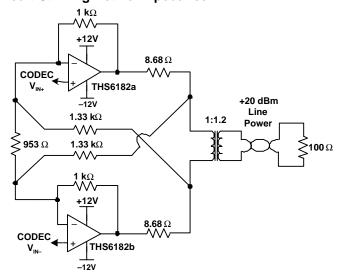
SLLS544 - SEPTEMBER 2002

LOW POWER DISSIPATION ADSL LINE DRIVER

FEATURES

- Low Power Dissipation Increases ADSL Line **Card Density**
- Low THD of -88 dBc (100- Ω , 1 MHz)
- Low MTPR Driving +20 dBm on the Line
 - -76 dBc With High Bias Setting
 - 74 dBc With Low Bias Setting
- Wide Output Swing of 44VPP Differential Into a 200 Ω Differential Load (V_{CC} = ±12 V)
- High Output Current of 600 mA (Typ)
- Wide Supply Voltage Range of ± 5 V to ± 15 V
- Pin Compatible with EL1503C and EL1508C
 - Multiple Package Options
- **Multiple Power Control Modes**
 - 11 mA/ch Full Bias Mode
 - 7.5 mA/ch Mid Bias Mode
 - 4 mA/ch Low Bias Mode
 - 0.25 mA/ch Shutdown Mode
 - IADJ Pin for User Controlled Bias Current
 - Stable Operation Down to 3 mA/ch
- Low Noise for Increased Receiver Sensitivity
 - 3.2 nV/√Hz Voltage Noise
 - 1.5 pA/√Hz Noninverting Current Noise
 - 10 pA/√Hz Inverting Current Noise


APPLICATIONS

Ideal for Full Rate ADSL Applications

DESCRIPTION

The THS6182 is a current feedback differential line driver ideal for full rate ADSL systems. Its extremely low power dissipation is ideal for ADSL systems that must achieve high densities in ADSL central office rack applications. The unique architecture of the THS6182 allows the quiescent current to be much lower than existing line drivers while still achieving very high linearity without the need for excess open loop gain. Fixed multiple bias settings of the amplifiers allow for enhanced power savings for line lengths where the full performance of the amplifier is not required. To allow for even more flexibility and power savings, an IADJ pin is available to further lower the bias currents while maintaining stable operation with as little as 3 mA per channel. The wide output swing of 44 Vpp differentially with ±12V power supplies allows for more dynamic headroom, keeping distortion at a minimum. With a low 3.2 nV/ $\sqrt{\text{Hz}}$ voltage noise coupled with a low 10 pA/ $\sqrt{\text{Hz}}$ inverting current noise, the THS6182 increases the sensitivity of the receive signals, allowing for better margins and reach.

Typical ADSL CO Line Driver Circuit Utilizing Active Impedance

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage.

ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE CODE	SYMBOL	TA	ORDER NUMBER	TRANSPORT MEDIA
THOCA CODD	TSSOP-20	DIA/D 00	TI 100400		THS6182PWP	Tube
THS6182PwP	PowerPAD™	PWP-20	THS6182		THS6182PWPR	Tape and reel
THS6182RGU	Leadless 24-pin 5,mm x 4, mm PowerPAD™	RGU–24	6182	-40°C to 85°C	THS6182RGUR	Tape and reel
THS6182D	2010 46	D 46	TUC6492	40 0 10 03 0	THS6182D	Tube
THS6182D	SOIC-16	D-16	THS6182		THS6832DR	Tape and reel
THOMASODW	0010.00	DW 00	TI 100400		THS6182DW	Tube
THS6182DW	SOIC-20	DW-20	THS6182		THS6182DWR	Tape and reel

PACKAGE DISSIPATION RATINGS

PACKAGE	ΘJA	ΘJC	T _A ≤ 25°C POWER RATING ⁽¹⁾	T _A = 70°C POWER RATING ⁽¹⁾	T _A = 85°C POWER RATING(1)
RGU-24	32°C/W	1.7°C/W	3.28 W	1.87 W	1.41 W
PWP-20	32.6°C/W	1.4°C/W	3.22 W	1.84 W	1.38 W
D-16	62.9°C/W	25.7°C/W	1.67 W	0.95 W	0.72 W
DW-20	45.4°C/W	16.4°C/W	2.31 W	1.32 W	0.99 W

⁽¹⁾ Power rating is determined with a junction temperature of 130°C. This is the point where distortion starts to substantially increase. Thermal management of the final PCB should strive to keep the junction temperature at or below 125°C for best performance.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1)

