Am79C980

Advanced Micro Devices

Integrated Multiport Repeater (IMR)

DISTINCTIVE CHARACTERISTICS

- CMOS device features high integration and low power with a single +5 V supply
- Repeater functions conform to IEEE 802.3c Repeater Unit specifications
- Eight integral 10BASE-T transceivers utilize the required pre-distortion transmission technique
- Attachment Unit Interface (AUI) port allows connectivity with 10BASE-5 (Ethernet) and 10BASE-2 (Cheapernet) networks
- Expandable to increase number of repeater ports
- All ports can be separately isolated (partitioned) in response to excessive collision conditions or fault conditions

- Network management and optional features are accessible through a dedicated serial management port
- Twisted Pair Link Test capability conforming to the 10BASE-T standard. The receive Link Test Function can be optionally disabled through the management port to facilitate interoperability with devices that don't implement the Link Test Function
- Programmable option of Automatic Polarity
 Detection and Reversal enables the network to function even with polarity reversals due to wiring errors
- Full re-timing and re-conditioning of all repeater signals

GENERAL DESCRIPTION

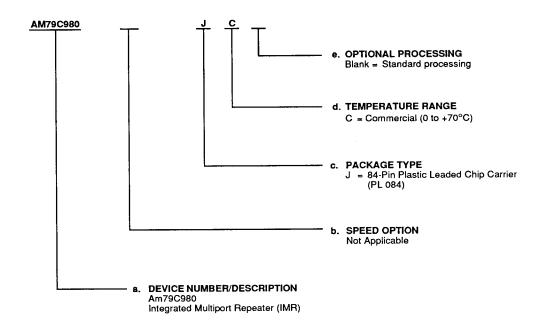
The Integrated Multiport Repeater (IMR) is a VLSI integrated circuit that provides a system level solution to designing a 10BASE-T Repeater. The device integrates the Repeater functions specified by section 9 of the IEEE 802.3 standard and Twisted Pair Transceiver functions conforming to the 10BASE-T standard (draft 10). The Am79C980 provides eight integral Twisted Pair Medium Attachment Units (MAUs) and an Attachment Unit Interface (AUI) port in an 84-pin Plastic Leaded Chip Carrier (PLCC).

A network based on the 10BASE-T standard uses unshielded twisted pair cables, therefore providing an economical solution to networking by allowing the use of existing telephone wiring.

The total number of ports per repeater unit can be increased by connecting multiple IMR devices through their expansion ports, hence minimizing the total cost per node. Furthermore, a general purpose Attachment Unit Interface (AUI) provides connection capability to 10BASE-5 (Ethernet) and 10BASE-2 (Cheapernet) networks. Network management and test functions are provided through TTL compatible I/O pins.

The device is fabricated in CMOS technology and requires a single +5 V supply.

RELATED AMD PRODUCTS

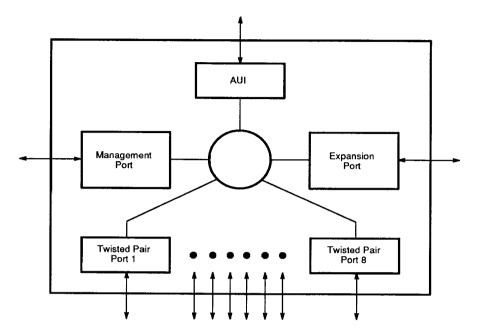

Part No.	Description	
Am79C900	Integrated Local Area Communications Controller (ILACC)	
Am7990	Local Area Network Controller for Ethernet (LANCE)	
Am7992B	Serial Interface Adapter (SIA)	
Am79C98	Twisted Pair Ethernet Transceiver (TPEX)	
Am7996	Am7996 IEEE 802.3/Ethernet/Cheapernet Transceiver	

Publication# 14396 Rev. A Amendment/0
Issue Date: June 1990

This document contains information on a product under development at Advanced Micro Devices, Inc. The information is intended to help you to evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

ORDERING INFORMATION **Standard Products**

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is a. Device Number b. Speed Option (if applicable) c. Package Type d. Temperature Range e. Optional Processing

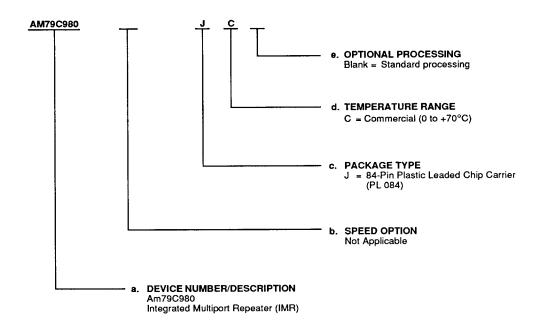

Valid Combinations			
AM79C980	JC C		

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

1-174 Am79C980

LOGIC DIAGRAM



14396-002A

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is a. Device Number formed by a combination of:

- b. Speed Option (if applicable)
 c. Package Type
 d. Temperature Range
- e. Optional Processing

Valid Combinations		
AM79C980	JC C	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

1-174 Am79C980

PIN DESCRIPTION

TXD+, TXD-

Transmit Data

Output

10BASE-T port differential drivers (8 ports)

TXP+, TXP-

Transmit Pre-distort

Output

10BASE-T transmit waveform pre-distortion control differential outputs (8 ports)

RXD+, RXD-Receive Data

Input

10BASE-T port differential receive inputs (8 ports)

DO+, DO-Data Out

Output

AUI port differential driver

DI+, DI-

Data In

Input

AUI port differential receiver

CI+, CI-

Input

AUI port differential receiver

X_1

Crystal 1

Crystal Connection

The internal clock generator uses a 20 MHz crystal attached to pins X₁ and X₂. Alternatively, an external 20 MHz TTL clock signal can be used to drive this pin.

X_2

Crystal 2

Crystal Connection

The internal clock generator uses a 20 MHz crystal attached to pins X_1 and X_2 . If an external clock source is used, this pin should be left unconnected.

REQ

Request

Output, Active LOW

This pin is driven LOW when the IMR is active. An active IMR is defined as an IMR which has one or more ports receiving or colliding and/or in the state where it is still transmitting data from the internal FIFO. The assertion of this signal signifies that the IMR is requesting the use of the DAT and JAM lines for the transfer of repeated data and collision status to other IMRs.

ACK

Acknowledge

Input, Active LOW

When this input is asserted, it signals to the requesting IMR that it may control the DAT and JAM pins. If the IMR is not requesting control of the DAT line (REQ pin HIGH), then the assertion of the ACK signal indicates the presence of valid collision status on the JAM or valid data on the DAT line.

COL

Expansion Collision

Input, Active LOW

When this input is asserted by an external arbiter, it signifies that more than one IMR is active and that each IMR should generate Collision Jam Sequence independently.

DAT

Data

Input/Output

When there is a single IMR active (in a multiple IMR design), the IMR with both REQ and ACK pins asserted drives the DAT line with NRZ data. The pin is an input when only the ACK signal is asserted, and is in a high impedance state if neither REQ or ACK is asserted.

JAM

Jam

Input/Output

This pin is an output on the single active IMR (\overline{REQ} and \overline{ACK} both asserted). The active IMR drives the JAM pin HIGH to indicate that it is in a Collision state. The pin is an input when only the \overline{ACK} signal is asserted, and is in a high impedance state if neither \overline{REQ} or \overline{ACK} is asserted.

CRS

Carrier Sense

Output

The states of the internal carrier sense signals for the AUI port and the eight twisted pair ports is serially output on this pin continuously. The output serial bit stream is synchronized to the X_1 clock.

STR

Store

Output

This pin goes HIGH for two X₁ clock cycle times after the nine carrier sense bits are output on the CRS pin. Note that the carrier sense signals arriving from each port are latched internally, so that an active transition is remembered between samples. The accuracy of the carrier sense signals produced in this manner is 10 bit times (one microsecond).

Am79C980 1–175

SI

Serial In

Input

Test/Management serial input port.

SO

Serial Out

Output

Test/Management serial output port.

SCK

Serial Clock

Input

Serial input data is clocked in on the rising edge of the signal on this pin.

TEST

Test Pin

Input, Active HIGH

This pin should be tied LOW for normal operation. If this pin is driven HIGH, then the IMR is configured to be programmed for Loopback Mode.

RST

Reset

Input, Active LOW

Driving this pin LOW resets the internal logic of the IMR.

 AV_{DD}

Analog Power

Power Pin

These pins supply the +5 V to the analog portions of the IMR.

AVss

Analog Ground

Ground Pin

These pins are the 0 V reference for the analog portions of the IMR.

 DV_{DD}

Digital Power

Power Pin

These pins supply the +5 V to the logic portions of the IMR.

 DV_{ss}

Digital Ground

Ground Pin

These pins are the 0 V reference for the logic portions of the IMR.