(Revised 7/10/2001)

Features

- +5-V Input
- 13-A Output Current
- 5-Bit Programmable Output: 1.3V to 3.5V

DEXCALIBUR

- VRM 8.3 Compatible
- 90% Efficiency
- Standby On/Off Control
- Differential Remote Sense
- Over-Voltage Protection Drive
- Power Good Signal
- Short Circuit Protection
- Space Saving Solderable Case
- 4.7.106 Hrs. MTBF

Description

The PT6701 Excalibur™ power module is a fully integrated 13-A switching regulator housed in a spacesaving solderable package. The PT6701 operates from a +5V input to provide a high-performance low-voltage power source for the industry's latest µPs, DSPs, and bus drivers. The PT6701 is programmable from 1.3V to 3.5V with a 5-bit input, which is compatible with Intel's Pentium® II Processor.

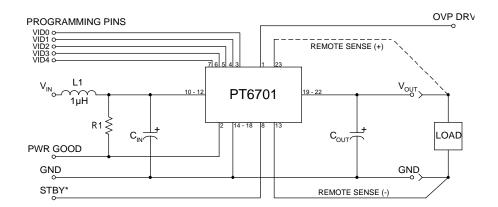
The PT6701 has output short circuit protection, a "Power Good" output, and an over-voltage protection (OVP) drive.

Ordering Information

PT6701 \Box = 1.3 to 3.5 Volts (For dimensions and PC board layout, see Package Styles 1300 &

PT Series Suffix (PT1234X)

Case/Pin Configuration


Vertical Through-Hole	N
Horizontal Through-Hole	Α
Horizontal Surface Mount	С

Pin-Out Information

Pin Function	Pin Function
1 OVP Drive	13 Remote Sense Gnd (2)
2 Pwr Good	14 GND
3 VID0	15 GND
4 VID1	16 GND
5 VID2	17 GND
6 VID3	18 GND
7 VID4	19 V _{out}
8 STBY*	20 V _{out}
9 Do not connect	21 V _{out}
10 V _{in}	22 V _{out}
11 V _{in}	23 Remote Sense V _{out}
12 V _{in}	

For STBY* pin: open = output enabled ground = output disabled.

Standard Application

 C_{ini} . Required 1000µF electrolytic capacitor –see table footnotes. C_{out} . Required 330µF electrolytic capacitor –see table footnote

Optional 1µH input choke -see table footnotes

10-kΩ pull up for Pwr Good signal. Pwr Good is high when the output is within specification.

Programming Information

VID3	VID2	VID1	VIDO	VID4=1 Vout	VID4=0 Vout
1	1	1	1	2.00V	1.30V
1	1	1	0	2.10V	1.35V
1	1	0	1	2.20V	1.40V
1	1	0	0	2.30V	1.45V
1	0	1	1	2.40V	1.50V
1	0	1	0	2.50V	1.55V
1	0	0	1	2.60V	1.60V
1	0	0	0	2.70V	1.65V
0	1	1	1	2.80V	1.70V
0	1	1	0	2.90V	1.75V
0	1	0	1	3.00V	1.80V
0	1	0	0	3.10V	1.85 V
0	0	1	1	3.20V	1.90V
0	0	1	0	3.30V	1.95V
0	0	0	1	3.40V	2.00V
0	0	0	0	3.50V	2.05V

Logic 0 = Pin 13 potential (remote sense gnd) Logic 1 = Open circuit (no pull-up resistors)
VID4 may not be changed while the unit is operating.

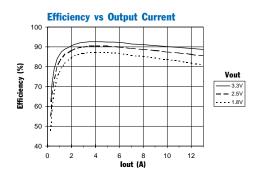
PT6700 Product Family Comparison

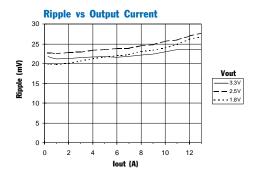
		Input Voltage	Adjust Method	Program Range	OVP/ Pwr Good	+12V Bias Required
	PT6701	5V	5-Bit	1.3V - 3.5V	✓	
	PT6702	3.3V	4-Bit	1.3V - 2.05V	✓	
	PT6703	3.3V/5V	5-Bit	1.1V- 1.85V	✓	
#	PT6705	5V	Resistor	1.5V-3.3V		✓
#	PT6715	5V	Resistor	1.5V-3.3V		
	PT6721	12V	5-Bit	1.3V-3.5V	✓	
	PT6722	12V	5-Bit	1.1V-1.85V	✓	
#	PT6725	12V	Resistor	1.5V-5.0V		