		THS6132		
Supply voltage	, V _{CC} ⁽²⁾	±16.5 V		
Input voltage, \	/1	±VCC		
Output current	, I _O ⁽²⁾	1000 mA		
Differential inpu	ut voltage, V _{IO}	±2 V		
Maximum junct	Maximum junction temperature, T _J (see Dissipation Rating Table for more information)			
Operating free-	-air temperature, T _A	-40°C to 85°C		
Storage tempe	rature, T _{Sgt}	65°C to 150°C		
Lead temperat	ure, 1,6 mm (1/16–inch) from case for 10 seconds	300°C		
	НВМ	1000 V		
ESD ratings	CDM	500 V		
	MM	200 V		

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The THS6182 may incorporate a PowerPAD on the underside of the chip. This acts as a heatsink and must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature that could permanently damage the device. See TI Technical Brief SLMA002 for more information about utilizing the PowerPAD thermally enhanced package.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Owner bound to many to M	Dual supply	±5	±12	±15	V
Supply voltage, V _{CC+} to V _{CC-}	Single supply	10	24	30	V
Operating free-air temperature, TA		-40		85	°C

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, T_A = 25°C, V_{CC} = ± 12 V, R_F = 2 k Ω , Gain = +5, I_{ADJ} = Bias1 = Bias2 = 0 V, R_L = 50 Ω (unless otherwise noted)

MOISE	/DISTORTION PI		Г		1			ı
	PARAMET	ER	TEST COI		MIN	TYP	MAX	UNIT
MTPR	Multitone power r	atio	Gain =+9.5, 163 kHz to 1.1 I +20 dBm Line Power, See F			-76		dBc
	Receive band spi	ll-over	Gain =+5, 25 kHz to 138 kHz See Figure 1 for circuit	z with MTPR signal applied,		-95		dBc
			and	Differential load = 200Ω		-88		JD.
b	HD Harmonic distortion, $V_{O(PP)} = 2 V$		2 nd harmonic	Differential load = 50Ω		-70		dBc
Ηυ			3 rd harmonic	Differential load = 200Ω		-107		dD.
			3 rd narmonic	Differential load = 50Ω		-84		dBc
Vn	Input voltage nois	e	$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V},$	f = 100 kHz		3.2		nV/√Hz
	Input current	+Input			1.5			- A 6/I
In	noise	-Input	$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V},$	T = 100 KHZ	10			pA/√Hz
	Createlle		$f = 1 \text{ MHz}, V_{O(PP)} = 2 \text{ V},$	R _L = 100 Ω		-65		dBc
	Crosstalk		$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V}$	R _L = 25 Ω		-60		dBc
OUTPU	UT CHARACTER	ISTICS						
		VCC = ±5 V	V 15 V	R _L = 100 Ω	±3.9	±4.1		V
			$VCC = \pm 5 V$	R _L = 25 Ω	±3.7	±3.9		
\/-	Cinala andadau	mutualta aa ausina	V 140 V	R _L = 100 Ω	±10.8	±11.0		V
VO	Single-ended ou	tput voltage swing	$V_{CC} = \pm 12 \text{ V}$	$R_L = 25 \Omega$	±10.2	±10.6		V
			Vaa - +15 V	R _L = 100 Ω	±13.6	±13.9		V
			V _{CC} = ±15 V	$R_L = 25 \Omega$	±12.9	±13.4		V
			$R_L = 5 \Omega$	V _{CC} = ±5 V	±350	±400		
lo	Output current (1)	R _I = 10 Ω	V _{CC} = ±12 V	±450	±600		mA
			KL = 10 22	$V_{CC} = \pm 15 \text{ V}$	±450	±600		
I(SC)	Short-circuit curre	ent (1)	R _L = 1 Ω	V _{CC} = ±12 V		1000		mA
	Output resistance)	Open-loop			6		Ω
	Output resistance	-terminate mode	f = 1 MHz,	Gain = +10		0.05		Ω
	Output resistance	-shutdown mode	f = 1 MHz,	Open-loop		8.5		kΩ

⁽¹⁾ A heatsink is rsequired to keep the junction temperature below absoulte maximum rating when an output is heavily loaded or shorted. See Absolute Maximum Ratings section for more information.

