimensions

Outline 15

DIMENSIONS IN MILLIMETERS AND (INCHES).

Maximum Ratings at $T_{CASE}=25^{\circ}\text{C}$

Junction Operating and Storage

Temperature Range -65°C to +150°C

Operation of these devices within the above temperature ratings will assure a device Mean Time Between Failure (MTBF) of approximately 1×10^7 hours.

Power Dissipation 250mW

(Derate linearly to zero at 150°C)

Peak Inverse Voltage (PIV) V_{BR}

General Purpose Diodes

Electrical Specifications at $T_A = 25^\circ C$

Part Number 5082-	Maximum Total Capacitance C_T (pF)	Minimum Breakdown Voltage V_{BR} (V)	Maximum Residual Series Resistance R_S (Ω)	Minimum Effective Carrier Lifetime τ (ns)	Maximum Reverse Recovery Time t_{rr} (ns)
GENERAL PURPOSE SWITCHING AND ATTENUATING					
3002	0.2	300	1.0	100	100 (typ)
3001	0.25	200	1.0	100	100 (typ)
3039	0.25	150	1.25	100	100 (typ)
IN5719	0.3**	150	1.25	100	100 (typ)
3077	0.3	200	1.5	100	100 (typ)
FAST SWITCHING					
3042	0.4*	70	1.0*	15 (typ)	5
3043	0.4*	50	1.5*	15 (typ)	10
BAND SWITCHING					
3188	1.0*	35	0.6**	40 (typ)	12 (typ)
3168	2.0*	35	0.5**	40 (typ)	12 (typ)
Test Conditions	$V_R = 50V$ $*V_R = 20V$ $**V_R = 100V$ $f = 1 MHz$	$V_R = V_{BR}$ Measure $I_R \leq 10\mu A$	$I_F = 100mA$ $*I_F = 20mA$ $**I_F = 10mA$ $f = 100 MHz$	$I_F = 50mA$ $I_R = 250mA$	$I_F = 20mA$ $V_R = 10V$ 90% Recovery

Note: Typical CW power switching capability for a shunt switch in a 50Ω system is 2.5W.

RF Current Controlled Resistor Diodes

Electrical Specifications at $T_A = 25^\circ C$

Part Number	Minimum Effective Carrier Lifetime τ	Minimum Breakdown Voltage V_{BR}	Maximum Residual Series Resistance R_S	Maximum Total Capacitance C_T	High Resistance Limit, R_H		Low Resistance Limit, R_L		Maximum Difference in Resistance vs. Bias Slope, Δx
					Min.	Max.	Min.	Max.	
HPND-4165	100	100	1.5	0.3	1100	1660	16	24	.04
HPND-4166	100	100	1.5	0.3	830	1250	12	18	.04
5082-3080*	1300(typ)	100	2.5	0.4	1000	—	—	8**	
5082-3081	2000(typ)	100	3.5	0.4	1500	—	—	8**	
Units	ns	V	Ω	pF	Ω		Ω		—
Test Conditions	$I_F=50mA$ $I_R=250mA$	$V_R=V_{BR}$, Measure $I_R \leq 10\mu A$	$I_F=100mA$ $f=100mHz$	$V_R=50V$ $f=1mHz$	$I_F=0.01mA$ $f=100mHz$	$I_F=1.0mA$ $**I_F=20mA$ $f=100mHz$	Batch Matched at $I_F=0.01mA$ and $1.0mA$ $f=100mHz$		

*The 1N5767 has the additional specifications: $\tau = 1.0 \mu sec$ minimum
 $I_R = 1 \mu A$ maximum at $V_R = 50V$
 $V_F = 1V$ maximum at $I_F = 100mA$.