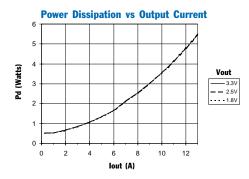
-Indicates a series of products that have a nominal output voltage set-point and may be adjusted with an external resistor.

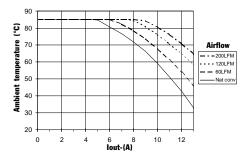
Specifications (Unless otherwise stated, $T_a = 25$ °C, $V_{in} = 5$ V, $C_{out} = 330 \mu F$, and $I_o = I_o max$)

				PT6701			
Characteristic	Symbol	Conditions	Min	Тур	Max	Units	
Output Current	I_{o}	Ta =+60°C, 200LFM Ta =+25°C, natural convection	0.1 (1) 0.1 (1)	=	13.0 13.0	A	
Input Voltage Range	Vin	Over I _o Range	4.5	_	5.5	VDC	
Set Point Voltage Tolerance	V _o tol		_	±0.5	±1.25 (2)	$%V_{o}$	
Temperature Variation	Reg _{temp}	$-40^{\circ} > T_a > +85^{\circ}C$	_	±0.5	_	$%V_{o}$	
Line Regulation	Regline	Over V _{in} range	_	±2.5	±5	mV	
Load Regulation	Regload	Over Io range	_	±2.5	±10	mV	
Total Output Voltage Variation	ΔV_{o} tot	Includes set-point, line, load, $-40^{\circ} > T_a > +85^{\circ}C$	_	±25	_	mV	
Efficiency	η	$\begin{array}{c} I_0 = 9A & V_0 = 3. \\ V_0 = 2. \\ V_0 = 1. \\ V_0 = 1. \end{array}$	5V — 8V —	91 88 84 83	_ _ _	%	
V _o Ripple (pk-pk)	V_r	20MHz bandwidth	_	35	_	mV_{pp}	
Transient Response	t _{tr}	1A/µs load step, 6A to 12A	_	50	_	μs	
	ΔV_{tr}	Vo over/undershoot	_	±100	_	mV	
Short Circuit Current	I_{sc}		_	20	_	A	
Switching Frequency	$f_{ m o}$	Over V _{in} range	300	350	400	kHz	
Standby Control (pin 8) Input High Voltage Input Low Voltage Input Low Current	$V_{ m IH} \ V_{ m IL} \ I_{ m IL}$	Referenced to GND (pin 14) Pin 8 to GND		 0.4 10	Open (3) 1.0	V μA	
Standby Input Current	I _{in} standby	pins 8 & 14 connected	_	20	30	mA	
External Output Capacitance	Cout		330 (4)		15,000	μF	
Maximum Operating Temperature Range	T_a	Over V_{in} range	-40	_	+85 (5)	°C	
Storage Temperature	T _s	_	-40	_	+125	°C	
Reliability	MTBF	Per Bellcore TR-332 50% stress, T _a =40°C, ground benign	4.7	_	_	106 Hrs	
Mechanical Shock	_	Per Mil-Std-883D, method 2002.3, 1mS, half-sine, mounted to a fixture	_	500	_	G's	
Mechanical Vibration	_	Per Mil-Std-883D, method 2007.2, 20-2000Hz, soldered in a PC board	_	15	_	G's	
Weight				26		grams	
Flammability	_	Materials meet UL 94V-0					


- Notes: (1) ISR-will operate down to no load with reduced specifications.
 (2) If the remote sense ground is not used, pin 13 must be connected to pin 14 for optimal output voltage accuracy.
 (3) The Standby control (pin 8) has an internal pull-up, and if left open-circuit the module will operate when input power is applied. A small low-leakage (<100nA)
 MOSFET must be used to control this input. The open-circuit voltage is less than 10V. See application notes for further information.
 (4) For operation below 0°C, Cin and Cout must have stable characteristics. Use either low ESR tantalum or Oscon® capacitors.