ELECTRICAL CHARACTERISTICS (continued)

over recommended operating free-air temperature range, $T_A = 25^{\circ}C$, $V_{CC} = \pm 12 \text{ V}$, $R_F = 2 \text{ k}\Omega$, Gain = +5, $I_{ADJ} = Bias1 = Bias2 = 0 \text{ V}$, $R_L = 50 \Omega$ (unless otherwise noted)

POWE	R SUPPLY							
	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT	
Voc	Operatingrange	Dual supply	Dual supply		±12	±16.5	V	
VCC	Operating range	Single supply		9.0	24	33	V	
		Vcc = ± 5 V	T _A = 25°C		8	9	mA	
	(4)	∧CC = ∓ 2 ∧	T _A = full range			10	IIIA	
	Quiescent current (each driver)(1) Full-bias mode (Bias-1 = 0, Bias-2 = 0)	V _{CC} = ± 12 V	T _A = 25°C		11	12	mA	
			T _A = full range			12.5		
I _{CC}		Voo - + 15 V	T _A = 25°C		11.5	12.5 mA	A	
		$V_{CC} = \pm 15 \text{ V}$	T _A = full range			13	mA	
		Mid; Bias-1 = 1, Bias-	-2 = 0		7.5	8.5		
	Quiescent current (each driver) Variable bias modes, V _{CC} = ± 12 V	Low; Bias-1 = 0, Bias-	-2 = 1		4	5	mA	
	variable bias modes, vCC = ± 12 v	Shutdown; Bias-1 = 1	, Bias-2 = 1		0.25	0.9		
		$V_{CC} = \pm 5 V$,	T _A = 25°C	-63	-69			
DCDD	Power supply rejection ratio	$\Delta V_{CC} = \pm 0.5 V$	T _A = full range	-60			V	
PSRR	$(\Delta V_{CC(x)} = \pm 1 \text{ V})$	$V_{CC} = \pm 12 \text{ V}, \pm 15 \text{ V},$	T _A = 25°C	-64	-70		¬ v	
		$\Delta V_{CC} = \pm 1 \text{ V}$	T _A = full range	-61				

⁽¹⁾ $_{0.5}\,\mathrm{mA}$ flows from V_{CC+} to GND for internal logic control bias.

DYNAMIC PERFORMANCE								
	PARAMETER	TES	TCONDITIONS	MIN	TYP	MAX	UNIT	
			Gain = +1, RF = 1.2 k Ω		100			
		D: 400.0	Gain = +2, RF = 1 k Ω		80			
		$R_L = 100 \Omega$	Gain = +5, RF = 1 k Ω	35 20		MHz		
D) 47	Single-endedsmall-signalbandwidth		Gain = +10, RF = 1 k Ω					
BW	$(-3 \text{ dB}), V_0 = 0.1 \text{ Vrms}$		Gain = +1, RF = $1.5k \Omega$		65			
		D 05.0	Gain = +2, RF = 1 k Ω		60			
		$R_L = 25 \Omega$	Gain = +5, RF = 1 k Ω		40		MHz	
			Gain = +10, RF = 1 k Ω		22			
SR	Single-endedslew-rate ⁽¹⁾	V _O = 10 V _{PP} .	Gain =+5		450		V/µs	

⁽²⁾ Slew-rate is defined from the 25% to the 75% output levels

DC PE	RFORMANCE						
	PARAMETER	TEST CONDIT	TIONS	MIN	TYP	MAX	UNIT
	Innut effect voltage	and the same			1	20	
	Input offset voltage		T _A = full range			25	mV
V_{OS}	VOS Differential offset voltage	V _{CC} = ± 5 V, ±12 V, ±15 V	T _A = 25°C		0.5	10	IIIV
			T _A = full range			15	
	Offset drift		T _A = full range		50		μV/°C
	Input bigg ourrent		T _A = 25°C		8	15	
	-Input bias current	Vac 15V 142V 145V	T _A = full range			20	
I_{IB}	. Input bing gurrant	$V_{CC} = \pm 5 \text{ V}, \pm 12 \text{ V}, \pm 15 \text{ V}$	T _A = 25°C		8	15	μΑ
+ Input bias current			T _A = full range			20	
Z _{OL}	Open loop transimpedance	$R_L = 1 \text{ k}\Omega, V_{CC} = \pm 12 \text{ V}, \pm$	15 V,	450	900		kΩ

ELECTRICAL CHARACTERISTICS (CONTINUED)

over recommended operating free-air temperature range, $T_A = 25^{\circ}C$, $V_{CC} = \pm 12$ V, $R_F = 2$ k Ω , Gain = +5, $I_{ADJ} = Bias1 = Bias2 = 0$ V, $R_L = 50$ Ω (unless otherwise noted)

