

Features

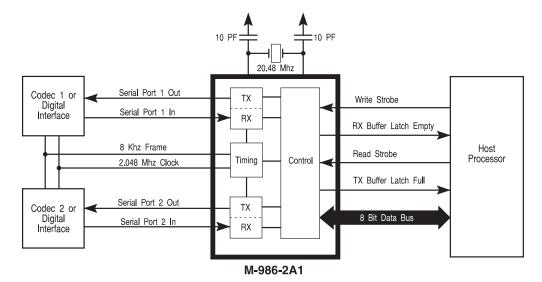
- Direct A-Law or µ-Law PCM digital input
- · 2.048 Mb/s clocking
- Operates with standard codecs for analog interfacing
- Microprocessor read/write interface
- · Binary or 2-of-6 data formats
- Dual-channel
- · 5 volt power

Applications

- · Test equipment
- Trunk adapters
- Paging terminals
- Traffic recorders
- PBXs

Description

The M-986-2A1 dual channel MF Transceiver contains all the logic necessary to transmit and receive (North American) CCITT Region 1 multifrequency signals on one integrated circuit (IC).


Operating with a 20.48 MHz crystal, the M-986 is capable of providing a direct digital interface to a m-law or A-law encoded PCM digital input. Each channel can be connected to an analog source using a coder-decoder (codec) as shown in the Block Diagram below.

The M-986 is configured and controlled through an integral coprocessor port.

Ordering Information

Part #	Description
M-986-2A1P	40-pin plastic DIP
M-986-2A1PL	44-pin PLCC

Block Diagram

Absolute Maximum Ratings Over Specified Temperature Range

Supply voltage range, V _{CC}	-0.3 V to 7 V
Input voltage range	-0.3 V to 15 V
Output voltage range	-0.3 V to 15 V
Ambient air temperature range	0° to 150°C
Storage temperature range	-45°C to 150°C

Function Description

The M-986-2A1 can be set up for various modes of operation by writing two configuration bytes to the coprocessor port. The format of the two configuration bytes is shown in the Configuration Table on page 3 and the configuration options are described in the following paragraphs.

Configuration Options

External/Internal Codec Clock (ECLK): If external codec clocking is selected, an external clocking source provides an 8 kHz transmit framing clock and an 8 kHz receive framing clock. It also provides a serial bit clock with a frequency that is a multiple of 8 kHz between 216 kHz and 2.496 MHz for exchange of data via the serial ports. When internal codec clocking is selected, the M-986-2A1 provides an 8 kHz framing clock and a 2.048 MHz serial bit clock.

2 of 6/Binary Input/Output (IOM): When the 2-of-6 input/output is selected, the M-986-2A1 encodes the received R1 MF tone pair into a 6-bit format, where each bit represents one of the six possible frequencies. A logic high level indicates the presence of a frequency. The digital input to the M-986-2A1 that selects the transmitted R1 MF tone pair must also be coded in the 2-of-6 format.

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and effect its reliability.

When binary input/output is selected, the M-986-2A1 encodes the received R1 MF tone pair into a 4 bit binary format. The digital input to the M-986-2A1 that selects the transmitted R1 MF tone pair must also be coded in a 4 bit binary format.

Enable/Disable Channel (ENC): When a channel is disabled, the receiver does not process its codec input for R1 MF tones, and the transmitter does not respond to transmit commands. If a transmit command is given while the channel is enabled, the "tone off" command must be given before the channel is disabled. Disabling the channel does not automatically shut off the transmitter. When a channel is enabled, the receiver and transmitter for that channel function normally.

Long/Short KP Tone Detection Time (KPL): When long KP tone detection is selected, the minimum on time for the KP tone to be detected is 55 milliseconds. When short KP tone detection is selected, the minimum on time for the KP tone to be detected is 30 milliseconds (the same as the minimum on time for the rest of the MF tones).

Enable MF Tone Detection After Reception of KP (KPEN): When this feature is enabled, MF tone detection is enabled after reception of the KP tone, and disabled after reception of ST, ST1, ST2, or ST3 tones. When this feature is disabled, MF tone detection is always enabled. Select A or μ -law input/output (AMU) for A-law encoding, this bit is set to a 1, for μ -law encoding it is set to 0.