 - (5) See Safe Operating Area curves.


External Capacitors: The PT6701 requires a minimum ouput capacitance of 330µF, and a minimum input capacitance of 1,000µF for proper operation. The input capacitance must be rated for a minimum of 2.0Arms of ripple current. For transient or dynamic load applications, additional input and output capacitance may be required. The maximum allowable output capacitance is 15,000µF. For more information refer to the application note regarding capacitor selection for this product. Input Inductor: An input filter inductor is optional for most applications. The inductor must be sized to bandle 10.0ADC with a typical value of 1µH.


PT6701 Characterization, V_{in} =5V (See Note A)

Safe Operating Area Curve $(See\ Note\ B)$

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the Converter.

Note B: SOA curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures

Operating Features of the Programmable PT6700 "ExcaliburTM" Series ISRs

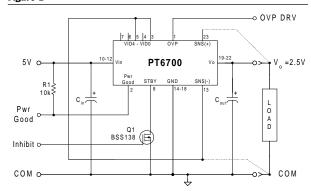
Power Good

Programmable versions of the PT6700 Series regulators incorporate a *PWR Good* output (pin 2). This output is open-drain and generates an acitve-high signal when the sensed output from the ISR is within a nominal $\pm 10\%$ of the programmed set point. When the regulated output is outside this range, pin 2 asserts a logic low (typically <0.1V). A $10\text{-k}\Omega$ pull-up resistor to a valid bus voltage is required. If the power good feature is not used, the pull-up resistor can be omitted. The maximum voltage that may be applied to the pull-up resistor is 15V.

Over-Voltage Protection (OVP)

The PT6700 programmable regulators also incorporate an OVP function. The *OVP DRV* (pin 1) normally has a logic low output (typically <0.1V). When the ISR's sensed output exceeds the programmed output setting by 15%, pin 1 produces a 60mA, +12V drive signal. This drive signal can trigger an SCR, which can be used to disable the input voltage (via a fuse), or alternatively interface to another external monitoring device. When the ISR output voltage returns to within 15% of its programmed setting, pin 1 reverts back to its low state. If the OVP function is not used, pin 1 may be left open circuit.

Stand-By Function

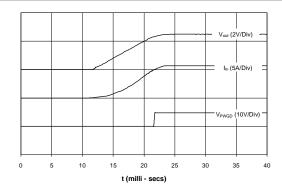

The PT6700 series ISRs incorporate a standby function. This feature may be used for power-up sequencing, or wherever there is a requirement for the output voltage to be controlled by external circuitry.

If the $STBY^*$ input (pin 8) is left open-circuit the regulator operates normally, providing a regulated output when a valid supply voltage is applied to $V_{\rm in}$ (pins 10-12) with respect to GND (pins 14-18). Connecting pin 8 to ground¹ places the regulator in standby mode ², and reduces the input current to typically 20mA (30mA max). Applying a ground signal to pin 8 prior to power-up, will disable the output during the period that input power is applied. To ensure that the regulator output is properly enabled, pin 8 must be open circuit.

Table 1 Standby Control Requirements 2

Parameter	Min	Тур	Max	
Enable	Open Cct. 1			
Disable	-0.1V	0.4V	1.0V	
I_{stbv}		10μΑ		

Figure 1


Notes:

- 1. The standby on a PT6700 series regulator must be controlled with an open-drain low-leakage (<100nA) MOSFET (See fig. 1). Table 1 gives the threshold requirements. <u>Do Not</u> use a pull-up resistor. The control input has an open-circuit voltage of between 4Vdc and 5Vdc. To set the regulator output to zero, the control pin must be "pulled" to less than 1.0Vdc by sinking current to ground.
- When placed in the standby mode, the regulator output may assert a low impedance to ground. If an external voltage is applied to the output, it will sink current and possibly overstress the part.

