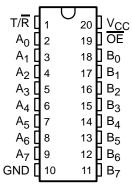
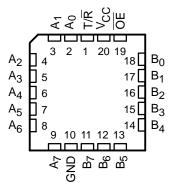
SCCS018B - MAY 1994 - REVISED NOVEMBER 2001

- **Function, Pinout, and Drive Compatible** With FCT and F Logic
- Reduced V_{OH} (Typically = 3.3 V) Versions of Equivalent FCT Functions
- **Edge-Rate Control Circuitry for** Significantly Improved Noise Characteristics
- I_{off} Supports Partial-Power-Down Mode Operation
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- **Matched Rise and Fall Times**
- Fully Compatible With TTL Input and **Output Logic Levels**
- CY54FCT245T
 - 48-mA Output Sink Current 12-mA Output Source Current
- CY74FCT245T
 - 64-mA Output Sink Current 32-mA Output Source Current
- 3-State Outputs

description


The 'FCT245T devices contain eight noninverting intended for bus-oriented applications.

bidirectional buffers with 3-state outputs and are


the A and B ports by putting them in the high-impedance state. These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The transmit/receive (T/\overline{R}) input determines the direction of data flow through these bidirectional transceivers. Transmit (active high) enables data from A ports to B ports. The output enable (\overline{OE}) , when high, disables both

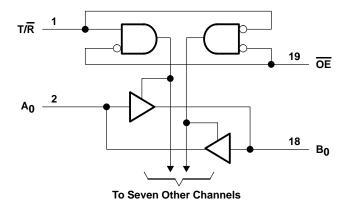
CY54FCT245T . . . D PACKAGE CY74FCT245T . . . P. Q. OR SO PACKAGE (TOP VIEW)

CY54FCT245T...L PACKAGE (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TA	PACI	KAGE†	SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QSOP - Q	Tape and reel	3.8	CY74FCT245DTQCT	FCT245D
	QSOP - Q	Tape and reel	4.1	CY74FCT245CTQCT	FCT245C
	SOIC - SO	Tube	4.1	CY74FCT245CTSOC	FCT245C
	3010 - 30	Tape and reel	4.1	CY74FCT245CTSOCT	FC1245C
	DIP – P	Tube	4.6	CY74FCT245ATPC	CY74FCT245ATPC
–40°C to 85°C	QSOP - Q	Tape and reel	4.6	CY74FCT245ATQCT	FCT245A
	SOIC - SO	Tube	4.6	CY74FCT245ATSOC	FCT245A
	3010 - 30	Tape and reel	4.6	CY74FCT245ATSOCT	FC1245A
	QSOP - Q	Tape and reel	7	CY74FCT245TQCT	FCT245
	SOIC - SO	Tube	7	CY74FCT245TSOC	FCT245
	3010 - 30	Tape and reel	7	CY74FCT245TSOCT	FC1245
	CDIP – D	Tube	4.5	CY54FCT245CTDMB	
	LCC – L	Tube	4.5	CY54FCT245CTLMB	
–55°C to 125°C	CDIP – D	Tube	4.9	CY54FCT245ATDMB	
-55°C to 125°C	LCC – L	Tube	4.9	CY54FCT245ATLMB	
	CDIP – D	Tube	7.5	CY54FCT245TDMB	
	LCC – L	Tube	7.5	CY54FCT245TLMB	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

INP	UTS	OPERATION
OE	T/R	OPERATION
L	L	B data to bus A
L	Н	A data to bus B
Н	Χ	Z

 $H = High \, logic \, level, \, L = Low \, logic \, level, \, X = Don't \, care, \, Z = High-impedance \, state$

logic diagram (positive logic)

SCCS018B - MAY 1994 - REVISED NOVEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range to ground potential		0.5	V to 7 V
DC input voltage range		0.5	V to 7 V
DC output voltage range		0.5	V to 7 V
DC output current (maximum sink current/pin)			120 mA
Package thermal impedance, θ _{JA} (see Note 1)): P package		69°C/W
	Q package		68°C/W
	SO package		58°C/W
Ambient temperature range with power applied	d, T _A	–65°C	to 135°C
Storage temperature range, T _{stq}		–65°C	to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 2)

		CY	54FCT24	.5T	CY74FCT245T CY74FCT245AT CY74FCT245CT CY74FCT245DT		UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			8.0			0.8	V
ІОН	High-level output current			-12			-32	mA
loL	Low-level output current			48			64	mA
T _A	Operating free-air temperature	-55		125	-40		85	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