Electrical Characteristics/Temperature Range

	Paramete	er	Test ConditionsN	1in	Тур	Max	Unit	
I _{CC}	Supply current	f = 20.5 MHz,	$V_{CC} = 5.5V,$		-	50	75	mA
			$T_A = 0^\circ \text{ to } 70^\circ \text{C}$					
V_{OH}	High-level output vo	oltage	I _{OH} = MAX		2.4	3	-	V
			I _{OH} = 20 μ A		V _{CC} -0.4	-	-	V
V_{OL}	Low-level output vo	ltage	$I_{OL} = MAX$		-	0.3	0.6	V
I _{oz}	Off-state output cur	rent	$V_{CC} = MAX$	V0 = 2.4 V	-	-	20	μA
				V0 = 0.4 V	-	-	-20	μA
$ I_1 $	Input current		$V_I = V_{SS}$ to V_{CC}	Except CLKIN	-	-	±20	μA
				CLKIN	-	-	±50	μA
C_{l}	Input capacitance	Data bus	f = 1 MHz, all oth	ner pins 0 V	-	25	-	pF
		All others			-	15	-	pF
C_0	Output capacitance	Data bus			-	25	-	pF
		All others			-	10	-	pF

Configuration

			Configura	ation Byte 1				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	0	ECLK	IOM	ENCI	KPL1	KPEN1	0	
IOM ENC KPL	ECLK Channels 1 & 2							
			Configura	ation Byte 2				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	1	0	AMU	ENC2	KPL2	KPEN2	0	
ENC: KPL2	AMU Channels 1 & 2 ENC2 Channel 2 KPL2 Channel 2 KPEN2 Channel 2			oding, 0 = m-law annel; 0 = Disable tection time for KP - tone detection aff letection always	channel ; 0 = 30 ms detec	tion time for KP		

Initial Configuration: The configuration of the M-986-2A1 immediately after a reset will be as follows:

- · channel disabled
- 2-of-6 input/output
- · external serial and serial frame clocks.

Also, the M-986-2A1 will place a 00 hex on the coprocessor port to indicate to the host processor that it is working.

Transmit Tone Command

The transmit tone command allows the host processor to transmit any two of the 6 R1 MF frequencies. The format of the command depends on whether the M-986 is configured for binary format or 2-of-6 format.

Recieved Tone Detection

When a tone is detected by the M-986, the TBLF output goes low, indicating reception of the tone to the host processor. The host processor can determine which tone was detected and which channel the tone was detected on by reading data from the M-986 coprocessor port. The M-986 will return a single byte indicating the tone received and the channel that the tone was received on. The format of the returned byte depends on whether the M-986 is configured for binary or 2-of-6 coding.

Coprocessor Port

Commands are written to the M-986 via the coprocessor port, and data indicating the received R1 MF tone is read from the coprocessor port.

Writing to the Coprocessor Port: The following sequence describes writing a command to the M-986.

- (1) The WR signal is driven low by the host processor.
- (2) The RBLE (receive buffer latch empty) signal transitions to a logic high level.
- (3) Data is written from D7-D0 to the receive buffer latch (D7-D0) when the WR signal goes high.
- (4) The RBLE signal transitions to a logic low level after the M-986 reads the data. This signals the host processor that the receive buffer is empty.

Note: The RBLE should be low before writing to the coprocessor.

Reading the Coprocessor Port: The following sequence describes reading received tone information from the coprocessor port.

- (1) The TBLF (transmit buffer latch full) port pin on the M-986 goes low indicating the reception of a tone.
- (2) The host processor detects the low logic level on the TBLF pin either by polling a connected port pin or by an interrupt.
- (3) The host processor drives the RD signal low.
- (4) The TBLF (transmit buffer latch full) signal transition to a logic high level.

(5) Data is driven onto D7-D0 by the M-986 until the RD signal is driven high by the host processor.