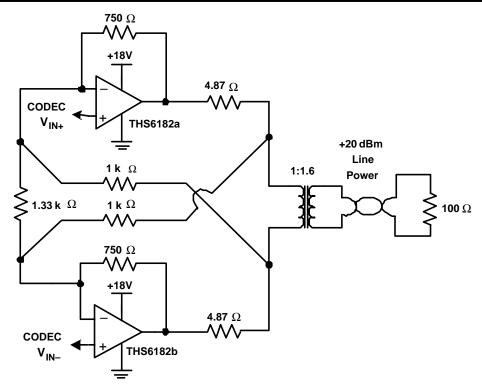
INPUT	CHARACTERISTICS								
	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT		
		V 15.V	T _A = 25°C	±2.7	±3.0	. V	V		
		$V_{CC} = \pm 5 \text{ V}$	T _A = full range	±2.6			V		
.,	CR Input common-mode voltage range(1)	1	Input common mode veltore range(1)	V 140 V	T _A = 25°C	±9.5	±9.8		W
V_{ICR}		$V_{CC} = \pm 12 \text{ V}$	T _A = full range	±9.3			V		
		V 145.V	T _A = 25°C	±12.4	±12.7		V		
		$V_{CC} = \pm 15 \text{ V}$	T _A = full range	±12.1			V		
01400	Common mode valenting vation	V	T _A = 25°C	62	72		5		
CMRR	Common-mode rejection ratio	$V_{CC(L)} = \pm 5 \text{ V}, \pm 6 \text{ V}$	T _A = full range	58			dB		
_	Innut reciptores	+ Input			800		kΩ		
R _I	Inputresistance	- Input			30		Ω		
C _I	Input capacitance				1.7		pF		

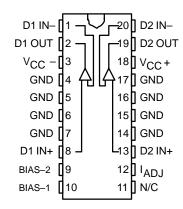
LOCA	LOCAL CONTROL CHARACTERISTICS							
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
VIH	Bias pin voltage for logic 1	Relative to GND pin voltage	2.0			V		
VIL	Bias pin voltage for logic 0	Relative to GND pin voltage			0.8	V		
lіН	Bias pin current for logic 1	V _{IH} = 3.3 V, GND = 0 V		4	30	μΑ		
IIL	Bias pin current for logic 0	V _{IL} = 0.5 V, GND = 0 V		1	10	μΑ		
	Transition time—logic 0 to logic 1(1)			1		μs		
	Transition time—logic 1 to logic 0 ⁽¹⁾			1		μs		

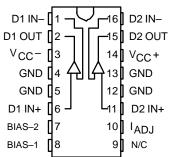
(1) Transition time is defined as the time from when the logic signal is applied to the time when the supply current has reached half its final value.

LOGIC '	LOGIC TABLE							
BIAS-1	BIAS-2	FUNCTION	DESCRIPTION					
0	0	Full bias mode	Amplifiers ON with lowest distortion possible (default state)					
1	0	Mid bias mode	Amplifiers ON with power savings with a reduction in distortion performance					
0	1	Low bias mode	Amplifiers ON with enhanced power savings and a reduction of distortion performance					
1	1	Shutdown mode	Amplifiers OFF and output has high impedance					

NOTE: The default state for all logic pins is a logic zero (0).

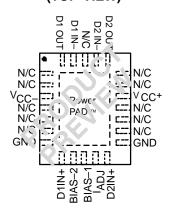



Figure 1. Single-Supply ADSL CO Line Driver Circuit Utilizing Active Impedance (SF = 4)


PIN ASSIGNMENTS

THS6182

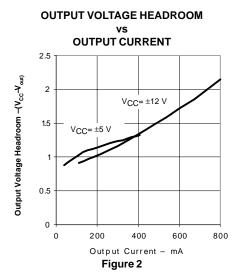
TSSOP PowerPAD™ (PWP) and SOIC-20 (DW) PACKAGE⁽¹⁾ (TOP VIEW)



THS6182 SOIC-16 (D) PACKAGE (TOP VIEW)

(1) Product preview

THS6182 Leadless 24-pin PowerPAD™ 5mm X 4mm (RGU) PACKAGE (TOP VIEW)


TYPICAL CHARACTERISTICS

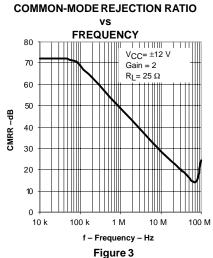
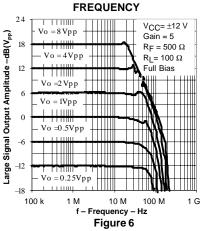