CY54FCT245T, CY74FCT245T 8-BIT TRANSĆEIVERS WITH 3-STATE OUTPUTS

SCCS018B - MAY 1994 - REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		OT CONDITION		CY	54FCT24	15T	CY	74FCT24	15T	
PARAMETER		ST CONDITIONS	5	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
Vara	$V_{CC} = 4.5 \text{ V},$	$I_{IN} = -18 \text{ mA}$			-0.7	-1.2				V
VIK	V _{CC} = 4.75 V,	$I_{IN} = -18 \text{ mA}$						-0.7	-1.2	V
	$V_{CC} = 4.5 \text{ V},$	I _{OH} = -12 mA		2.4	3.3					
Voн	V _{CC} = 4.75 V	$I_{OH} = -32 \text{ mA}$					2			V
	VCC = 4.75 V	I _{OH} = -15 mA					2.4	3.3		
Vai	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 48 mA			0.3	0.55				V
VOL	$V_{CC} = 4.75 \text{ V},$	I _{OL} = 64 mA						0.3	0.55	V
V _{hys}	All inputs				0.2			0.2		V
	$V_{CC} = 5.5 \text{ V},$	VIN = VCC				5				μΑ
łį	V _{CC} = 5.25 V,	VIN = VCC							5	μΑ
1	$V_{CC} = 5.5 \text{ V},$	$V_{1N} = 2.7 \text{ V}$				±1				μА
liH	$V_{CC} = 5.25 \text{ V},$	$V_{1N} = 2.7 \text{ V}$							±1	μΑ
1	$V_{CC} = 5.5 \text{ V},$	$V_{IN} = 0.5 V$				±1				μА
IIL	$V_{CC} = 5.25 \text{ V},$	$V_{IN} = 0.5 V$							±1	μΑ
lozu	$V_{CC} = 5.5 \text{ V},$	V _{OUT} = 2.7 V				10				μА
lozh	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 2.7 V							10	μΑ
lozi	$V_{CC} = 5.5 \text{ V},$	V _{OUT} = 0.5 V				-10				μΑ
lozL	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0.5 V							-10	μΛ
los‡	$V_{CC} = 5.5 \text{ V},$	V _{OUT} = 0 V		-60	-120	-225				mA
IOS+	$V_{CC} = 5.25 \text{ V},$	V _{OUT} = 0 V					-60	-120	-225	IIIA
l _{off}	$V_{CC} = 0 V$,	V _{OUT} = 4.5 V				±1			±1	μΑ
la a	$V_{CC} = 5.5 \text{ V},$	$V_{IN} \le 0.2 V$,	$V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.1	0.2				A
lcc	V _{CC} = 5.25 V,	$V_{IN} \le 0.2 V$,	$V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.1	0.2	mA
	$V_{CC} = 5.5 \text{ V}, V_{IN} = 3.4$	1 V§, f ₁ = 0, Outp	uts open		0.5	2				
ΔICC	V _{CC} = 5.25 V, V _{IN} = 3	.4 V§, f ₁ = 0, Out	puts open					0.5	2	mA
loos¶	$V_{CC} = 5.5 \text{ V}, One inpute Outputs open, T/R or Outputs Open, T/R or Outputs Output Ou$	DE = GND and	% duty cycle,		0.06	0.12				mA/
ICCD¶	$V_{CC} = 5.25 \text{ V}$, One inposes Outputs open, T/R or $V_{IN} \le 0.2 \text{ V}$ or $V_{IN} \ge V$	DE = GND and	0% duty cycle,					0.06	0.12	MHz

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

^{\$\}frac{1}{2}\$ Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, IOS tests should be performed last.

[§] Per TTL-driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

This parameter is derived for use in total power-supply calculations.

SCCS018B - MAY 1994 - REVISED NOVEMBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

DADAMETER		CY	54FCT2	45T	CY					
PARAMETER		TEST CONDITION	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII	
		One bit switching at f ₁ = 10 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.7	1.4				
	V _{CC} = 5.5 V,	at 50% duty cycle	V _{IN} = 3.4 V or GND		1.2	3.4				mA 1.4 3.4 2.6 0.6 10 pF
	Outputs open, T/R or $\overline{OE} = GND$ Eight bits switching at $f_1 = 2.5$ MHz at 50% duty cycle $ V_{IN} \le 0.2 \text{V or} \\ V_{IN} \ge V_{CC} - 0.2 \text{ V} $ 1.3 2.6 $ V_{IN} = 3.4 \text{ V or GND} $ 3.3 10.6	switching			1.3	2.6				
IC#					m ^					
I.C.		One bit switching at f ₁ = 10 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$					0.7	1.4	IIIA
	V _{CC} = 5.25 V,	at 50% duty cycle	V _{IN} = 3.4 V or GND					1.2	3.4	
	Outputs open, T/R or OE = GND	Eight bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2 V$					1.3	2.6	
		at 50% duty cycle	V _{IN} = 3.4 V or GND					3.3	10.6	
C _i					5	10		5	10	pF
Co					9	12		9	12	pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Where:

I_C = Total supply current

ICC = Power-supply current with CMOS input levels

 ΔI_{CC} = Power-supply current for a TTL high input (V_{IN} = 3.4 V)

D_H = Duty cycle for TTL inputs high N_T = Number of TTL inputs at D_H

I_{CCD} = Dynamic current caused by an input transition pair (HLH or LHL)

f₀ = Clock frequency for registered devices, otherwise zero

f₁ = Input signal frequency

 N_1 = Number of inputs changing at f_1

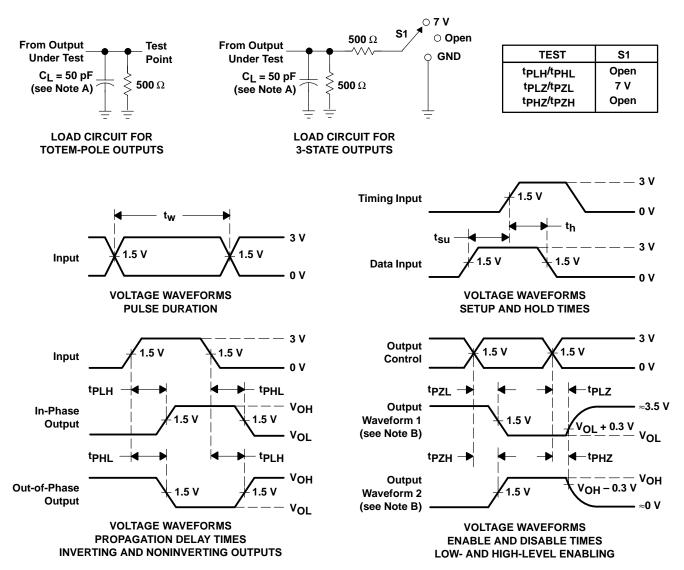
All currents are in milliamperes and all frequencies are in megahertz.

|| Values for these conditions are examples of the I_{CC} formula.

 $^{^{\#}}$ IC = ICC + Δ ICC × D_H × N_T + ICCD (f₀/2 + f₁ × N₁)

CY54FCT245T, CY74FCT245T 8-BIT TRANSCEIVERS WITH 3-STATE OUTPUTS SCCS018B – MAY 1994 – REVISED NOVEMBER 2001

switching characteristics over operating free-air temperature range (see Figure 1)


PARAMETER	FROM	TO (OUTPUT)	CY54FCT245T		CY54FC1	245AT	CY54FC1	UNIT	
PARAMETER	(INPUT)		MIN	MAX	MIN	MAX	MIN	MAX	UNII
^t PLH	A or B	B or A	1.5	7.5	1.5	4.9	1.5	4.5	ns
t _{PHL}	AUB	BULA	1.5	7.5	1.5	4.9	1.5	4.5	115
^t PZH	OE or T/R	A or B	1.5	10	1.5	6.5	1.5	6.2	no
tpzL	OE 01 1/K	AUIB	1.5	10	1.5	6.5	1.5	6.2	ns
t _{PHZ}	OE or T/R	A or B	1.5	10	1.5	6	1.5	5.2	no
t _{PLZ}	OE 01 1/K	AUID	1.5	10	1.5	6	1.5	5.2	ns

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM	то	CY74FC	CT245T CY74FCT245AT		CY74FC1	7245CT	CY74FC1	CY74FCT245DT		
I ANAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	A or B	B or A	1.5	7	1.5	4.6	1.5	4.1	1.5	3.8	20
^t PHL		A OI B B OI A	1.5	7	1.5	4.6	1.5	4.1	1.5	3.8	ns
^t PZH	OE or T/R	A or B	1.5	9.5	1.5	6.2	1.5	5.8	1.5	5	ns
t _{PZL}	OE 01 1/K	AOIB	1.5	9.5	1.5	6.2	1.5	5.8	1.5	5	115
^t PHZ	OE or T∕R A or B	A or B	1.5	7.5	1.5	5	1.5	4.8	1.5	4.3	nc
t _{PLZ}		AUID	1.5	7.5	1.5	5	1.5	4.8	1.5	4.3	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265