Clock Characteristics and Timing

Internal Clock Option: The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN. The frequency of CLKOUT is one-fourth the crystal fundamental frequency. The crystal should be 20.48 MHz, fundamental mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, and be specified at a load capacitance of 20 pF.

External Clock Option: An external frequency source can be used by injecting the frequency directly in X2/CLKIN with X1 left unconnected. The external frequency injected must conform to the specifications listed in External Frequency Specifications table on page 6

Flammability/Reliability Specifications

Reliability: 185 FITS failures/billion hours

Flammability: Passes UL 94 V-0 tests

2 of 6 Coding Format

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Transmit tone command	1	CHN	F6	F5	F4	F3F2	F1	
Receive tone return	0	CHN	F6	F5	F4	F3F2	F1	
CHN: 1 = channel 2; 0 = channel 1 R1 MF Frequencies:								
Bit name F	requency (Hz)		Bit	t name		Freque	ncy (Hz)	
F6 17	700		F3			1100		
F5 15	500		F2			900		
F4 13	300		F1			700		

Binary Coding Format

Byte		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Transmit tone com	mand	1	CHN	0	0	А	В	С	D
Receive tone return	1	0	CHN	0	0	Α	ВС		D
CHN: 1 = channel	2; 0 = char	nel 1		•					
R1 MF Frequen	cies:								
ABCD	Frequencie	es (Hz)	Name	AB	CD		Frequencie	es (Hz)	Name
0000	Tone off		-		1000		900 & 1	500	Digit 8
0001	700 & 9	00	Digit 1		1001		1100 &	1500	Digit 9
0010	700 & 1	100	Digit 2		1010		1300 &	1500	Digit 0
0011	900 & 1	100	Digit 3		1011		700 & 17	700	ST3
0100	700 & 1	300	Digit 4		1100		900 & 17	700	ST1
0101	900 & 1	300	Digit 5		1101		1100 &	1700	KP
0110	1100 &	1300	Digit 6		1110		1300 &	1700	ST2
0111	700 & 1	500	Digit 7		1111		1500 &	1700	ST

Signal Description

Signal	Pin	I/O/Z	Description
D15-D8	18-11	I/0/Z	Unused. Leave open.
D7-D0	19-26	I/0/Z	8-bit coprocessor latch.
TBLF	40	0	Transmit buffer latch full flag.
RBLE	1	0	Receive buffer latch empty flag.
HI/ L O	2	I	Latch byte select pin. Tie low.
BIO	9	I	Unused. Leave open.
RD	32	1/0	Used by the external processor to read from the coprocessor latch by driving the RD line active (low), thus enabling the output latch to drive the latched data. When the data has been read, the external device must bring the RD line high.
EXINT	5	I	Unused. Leave open.
MC	3	I	Microcomputer mode select pin. Tie low.
MC/PM	27	I	Coprocessor mode select pin. Tie low.
RS	4	I	Reset input for initializing the device. When an active low is placed on RS pin for a minimum of five clock cycles, RD and WR are forced high, and the data bus (LD7 through LD0) goes to a high impedance state. The serial port clock and transmit outputs also go to the high impedance state.
WR	31	I/O	Used by the external processor to write data to the coprocessor port. To write data the external processor drives the WR line low, places data on the data bus, and then drives the WR line high to clock the data into the on-chip latch.
XF	28	0	Watchdog signal. Toggles at least once every 10 milliseconds when the processor is functioning properly. If the pin is not toggled at least once every 10 ms, the processor is lost and should be reset.
CLKOUT	6	0	System clock output (one-fourth crystal/CLKIN frequency, nominally 5.12 MHz).
V _{SS}	10	I	Ground pin.
V _{CC}	30	I	5V supply pin.
X1	7	0	Crystal output pin for internal oscillator. If the internal oscillator is not used, this pin should be left unconnected.
X2/CLKIN	8	I	Input pin to the internal oscillator (X2) from the crystal. Alternatively, an input pin for the external oscillator (CLKIN).
DR1 & DR0	33 & 29	I	Serial-port receive-channel inputs. 2.048 MHz serial data is received in the receive registers via these pins. DR0 = channel 1; DR1 = channel 2.
FR	37	0	8 kHz internal serial-port framing output. If internal clocking is selected, serial-port transmit and receive operations occur simultaneously on an active (high) FR framing pulse.
DX1 & DX0	36 & 35	0	Serial-port transmit-channel outputs. 2.048 MHz serial data is transmitted from the transmit registers on these pins. These outputs are in the high-impedance state when not transmitting. DX0 = channel 1; DX1 = channel 2.
FSR	39	I	8 kHz external serial-port receive-framing input. If external clocking is selected, data is received via the receive pins (DR1 and DR0) on the active (low) FSR input. The falling edge of FSR initiates the receive process, and the rising edge causes the M-986 to process the data.
SCLK	34	I/O/Z	2.048 MHz serial-port clock. Master clock for transmitting and receiving serial-port data. Configured as an input in external clocking mode or output in internal clocking mode. Reset (RS) forces SCLK to the high-impedance state.
FSX	38	I	8 kHz external serial-port transmit-framing input. If external clocking is enabled, data is transmitted on the transmit pins (DX1, DX0) on the active (low) input. The falling edge of FSX initiates the transmit process, and the rising edge causes the M-986 to internally load data for the next cycle.