Turn-On Time

Turning Q_1 in Figure 1 off, removes the low-voltage signal at pin 8. After a 10-15ms delay the regulator output rises and reaches full output voltage within 30ms. Fig. 2 shows the typical waveforms of a PT6701 following the prompt turn-off of Q_1 at time t =0 secs. The output voltage was set to 2.5V, and the waveforms were measured with a 5V input source, and 10A resistive load.

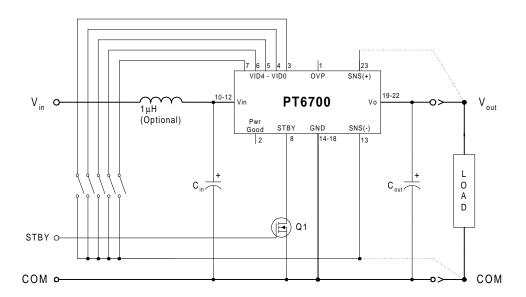
Figure 2

PT6701/6702/6703, & PT6721

Pin-Coded Output Voltage Adjustment on the Non-Isolated "Excalibur™" Series ISRs

The PT6701/6702/6703, and PT6721/6722 Excalibur™ ISRs incorporate a pin-coded control to program the output voltage. Depending on the resolution and adjustment range, there are up to five control pins. They are identified VID0–VID4 (pins 3–7) respectively. When the control pins are left open-circuit the ISR output will regulate at its factory trimmed output voltage. By selectively grounding VID0-VID4, the output voltage can be programmed in incremental steps over the specified output voltage range. The program code and output voltage range of these ISRs may also be compatible with the "Voltage ID" specification defined for popular microprocessors. Refer to Figure 1 below for the connection schematic, and the applicable Data Sheet for the program code.

Notes:


- The programming convention is as follows: Logic 0: Connect to pin13 (Remote Sense Ground).
 Logic 1: Open circuit/open drain (See notes 2, & 4)
- Do not connect pull-up resistors to the voltage programming pins.
- 3. To minimize output voltage error, always use pin 13 (Remote Sense Ground) as the logic "0" reference. While the regular ground (pins 14-18) can also be used for programming, doing so will degrade the load regulation of the product.

4. If active devices are used to ground the voltage control pins, low-level open drain MOSFET devices should be used over bipolar transistors. The inherent $V_{ce}(sat)$ in bipolar devices introduces errors in the device's internal voltage control circuit. Discrete transistors such as the BSS138, 2N7002, IRLML2402, or the 74C906 hex opendrain buffer are examples of appropriate devices.

Active Voltage Programming:

Special precautions should be taken when making changes to the voltage control progam code while the unit is powered. It is highly recommended that the ISR be either powered down or held in standby. Changes made to the program code while Vout is enabled induces high current transients through the device. This is the result of the electrolytic output capacitors being either charged or discharged to the new output voltage set-point. The transient current can be minimized by making only incremental changes to the binary code, i.e. one LSB at a time. A minimum of 100µs settling time between each program state is also recommended. Making non-incremental changes to VID3 and VID4 with the output enabled is discouraged. If they are changed, the transients induced can overstress the device resulting in a permanent drop in efficiency. If the use of active devices prevents the program code being asserted prior to power-up, pull pin 8 (STBY) to the device GND during the period that the input voltage is applied to Vin. Releasing pin 8 will then allow the device output to initiate a soft-start power-up to the new program voltage.

Figure 1

PT6701, PT6702, PT6705 Series, & PT6715 Series

Capacitor Recommendations for the Non-Isolated 13-A Excalibur™ Series of Regulators

Input Capacitors

The recommended input capacitance is determined by the 2.0 ampere minimum ripple current rating and $1000\mu F$ minimum capacitance. Capacitors listed below must be rated for a minimum of 2x the input voltage with +5V operation. Ripple current and $\leq 100 m\Omega$ Equivalent Series Resistance (ESR) values are the major considerations along with temperature when selecting the proper capacitor.

Output Capacitors

The minimum required output capacitance is $330\mu F$ with a maximum ESR less than or equal to $100m\Omega$. Failure to observe this requirement may lead to regulator instability or oscillation. Electrolytic capacitors have poor ripple performance at frequencies greater than 400kHz, but excellent low frequency transient response. Above the ripple frequency ceramic decoupling capacitors are necessary to improve the transient response and reduce any high frequency noise components apparent during higher current excursions. Preferred low ESR type capacitor part numbers are identified in Table 1 below.