Typical Parameters

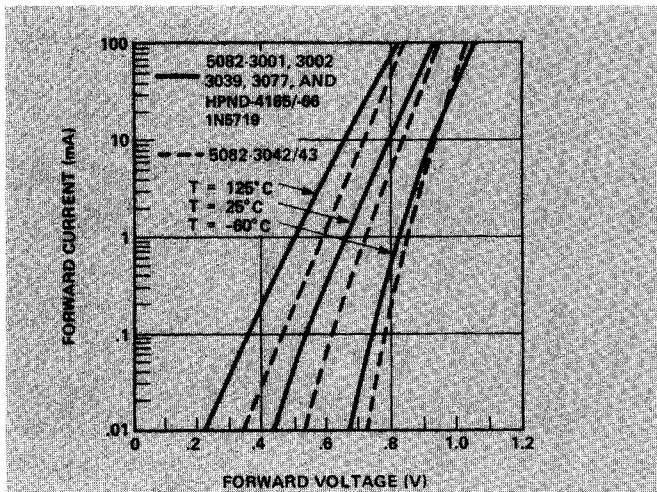


Figure 1. Typical Forward Current vs. Forward Voltage.

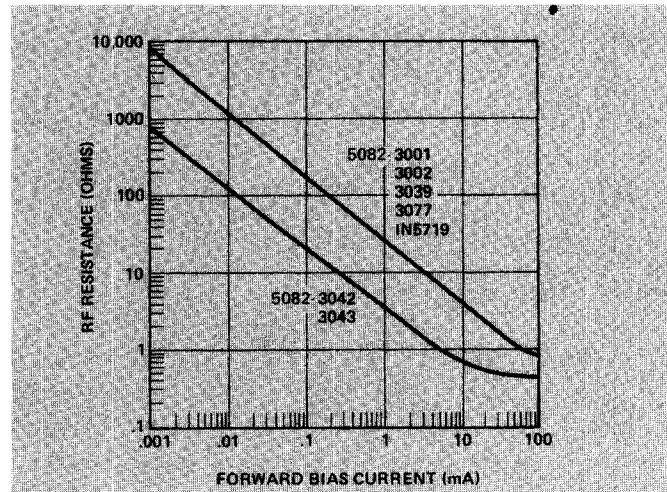


Figure 2. Typical RF Resistance vs. Forward Bias Current.

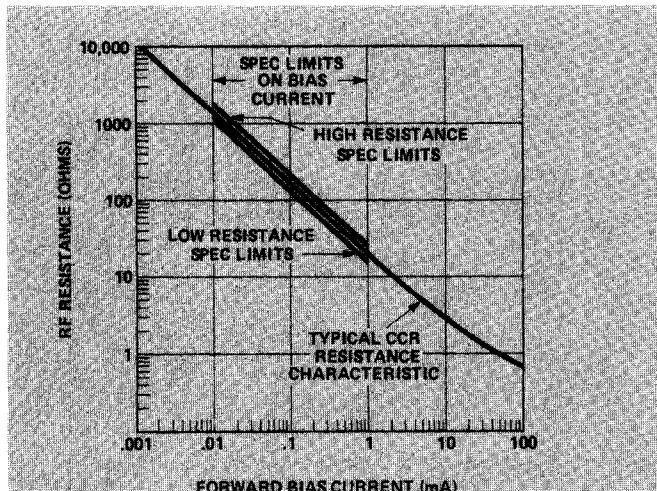


Figure 3. Typical RF Resistance vs. Bias for HPND-4165.

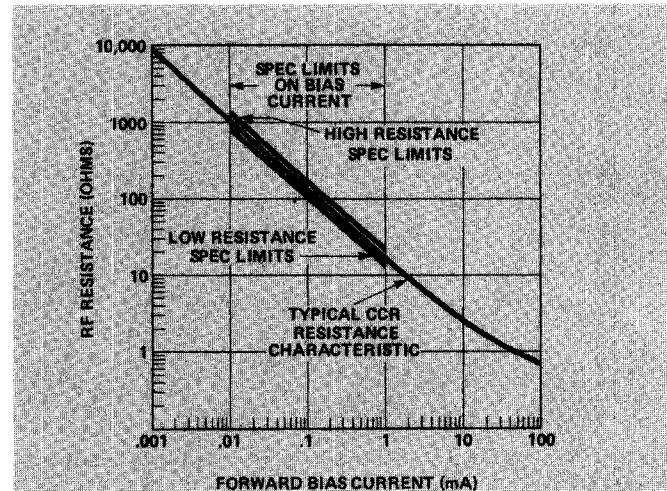


Figure 4. Typical RF Resistance vs. Bias for HPND-4166.