Serial Port Timing

	Parameter	Min	Nom	Max	Unit
t _d (CH-FR)	Internal framing delay from SCLK rising edge	-	-	70	ns
t _d (DX1-CL)	DX bit 1 valid before SCLK falling edge	20	-	-	ns
t _d (DX2-CL)	DX bit 2 valid before SCLK falling edge	20	-	-	ns
t _h (DX)	DX hold time after SCLK falling edge	244	-	-	ns
t _{su} (DR)	DR setup time before SCLK falling edge	20	-	-	ns
t _h (DR)	DR hold time after SCLK falling edge	20	-	-	ns
t _c (SCLK)	Serial port clock cycle time	399	488.28	4770	ns
t _f (SCLK)	Serial port clock fall time	-	-	30	ns
t _r (SCLK)	Serial port clock rise time	-	-	30	ns
t _w (SCLKL)	Serial port clock low-pulse duration*	220	244.14	2500	ns
t _w (SCLKH)	Serial port clock high-pulse duration*	220	244.14	2500	ns
t _{su} (FS)	FSX/FSR setup time before SCLK falling edge	100	-	-	ns

 $^{^{\}star}$ The duty cycle of the serial port clock must be within 45% to 55%.

External Frequency Specifications

	Parameter	Min	Nom	Max	Unit
$t_{C}(MC)$	Master clock cycle time	48.818	48.828	48.838	ns
t _r (MC)	Rise time master clock input	-	5	10	ns
t _f (MC)	Pulse duration master clock	20	-	-	ns

Recommended Operating Conditions

	Parame	ter	Min	Nom	Max	Unit
V_{CC}	Supply voltage		4.75	5	5.25	V
V_{SS}	Supply voltage		-	0	-	V
V _{IH}	High-level input voltage	All inputs except CLKIN	2	-	-	V
		CLKIN	3	-	-	V
		MC/PM	2.2	-	-	V
V _{IL}	Low-level input voltage	All inputs except MC/MP	-	-	0.8	V
-		MC/MP	-	-	0.6	V
I _{OH}	High-level output current (all outp	uts)	-	-	-300	μA
I _{OL}	Low-level output current (all outp	uts)	-	-	2	mA
T _A	Operating free-air temperature		0	-	70	°C

Coprocessor Interface Timing

	Parameter	Min	Nom	Max	Unit
t _d (R-A)	RD low to TBLF high	-	-	75	ns
t _d (W-A)	WR low to RBLE high	-	-	75	ns
t _a (RD)	RD low to data valid	-	-	80	ns
t _h (RD)	Data hold time after RD high	25	-	-	ns
t _{su} (WR)	Data setup time prior to WR high	30	-	-	ns
t _h (WR)	Data hold time after WR high	25	-	-	ns
t _w (RDL)	RD low-pulse duration	80	-	-	ns
t _w (WRL)	WR low-pulse duration	60	-	-	ns
t _{wr} (RBLE)	RBLE↑ to RBLE↓	-	-	1	ms

