

HGTP12N60D1

April 1995

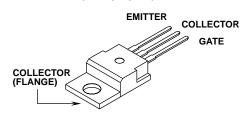
12A, 600V N-Channel IGBT

Features

- 12A, 600V
- Latch Free Operation
- Typical Fall Time <500ns
- · High Input Impedance
- Low Conduction Loss

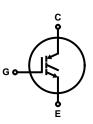
Description

The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C.


The IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND		
HGTP12N60D1	TO-220AB	G12N60D1		


Package

JEDEC TO-220AB

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

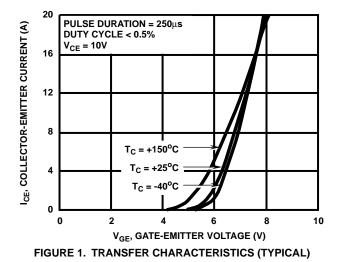
	HGTP12N60D1	UNITS
Collector-Emitter Voltage	600	V
Collector-Gate Voltage $R_{GE} = 1M\Omega \dots BV_{CGR}$	600	V
Collector Current Continuous at T _C = +25°C I _{C25}	21	Α
at $V_{GE} = 15V$ at $T_C = +90^{\circ}C$ I_{C90}	12	Α
Collector Current Pulsed (Note 1)	48	Α
Gate-Emitter Voltage ContinuousV _{GES}	±25	V
Switching Safe Operating Area at T _J = +150°C	30A at 0.8 BV _{CES}	-
Power Dissipation Total at T _C = +25°C	75	W
Power Dissipation Derating T _C > +25°C	0.6	W/oC
Operating and Storage Junction Temperature Range	-55 to +150	°С
Maximum Lead Temperature for Soldering	260	°C

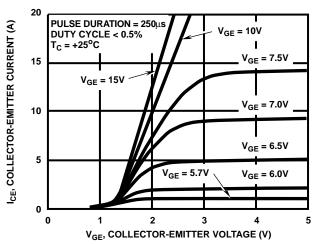
NOTE:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:

4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4,969,027							


Specifications HGTP12N60D1


Electrical Specifications T_C = +25°C, Unless Otherwise Specified

		TEST CONDITIONS		LIMITS			
PARAMETERS	SYMBOL			MIN	TYP	MAX	UNITS
Collector-Emitter Breakdown Voltage	BV _{CES}	I _C = 250μA, V _{GE} = 0V		600	-	-	V
Collector-Emitter Leakage Voltage	I _{CES}	V _{CE} = BV _{CES}	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	-	1.0	μΑ
		V _{CE} = 0.8 BV _{CES}	$T_{\rm C} = +125^{\rm o}{\rm C}$	-	-	4.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	$I_C = I_{C90}, V_{GE} = 15V$	$T_{\rm C} = +25^{\rm o}{\rm C}$	-	1.9	2.5	V
			$T_C = +125^{\circ}C$	-	2.1	2.7	V
Gate-Emitter Threshold Voltage	V _{GE(TH)}	$I_C = 250 \mu A, V_{CE} = V_G$	3.0	4.5	6.0	V	
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		-	-	±500	nA
Gate-Emitter Plateau Voltage	V_{GEP}	$I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$		-	7.2	-	V
On-State Gate Charge	Q _{G(ON)}	$I_{C} = I_{C90},$ $V_{CE} = 0.5 \text{ BV}_{CES}$	V _{GE} = 15V	-	45	60	nC
			V _{GE} = 20V	-	70	90	nC
Current Turn-On Delay Time	t _{D(ON)I}	$\begin{split} L &= 500 \mu \text{H, } I_{C} = I_{C90}, R_{G} = 25 \Omega, \\ V_{GE} &= 15 \text{V, } T_{J} = +150 ^{\circ} \text{C,} \\ V_{CE} &= 0.8 \text{BV}_{CES} \end{split}$		-	100	-	ns
Current Rise Time	t _{RI}			-	150	-	ns
Current Turn-Off	t _{D(OFF)I}			-	430	600	ns
Current Fall Time	t _{Fl}	1	-	430	600	ns	
Turn-Off Energy (Note 1)	W _{OFF}	1		-	1.8	-	mJ
Thermal Resistance IGBT	$R_{ heta JC}$			-	-	1.67	°C/W

NOTE:

Typical Performance Curves

Turn-off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A). The HGTP12N60D1 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-off Switching Loss. This test method produces the true total Turn-off Energy Loss.

Typical Performance Curves (Continued)

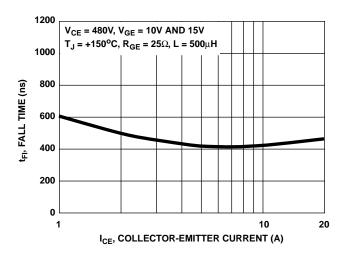
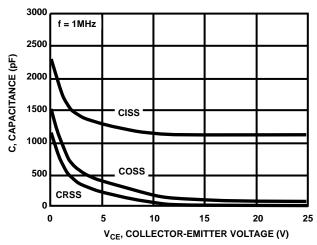



FIGURE 3. DC COLLECTOR CURRENT vs CASE TEMPERATURE

FIGURE 4. FALL TIME vs COLLECTOR-EMITTER CURRENT

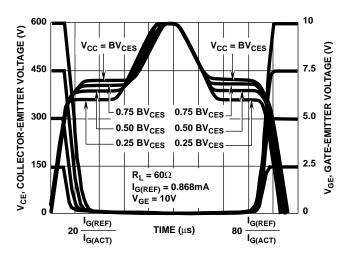
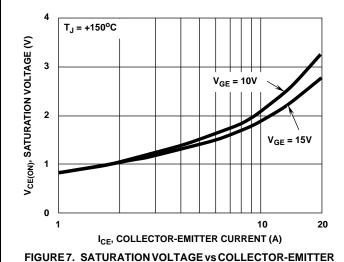



FIGURE 5. CAPACITANCE vs COLLECTOR-EMITTER VOLTAGE

FIGURE 6. NORMALIZED SWITCHING WAVEFORMS AT CON-STANT GATE CURRENT. (REFER TO APPLICATION NOTES AN7254 AND AN7260)

CURRENT

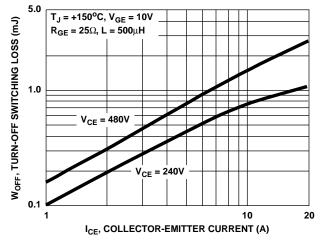


FIGURE 8. TURN-OFF SWITCHING LOSS vs COLLECTOR-EMITTER CURRENT

Typical Performance Curves (Continued)

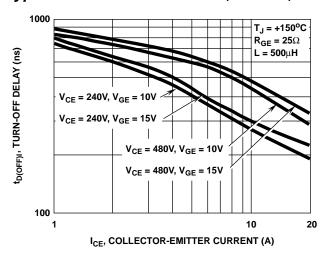


FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

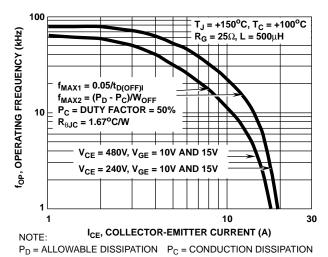


FIGURE 10. OPERATING FREQUENCY vs COLLECTOR-EMITTER CURRENT AND VOLTAGE

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/t_{D(OFF)I}$. $t_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than T_{JMAX} . $t_{D(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2}=(P_D-P_C)/W_{OFF}$. The allowable dissipation (P_D) is defined by $P_D=(T_{JMAX}-T_C)/R_{\theta JC}.$ The sum of device switching and conduction losses must not exceed P_D . A 50% duty factor was used (Figure 10) and the conduction losses (P_C) are approximated by $P_C=(V_{CE}\bullet I_{CE})/2.$ W_{OFF} is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CF}=0A).$

The switching power loss (Figure 10) is defined as $f_{MAX2} \bullet W_{OFF}$. Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.