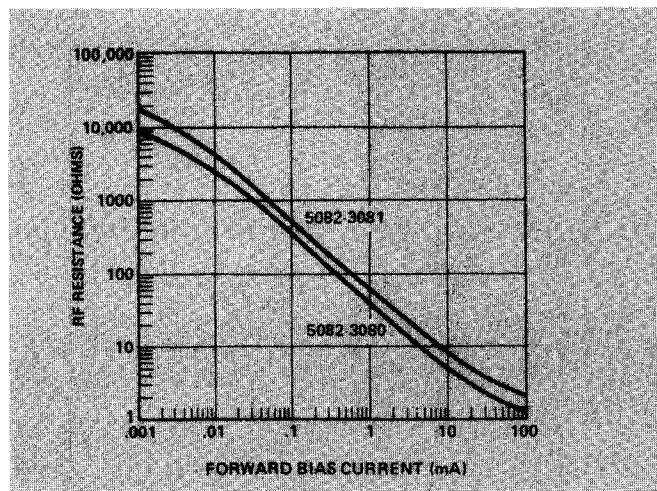


Figure 5. Typical RF Resistance vs. Forward Bias Current.

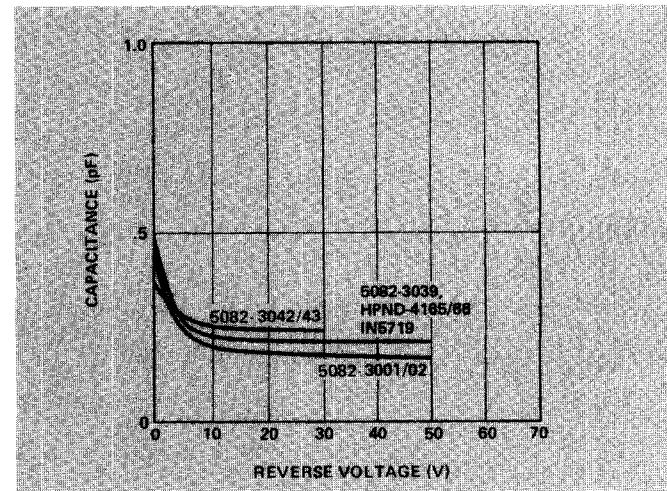


Figure 6. Typical Capacitance vs. Reverse Voltage.

Typical Parameters (Continued)

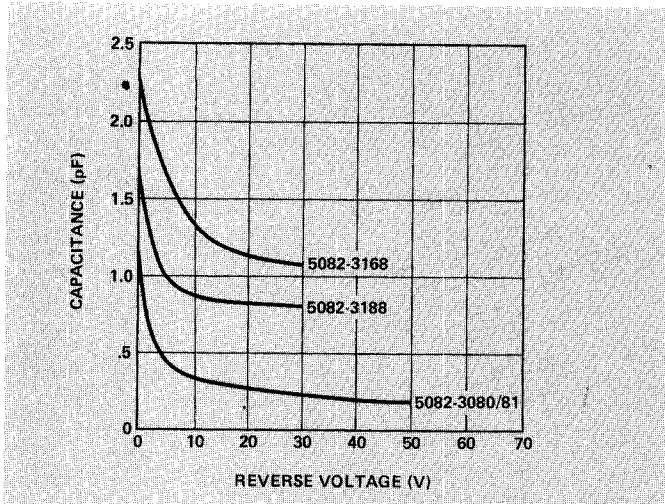


Figure 7. Typical Capacitance vs. Reverse Voltage 5082-3080, 3081, 3168, 3188.

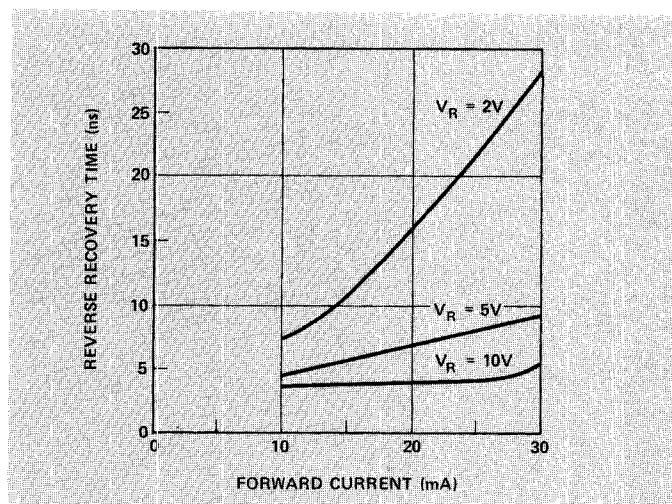


Figure 8. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3042, 3043.

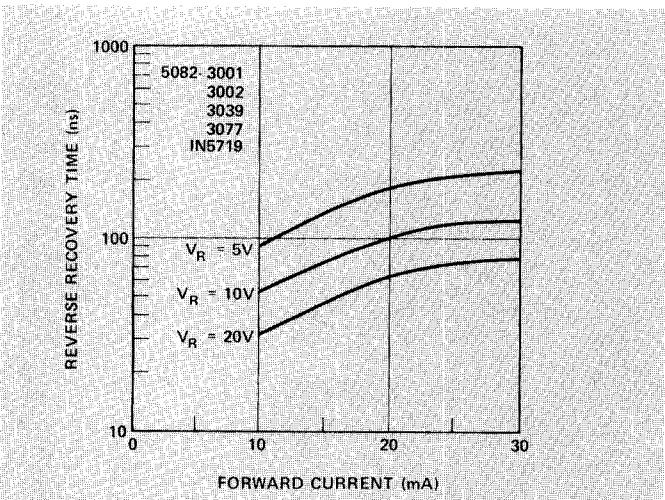


Figure 9. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

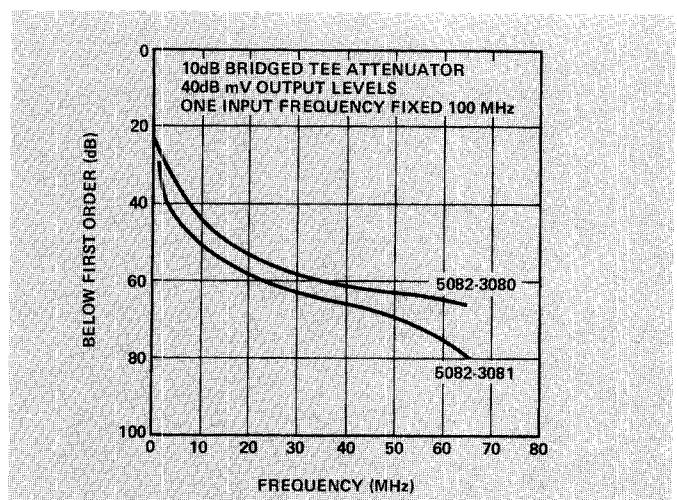


Figure 10. Typical Second Order Intermodulation Distortion.

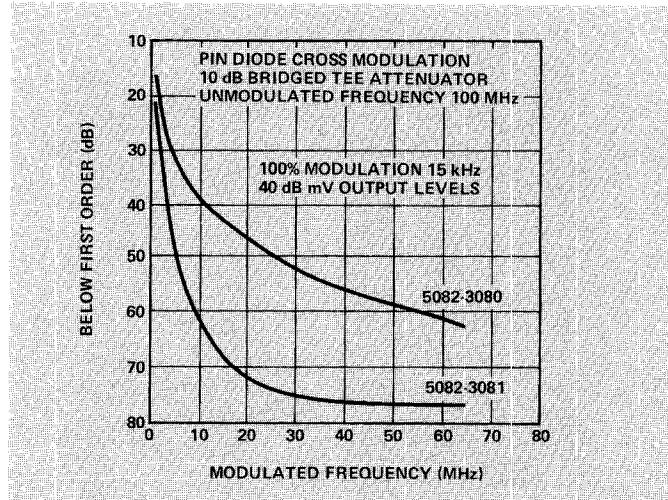


Figure 11. Typical Cross Modulation Distortion.