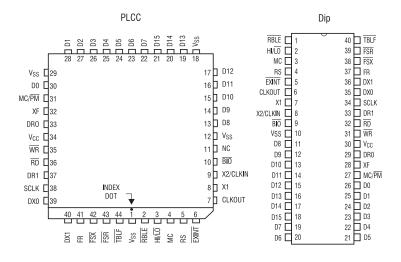
Reset (RS) Timing

	Parameter	Test Conditions	Min	Max	Unit
t _{dis} (R)	Data bus disable time after RS	$R_L = 825 \Omega$	-	75	ns
t _{d12}	Delay time from RS↓ to high-impedance SCLK	$C_{L} = 100 \text{ pF}$	-	200	ns
t _{d13}	Delay time from RS↓ to high-impedance DX1, DX0		-	200	ns
t _{su} (R)	Reset (RS) setup time prior to CLKOUT		50	-	ns
tw(R)	RS pulse duration		245	-	ns

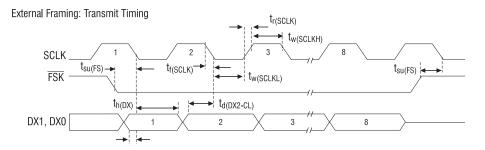
CLKOUT Timing Parameters

	Parameter	Test Conditions	Min	Nom	Max	Unit
t _{c(C)}	CLKOUT cycle time		195.27	195.31	195.35	ns
t _{r(C)}	CLKOUT rise time	$R_L = 825 \Omega$	-	10	-	ns
t _{f(C)}	CLKOUT fall time	$C_{L} = 100 \text{ pF}$	-	8	-	ns
t _{d(MCC)}	Delay time CLKIN↑ to CLKOUT↓		25	-	60	ns
t _{d 8}	Delay time CLKOUT ↓ to data bus OUT valid		-	-	1/4t _{c(C)} +75	ns

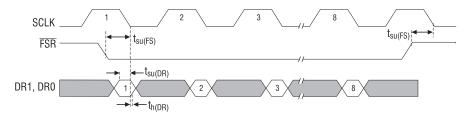
Transmitter Characteristics


	Parameter	Test Conditions	Min	Тур	Max	Unit
F _{os}	Frequency offset	From nominal	-	-	±1	Hz
TW	Twist	High/low	-	-	±0.5	dB
A _S	Signal amplitude	Per component	-7.40	-7.00	-6.60	dBm0
T _S	Time skew	Between components	-	-	0	ms
P _{hi}	Power due to extraneous components	-	-	-	-30	dB

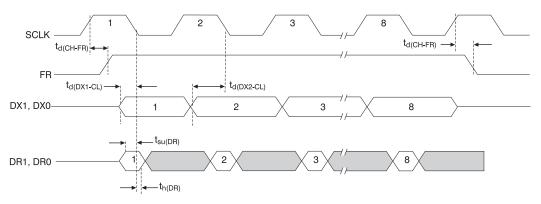
Reciever Characteristics


	Parameter	Test Conditions	Min	Max	Unit
A_d	Detect amplitude	Per frequency	-30	-5	dBm0
A_{nd}	No-detect amplitude	Per frequency	-40	-30	dBm0
F _d	Detect with frequency offset	From nominal	±1.5% +5Hz	-	Hz
TW _d	Detect with twist	High tone/low tone	±6	-	dB
T _{on}	Tone time	Reject	10	-	ms
T _{int}	Interrupted tone time	Reject	10	-	ms
T _i	Tone interpulse time	-	25	-	ms
KPL _d	KP long tone detect timeLong detect time	enabled	55	-	ms
KP _d	KP short tone detect timeLong detect time	disabled	30	-	ms
T _d	Tone detect time	-	30	-	ms
N _t	Noise tolerance	≤1 error in 25,000 digits	-	-20	dB
N _i	Impulse noise	≤1 error in 25,000 digits	-	-12	dB
P ₆₀	60 Hz tolerance	≤1 error in 25,000 digits	-	81	dBrnc0
T ₁₈₀	180 Hz tolerance	≤1 error in 25,000 digits	-	68	dBrnc0
M _t	Modulation products tolerance	2A-B and 2B-A products	-	-28	dB

Pin Assignments



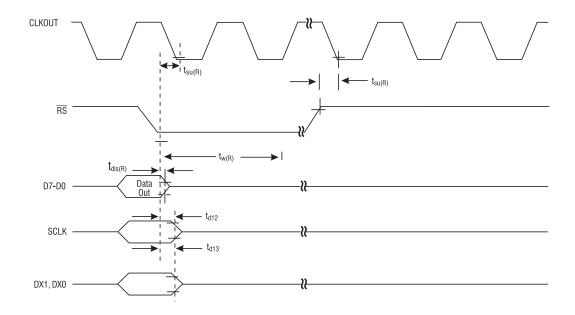
External Framing Timing Diagrams


NOTES: Data valid on transmit outputs until SCLK rises.
The most significant bit is shifted first.

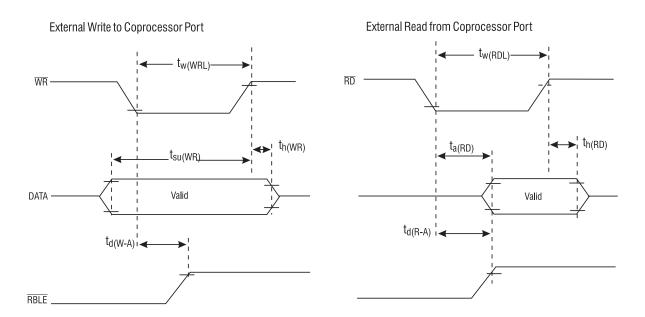
External Framing: Receive Timing

Internal Framing Timing

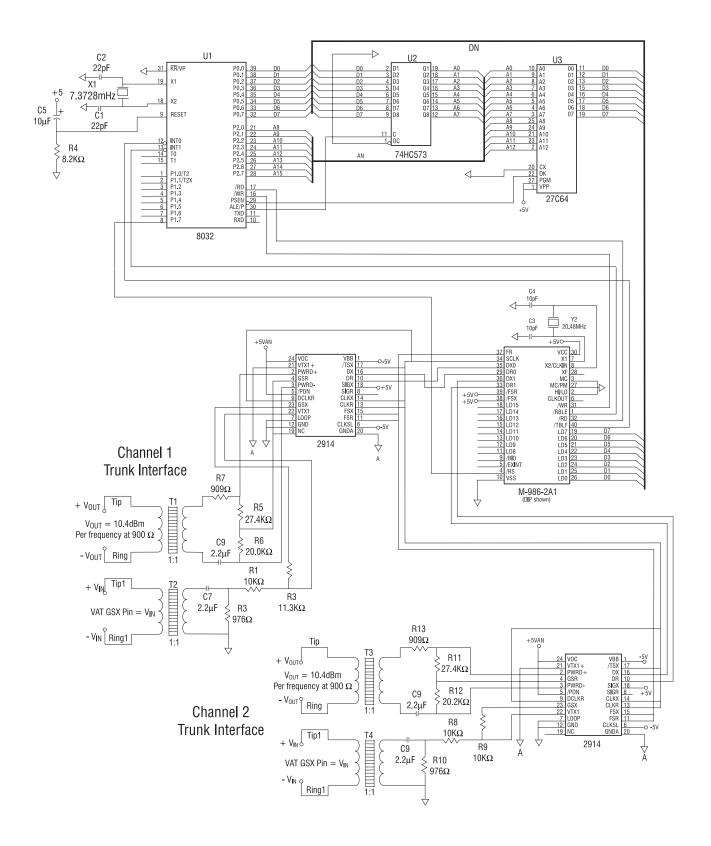
Internal Framing



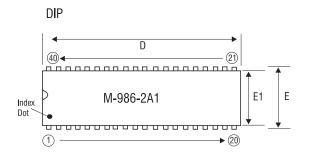
Note: The most significant bit is shifted first.