Table of Graphs

		FIGURE
Output voltage headroom	vs Output current	2
Common-mode rejection ratio	vs Frequency	3
Crosstalk	vs Frequency	4
Total quiescent current		5
Large signal output amplitude	vs Frequency	6-8
Voltage and current noise	vs Frequency	9
Overdrive recovery		10
Power supply rejection ratio	vs Frequency	11
Outputamplitude	vs Frequency	12 – 37
Slew rate	vs Output voltage	38
Closed-loop output impedance	vs Frequency	39
Quiescent current	vs Supply voltage	40
Quiescent current	vs Temperature	41
Common-mode rejection ratio	vs Common-mode voltage	42
Input bias current	vs Temperature	43
Input offset voltage	vs Temperature	44
2nd Harmonic distribution	vs Frequency	45 – 52
3rd Harmonic distribution	vs Frequency	53 – 60
2nd Harmonic distribution	vs Output voltage	61 – 64
3rd Harmonic distribution	vs Output voltage	65 – 68

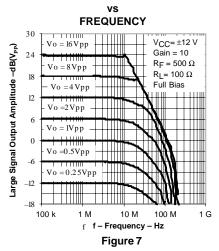
TYPICAL CHARACTERISTICS

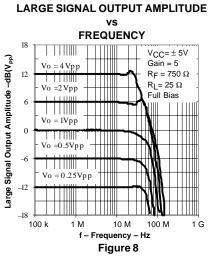
25 1111111 **§** 20 15

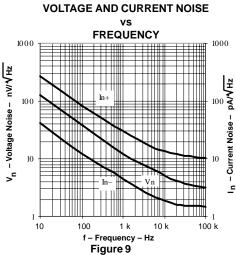
Current (

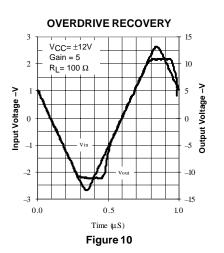

Quiescent

10

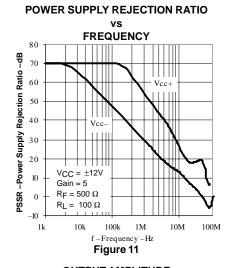

0

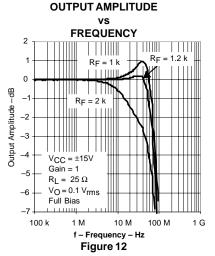

TOTAL QIESCENT CURRENT V_{CC}= ±12 V Mid Bias Mode Low Bias Mode 0.01 0.1 100 Rset to $GND-k\Omega$ Figure 5