Tantalum Characteristics

Tantalum capacitors with a minimum 10V rating are recommended on the output bus, but only the AVX TPS Series, Sprague 594/595 Series, or Kemet T495/T510 Series. The AVX TPS Series, Sprague Series or Kemet Series capacitors are specified over other types due to their higher surge current, excellent power dissipation and ripple current ratings. As a caution, the TAJ Series by AVX is not recommended. This series exhibits considerably higher ESR, reduced power dissipation and lower ripple current capability. The TAJ Series is a less reliable compared to the TPS series when determining power dissipation capability.

Capacitor Table

Table 1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The suggested minimum quantities per regulator for both the input and output buses are identified.

This is not an extensive capacitor list. The table below is a suggested selection guide for input and output capacitors. Other capacitor vendors are available with comparable RMS ripple current rating and ESR (Equivalent Series Resistance at 100kHz). These critical parameters are necessary to insure both optimum regulator performance and long capacitor life.

Table 1 Capacitors Characteristic Data

Capacitor Vendor Series	Capacitor Characteristics			Capacitor Characteristics Quantity		ntity		
	Working Voltage	Value(µF)	(ESR) Equivalent Series Resistance	85°C Maximum Ripple Current(Irms)	Physical Size(mm)	Input Bus	Output Bus	Vendor Number
Panasonic FC Surface Mtg	25V 35V	1000 330	0.038Ω 0.065Ω	2000mA 1205mA	18x16.5 12.5x16.5	1	1 1	EEVFC1E102N EEVFC1V331LQ
FA Radial	25V 25V	330 1200	0.090Ω 0.032Ω	765mA 2000mA	10x12.5 18x15	1	1 1	EEUFA1E331 EEUFA1E122S
United Chemi -Con LFV Radial FX Surface Mtg	25V 35V 16V 10V	330 1200 2700 680	$\begin{array}{c} 0.084\Omega \\ 0.028\Omega \\ 0.028\Omega \\ 0.015\Omega/2=0.007\Omega \end{array}$	825mA 2070mA 2070mA >7000mA	10x16 16x25 16x25 10X10.5	1 1 2	1 1 1 1	LXV25VB331M10X16LL LXV35VB122M16X25LL LXV16VB272M16X25LL L0FX680M(Os-con)
Nichicon PL Series PM Series	25V 25V 25V	330 2200 330	0.095Ω 0.028Ω 0.095Ω	750mA 2050mA 750mA	10x15 18x20 10x15	1	1 1 1	UPL1E331MPH6 UPL1E222MHH6 UPM1E331MPH6
Oscon SS SV	10V 10V	330 330	0.025Ω/3=0.008Ω 0.020Ω/3=0.007Ω	>7000mA >7000mA	10x10.5 10.3x12.6	3 3	1 1	10SS330M 10SV330M(Surface Mtg)
AVX Tanatalum TPS- Series	10V 10V	330 330	0.100Ω/3=0.034Ω 0.060Ω/3=0.02Ω	>3500mA >3500mA	7.0Lx 5.97Wx 3.45H	3 3	1 1	TPSV337M010R0100 TPSV337M010R0060
Vishay/Sprague Tantalum 595D/594D	10V 10V	330 680	0.045Ω/3=0.015Ω 0.090Ω/4=0.023Ω	>4600mA >2500mA	7.2L x 6.0W x 3.5H	3 2	1	594D337X0010R2T Surface Mount 595D687X0010R2T
Kemet Tantalum	10V	330	0.035Ω/3=0.012Ω	>5000mA	4.3Wx7.3L x4.0H	3	1	T510X337M010AS
T510/T495 Series	10V	220	0.070Ω/5=0.035Ω	>3000mA	X4.UF1	5	2	T495X227M010AS Surface Mount
Sanyo Poscap TPB	10V	220	0.040Ω/5=0.008Ω	>3000mA	7.2L x 4.3W x 3.1H	5	2	10TPB220M Surface Mount

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265