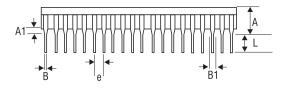

Rev. 3 www.clare.com 9

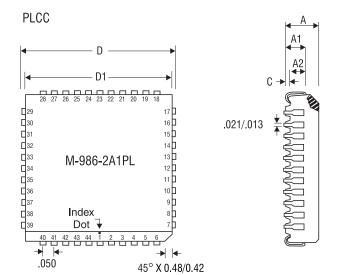
Reset Timing



Coprocessor Timing




M-986 Dual Channel 4-Wire Interface Application Circuit



Mechanical Dimensions

	Tolerances				
	(inches)		Metric (mm)		
	Min	Max	Min	Max	
Α	-	.250	-	6.35	
A1	.015	-	.39		
В	.014	.022	.36	.56	
B1	.030	.070	.77	1.78	
С	.008	.015	.20	.38	
D	1.98	2.095	50.30	53.20	
Е	.600	.625	15.24	15.87	
E1	.485	.580	12.32	14.73	
е	.100 BSC		2.54 BSC		
L	.115	.200	2.93	5.08	

	Tolerances				
	(inches)		Metric (mm)		
	Min	Max	Min	Max	
Α	.165	.180	4.19	4.57	
A1	.090	.20	2.29	5.08	
A2	.062	.083	1.58	2.11	
С	.020 min		.51	min	
D	.685	.695	17.40	17.65	
D1	.650	.653	16.51	16.66	

Drawing not to scale.

Drawing does not reflect actual part marking.

C →

CLARE LOCATIONS

Clare Headquarters 78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700

Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE

Clare Switch Division 4315 N. Earth City Expressway Earth City, MO 63045

Tel: 1-314-770-1832 Fax: 1-314-770-1812

Clare Micronix Division 145 Columbia Aliso Viejo, CA 92656-1490

Tel: 1-949-831-4622 Fax: 1-949-831-4628

SALES OFFICES

AMERICAS

Americas Headquarters

Clare 78 Cherry Hill Drive

Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE

Eastern Region

Clare 603 Apache Court

Mahwah, NJ 07430 Tel: 1-201-236-0101 Fax: 1-201-236-8685 Toll Free: 1-800-27-CLARE

Central Region

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1

Tel: 1-905-333-9066 Fax: 1-905-333-1824

Western Region

Clare

1852 West 11th Street, #348 Tracy, CA 95376

Tel: 1-209-832-4367 Fax: 1-209-832-4732 Toll Free: 1-800-27-CLARE

Canada

Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1

Tel: 1-905-333-9066 Fax: 1-905-333-1824

EUROPE

European Headquarters

CP Clare nv Bampslaan 17 B-3500 Hasselt (Belgium) Tel: 32-11-300868 Fax: 32-11-300890

France

Clare France Sales Lead Rep 99 route de Versailles 91160 Champlan France

Tel: 33 1 69 79 93 50 Fax: 33 1 69 79 93 59

Germany

Clare Germany Sales ActiveComp Electronic GmbH Mitterstrasse 12 85077 Manching Germany

Tel: 49 8459 3214 10 Fax: 49 8459 3214 29

Italy

C.L.A.R.E.s.a.s. Via C. Colombo 10/A I-20066 Melzo (Milano) Tel: 39-02-95737160 Fax: 39-02-95738829

Sweden

Clare Sales Comptronic AB Box 167 S-16329 Spånga Tel: 46-862-10370 Fax: 46-862-10371

United Kingdom

Clare UK Sales
Marco Polo House
Cook Way
Bindon Road
Taunton

UK-Somerset TA2 6BG Tel: 44-1-823 352541 Fax: 44-1-823 352797

ASIA/PACIFIC

Asian Headquarters

Clare Room N1016, Chia-Hsin, Bldg II, 10F, No. 96, Sec. 2 Chung Shan North Road Taipei, Taiwan R.O.C.

Tel: 886-2-2523-6368 Fax: 886-2-2523-6369

http://www.clare.com

Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

Specification: DS-M986-2A1-R3 ©Copyright 2001, Clare, Inc. All rights reserved. Printed in USA. 7/26/01

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Clare:

M-986-2A1P