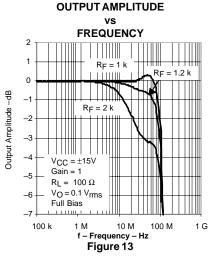

LARGE SIGNAL OUTPUT AMPLITUDE vs

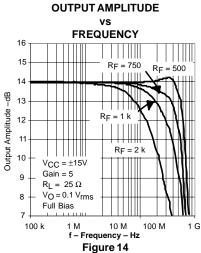


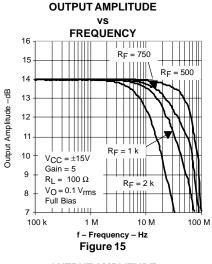
LARGE SIGNAL OUTPUT AMPLITUDE

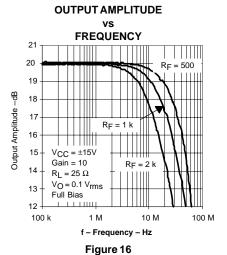


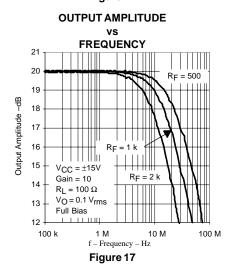


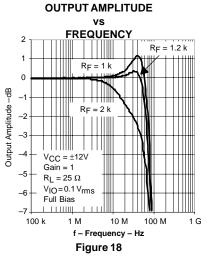


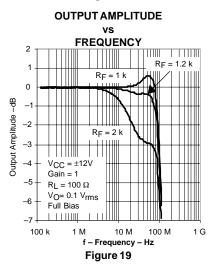


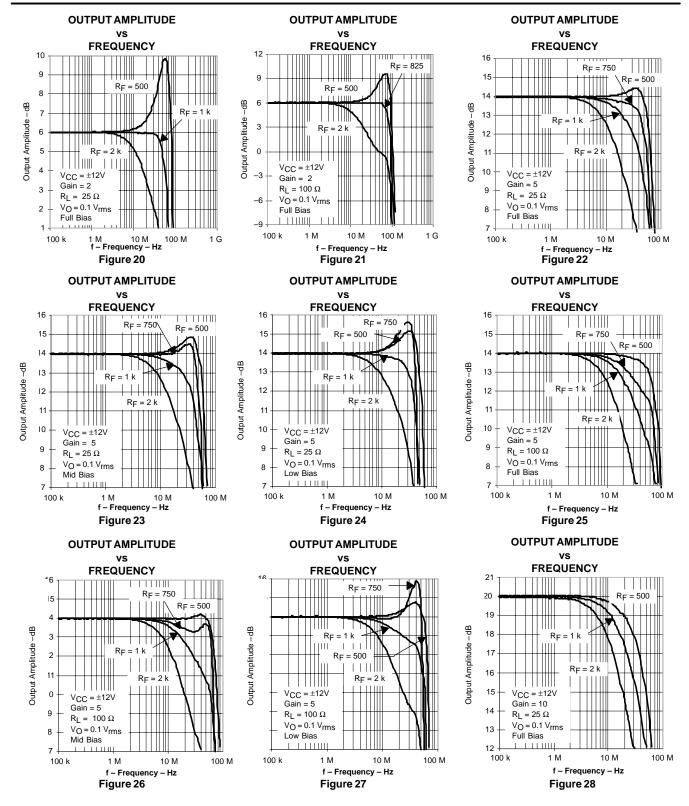




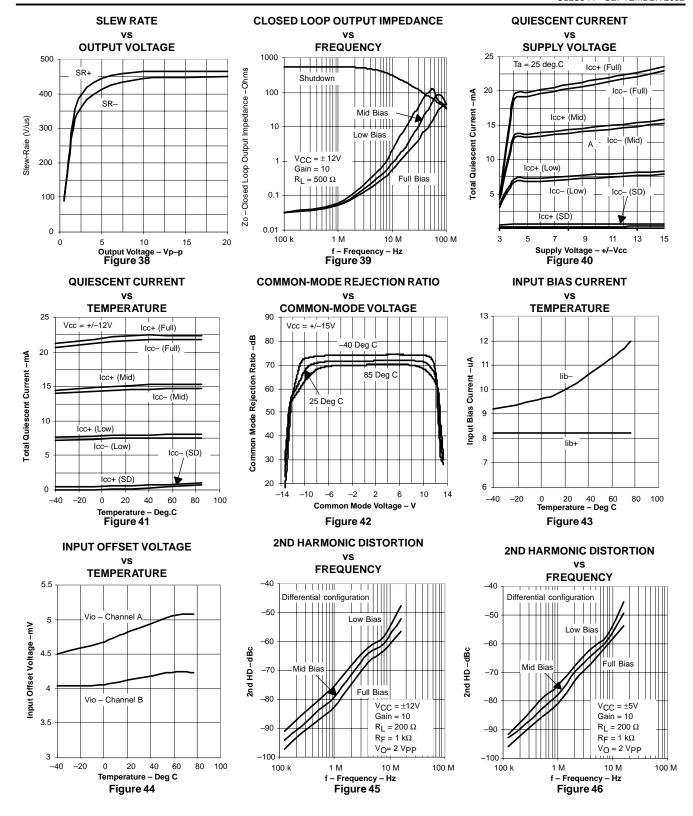


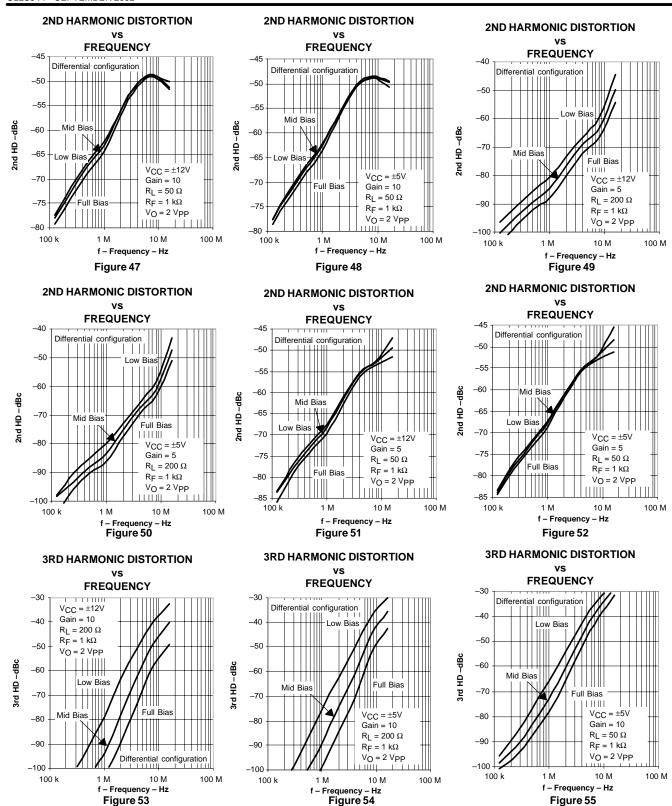


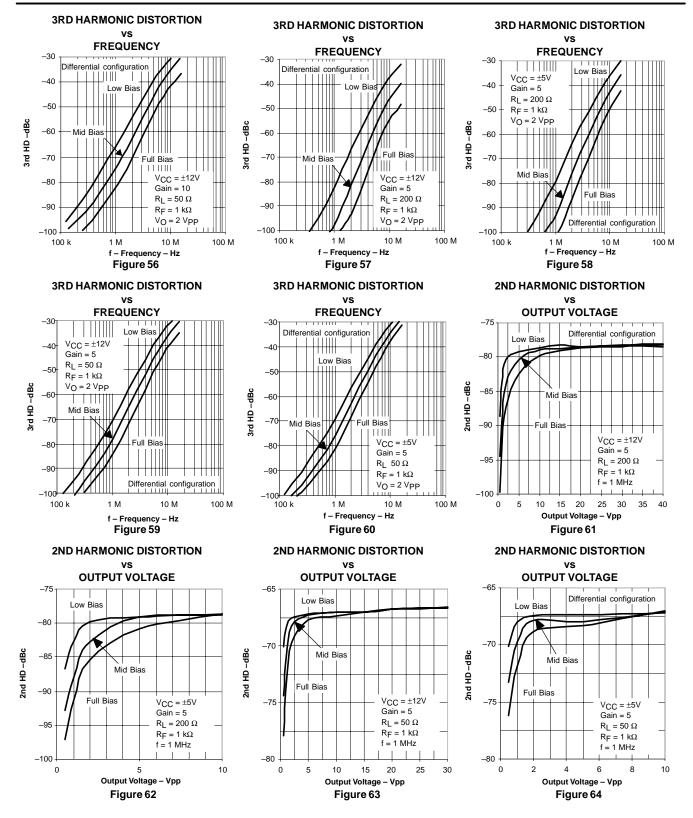


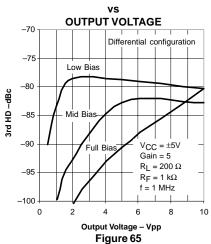


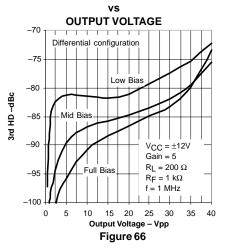


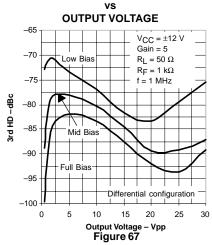


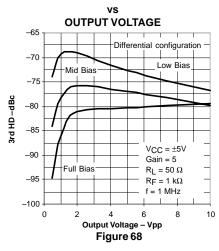






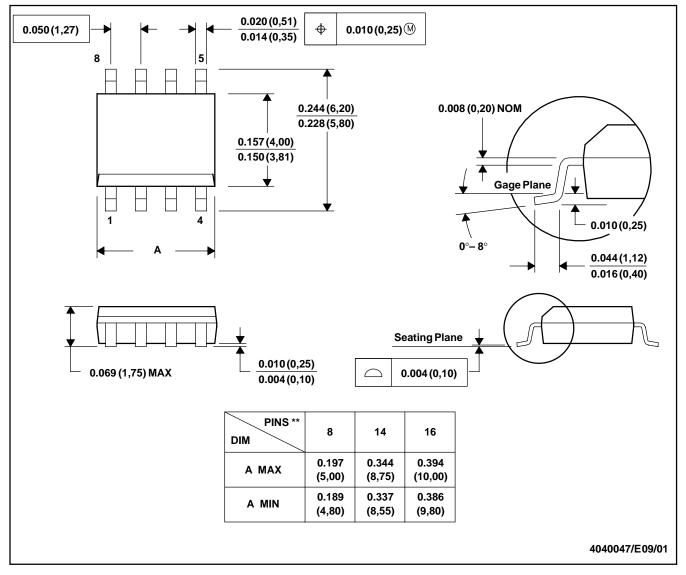



3RD HARMONIC DISTORTION


3RD HARMONIC DISTORTION

3RD HARMONIC DISTORTION

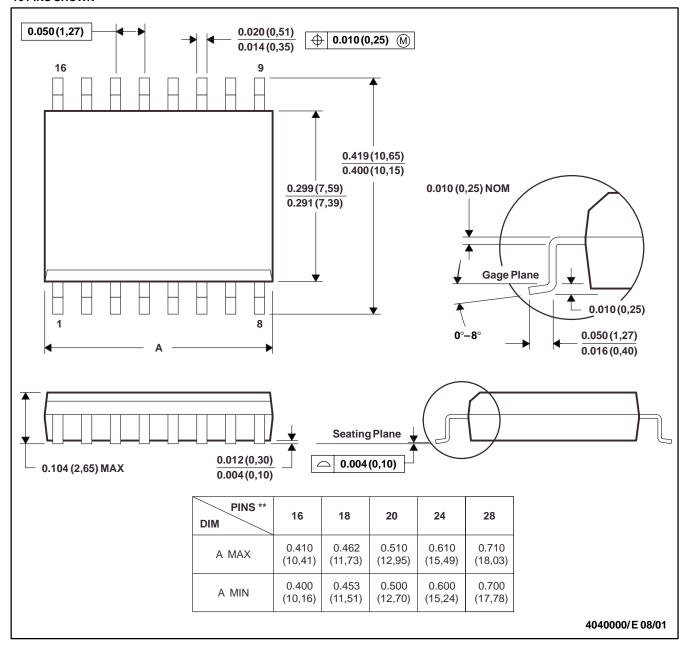
3RD HARMONIC DISTORTION



D (R-PDSO-G**)

8 PINS SHOWN

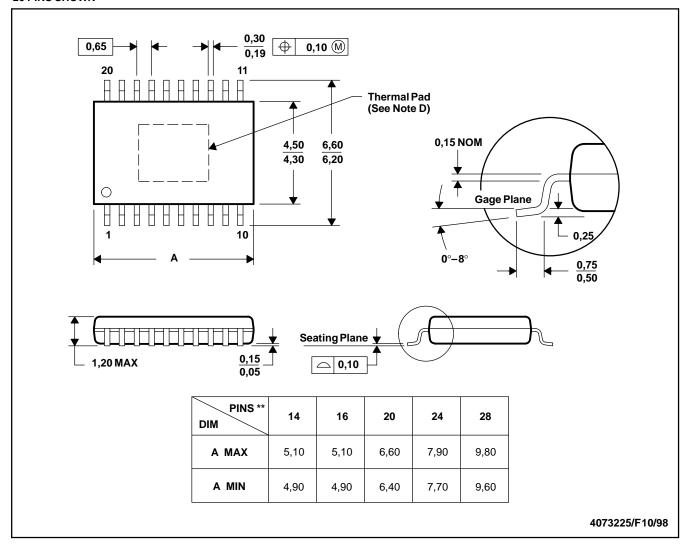
PLASTIC SMALL-OUTLINE PACKAGE


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-012

DW (R-PDSO-G**)

16 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-013

PWP (R-PDSO-G**)

PowerPAD™ PLASTIC SMALL-OUTLINE

20 PINS SHOWN

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusions.
 - D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
 - E. Falls within JEDEC MO-153

RGU (R-PQFP-N24) PLASTIC QUAD FLATPACK 5,15 4,85 <u>4,15</u> 3,85 **PIN 1 INDEX AREA TOP AND BOTTOM** 0,80 0,20 REF. **SEATING PLANE** 0,08 0,05 0,00 3,25 MAX 0,50 $24X \frac{0,75}{0,35}$ 6 24 2,25 MAX 12 **EXPOSED THERMAL DIE PAD** (SEE NOTE D) 13 24X 0,30 0,18 2,50 Φ Ø 0,10 M 4203496/A01/02

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - D. The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane.
 - E. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated