

General Description

The SY88313BL low-power limiting post amplifier is designed for use in fiber-optic receivers. The device connects to typical transimpedance amplifiers (TIAs). The linear signal output from TIAs can contain significant amounts of noise and may vary in amplitude over time. The SY88313BL quantizes these signals and outputs CML-level waveforms.

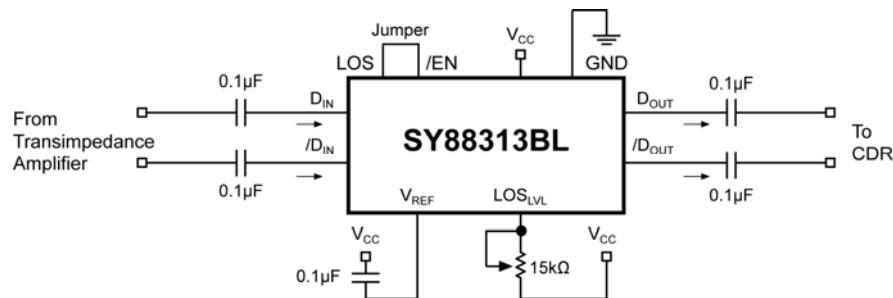
The SY88313BL operates from a single $+3.3V \pm 10\%$ supply, over temperatures ranging from $-40^{\circ}C$ to $+85^{\circ}C$. With its wide bandwidth and high gain, signals with data rates up to 3.2Gbps, and as small as $10mV_{PP}$, can be amplified to drive devices with CML inputs or AC-coupled CML/PECL inputs.

The SY88313BL generates a loss-of-signal (LOS) open-collector TTL output. A programmable loss-of-signal level set pin (LOSLVL) sets the sensitivity of the input amplitude detection. LOS asserts high if the input amplitude falls below the threshold set by LOSLVL and de-asserts low otherwise. The enable bar input (/EN) de-asserts the true output signal without removing the input signal. The LOS output can be fed back to the /EN input to maintain output stability under a loss-of-signal condition. Typically, 3.4dB LOS hysteresis is provided to prevent chattering.

Data sheet and support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- Single 3.3V power supply
- DC to 3.2Gbps operation
- Low-noise CML data outputs
- Chatter-free Open-Collector TTL loss-of-signal (LOS) output with internal $4.75k\Omega$ pull-up resistor
- TTL /EN input
- Internal 50Ω input termination
- Programmable LOS level set (LOSLVL)
- Ideal for multi-rate applications
- Available in a tiny 10-pin EPAD MSOP and 16-pin MLF™ package


Applications

- APON/BPON, GEON, EPON, and GPON
- Gigabit Ethernet
- Fibre Channel
- OC-3/12/24/48 SONET/SDH
- High-gain line driver and line receiver
- Low-gain TIA interface

Markets

- FTTP/FTTH
- Datacom/Telecom
- Optical Transceivers

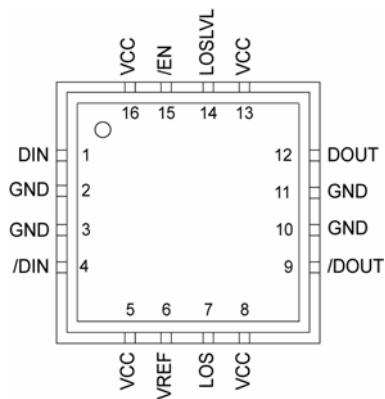
Typical Application

MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.

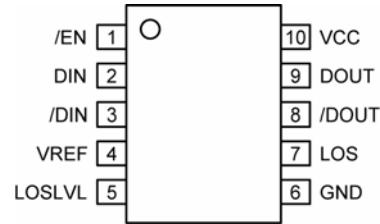
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax +1 (408) 474-1000 • <http://www.micrel.com>

November 2005

M9999-113005-A
hbwhelp@micrel.com or (408) 955-1690


Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY88313BLMG	MLF-16	Industrial	SY88313BL with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY88313BLMGTR ⁽²⁾	MLF-16	Industrial	SY88313BL with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY88313BLEY	K10-2	Industrial	SY88313BL with Pb-Free bar-line indicator	Matte-Sn Pb-Free
SY88313BLEYTR ⁽²⁾	K10-2	Industrial	SY88313BL with Pb-Free bar-line indicator	Matte-Sn Pb-Free


Note:

1. Contact factory for die availability. Dice are guaranteed at TA = 25C, DC Electricals only.
2. Tape and Reel.

Pin Configuration

16-Pin MLF™ (MLF-16)

10-Pin EPAD-MSOP (K10-2)

Pin Description

Pin Number (MSOP)	Pin Number (MLF™)	Pin Name	Type	Pin Function
1	15	/EN	TTL Input: Default is high.	Enable Bar: De-assert true data output when high.
2	1	DIN	Data Input	True data input with 50Ω termination to V_{REF} .
3	4	/DIN	Data Input	Complementary data input with 50Ω termination to V_{REF} .
4	6	VREF		Reference Voltage: Placing a capacitor here to V_{CC} helps stabilize LOS _{LVL} .
5	14	LOSLVL	Input: Default is maximum sensitivity	Loss-of-Signal Level Set: A resistor from this pin to V_{CC} sets the threshold for the data input amplitude at which the LOS output will be asserted.
6 Exposed Pad	2, 3, 10, 11 Exposed Pad	GND	Ground	Device ground. Exposed pad must be connected to PCB ground plane.
7	7	LOS	Open Collector TTL Output with Internal 4.75kΩ pull-up resistor	Loss-of-Signal: Asserts high when the data input amplitude falls below the threshold set by LOS _{LVL} .
8	9	/DOUT	CML Output	Complementary data output.
9	12	DOUT	CML Output	True data output.
10	5, 8, 13, 16	VCC	Power Supply	Positive power supply.

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V_{CC})	+0V to +4.0V
Input Voltage (DIN, /DIN)	0 to V_{CC}
Output Current (I_{OUT})	$\pm 25\text{mA}$
/EN Voltage	0 to V_{CC}
VREF Current	$\pm 1\text{mA}$
LOSLVL Voltage	V_{REF} to V_{CC}
Lead Temperature (soldering, 20sec.)	+260°C
Storage Temperature (T_s)	-65°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage (V_{CC})	+3.0V to +3.6V
Ambient Temperature (T_A)	-40°C to +85°C
Junction Temperature (T_J)	-40°C to +120°C
Junction Thermal Resistance ⁽³⁾	
MLF™	
(θ_{JA}) Still-air	61°C/W
(ψ_{JB})	38°C/W
EPAD-MSOP	
(θ_{JA}) Still-air	38°C/W
(ψ_{JB})	22°C/W

DC Electrical Characteristics

V_{CC} = 3.0V to 3.6V; R_L = 50Ω to V_{CC} ; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
I_{CC}	Power Supply Current	No output load.		47	65	mA
LOSLVL	LOSLVL Voltage		V_{REF}		V_{CC}	V
V_{OH}	CML Output HIGH Voltage		$V_{CC}-0.020$	$V_{CC}-0.005$	V_{CC}	V
V_{OL}	CML Output LOW Voltage	$V_{CC} = 3.3\text{V}$	$V_{CC}-0.475$	$V_{CC}-0.400$	$V_{CC}-0.350$	V
V_{OFFSET}	Differential Output Offset				± 80	mV
Z_o	Single-Ended Output Impedance		40	50	60	Ω
Z_i	Single-Ended Input Impedance		40	50	60	Ω
V_{REF}	Reference Voltage			$V_{CC}-1.28$		V

TTL DC Electrical Characteristics

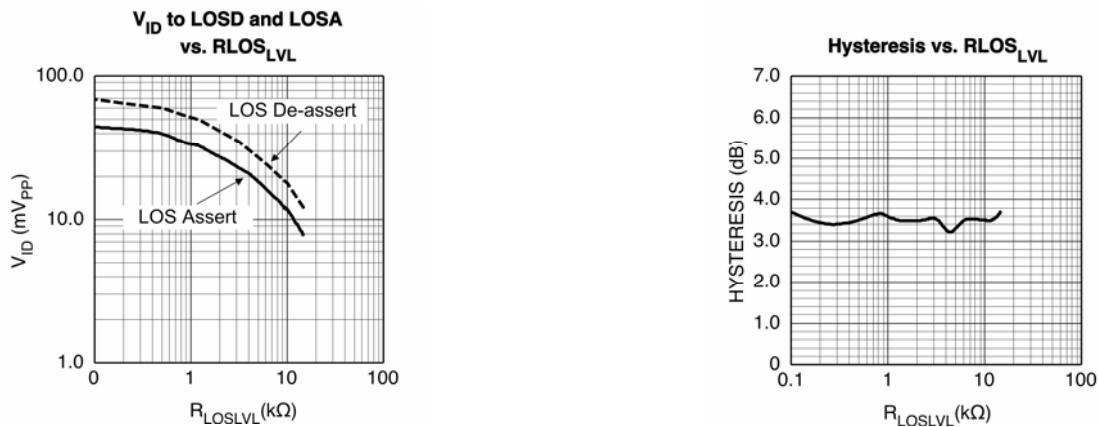
V_{CC} = 3.0V to 3.6V; R_L = 50Ω to V_{CC} ; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IH}	/EN Input HIGH Voltage		2.0			V
V_{IL}	/EN Input LOW Voltage				0.8	V
I_{IH}	/EN Input HIGH Current	$V_{IN} = 2.7\text{V}$ $V_{IN} = V_{CC}$			20 100	μA μA
I_{IL}	/EN Input LOW Current	$V_{IN} = 0.5\text{V}$	-0.3			mA
V_{OH}	LOS Output HIGH Level	$V_{CC} \geq 3.3\text{V}$, I_{OH} (max) < 160 μA $V_{CC} < 3.3\text{V}$, I_{OH} (max) < 160 μA	2.4 2.0			V V
V_{OL}	LOS Output LOW Level	$I_{OL} = +2\text{mA}$			0.5	V

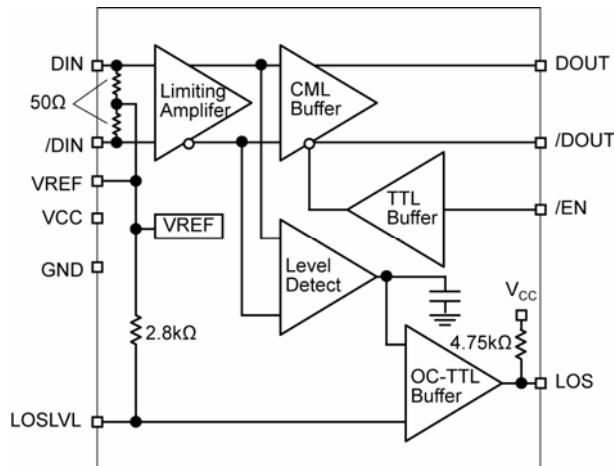
Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential (GND) on the PCB. ψ_{JB} uses 4-layer (θ_{JA}) in still-air number, unless otherwise stated.

AC Electrical Characteristics


$V_{CC} = 3.0V$ to $3.6V$; $R_{LOAD} = 50\Omega$ to V_{CC} ; $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

Symbol	Parameter	Condition	Min	Typ	Max	Units
t_r, t_f	Output Rise/Fall Time (20% to 80%)	Note 4		60	120	ps
t_{JITTER}	Deterministic	Note 5		15		ps _{PP}
	Random	Note 6		5		ps _{RMS}
V_{ID}	Differential Input Voltage Swing	Figure 1	10		1800	mV _{PP}
V_{OD}	Differential Output Voltage Swing	$V_{ID} \geq 18mV_{PP}$ Figure 1	700	800	950	mV _{PP}
T_{OFF}	LOS Release Time			2	10	μs
T_{ON}	LOS Assert Time			2	10	μs
LOS_{AL}	Low LOS Assert Level	$R_{LOSLVL} = 15k\Omega$, Note 8		7.8		mV _{PP}
LOS_{DL}	Low LOS De-assert Level	$R_{LOSLVL} = 15k\Omega$, Note 8		12		mV _{PP}
HYS_L	Low LOS Hysteresis	$R_{LOSLVL} = 15k\Omega$, Note 7		3.7		dB
LOS_{AM}	Medium LOS Assert Level	$R_{LOSLVL} = 5k\Omega$, Note 8	10	17		mV _{PP}
LOS_{DM}	Medium LOS De-assert Level	$R_{LOSLVL} = 5k\Omega$, Note 8		25	40	mV _{PP}
HYS_M	Medium LOS Hysteresis	$R_{LOSLVL} = 5k\Omega$, Note 7	2	3.3	4.5	dB
LOS_{AH}	High LOS Assert Level	$R_{LOSLVL} = 100\Omega$, Note 8	30	45		mV _{PP}
LOS_{DH}	High LOS De-assert Level	$R_{LOSLVL} = 100\Omega$, Note 8		69	95	mV _{PP}
HYS_H	High LOS Hysteresis	$R_{LOSLVL} = 100\Omega$, Note 7	2	3.7	4.5	dB
B_{-3dB}	3dB Bandwidth			2		GHz
$A_{V(Diff)}$	Differential Voltage Gain		32	38		dB
S_{21}	Single-ended Small-Signal Gain		26	32		dB


Notes:

4. Amplifier in limiting mode. Input is a 200MHz square wave.
5. Deterministic jitter measured using 3.2Gbps K28.5 pattern, $V_{ID} = 10mV_{PP}$.
6. Random jitter measured using 3.2Gbps K28.7 pattern, $V_{ID} = 10mV_{PP}$.
7. This specification defines electrical hysteresis as $20\log (LOS \text{ De-assert}/LOS \text{ Assert})$. The ratio between optical hysteresis and electrical hysteresis is found to vary between 1.5 and 2 depending upon the level of received optical power and ROSA characteristics. Based on that ratio, the optical hysteresis corresponding to the electrical hysteresis range 2dB-4.5dB, shown in the AC characteristics table, will be 1dB-3dB Optical Hysteresis.
8. See "Typical Operating Characteristics" for a graph showing how to choose a particular R_{LOSLVL} for a particular LOS assert and its associated de-assert amplitude.

Typical Characteristics

Functional Diagram

Detailed Description

The SY88313BL low-power limiting post amplifier operates from a single +3.3V power supply, over temperatures from -40°C to $+85^{\circ}\text{C}$. Signals with data rates up to 3.2Gbps and as small as 10mV_{PP} can be amplified. Figure 1 shows the allowed input voltage swing. The SY88313BL generates a LOS output. LOS_{LVL} sets the sensitivity of the input amplitude detection.

Input Amplifier/Buffer

Figure 2 shows a simplified schematic of the SY88313BL's input stage. The high-sensitivity of the input amplifier allows signals as small as 10mV_{PP} to be detected and amplified. The input amplifier also allows input signals as large as $1800\text{mV}_{\text{PP}}$. Input signals are linearly amplified with a typical 38dB differential voltage gain. Since it is a limiting amplifier, the SY88313BL outputs typically 800mV_{PP} voltage-limited waveforms for input signals that are greater than 12mV_{PP} . Applications requiring the SY88313BL to operate with high-gain should have the upstream TIA placed as close as possible to the SY88313BL's input pins to ensure the best performance of the device.

Output Buffer

The SY88313BL's CML output buffer is designed to drive 50Ω lines. The output buffer requires appropriate termination for proper operation. An external 50Ω resistor to V_{CC} for each output pin provides this. Figure 3 shows a simplified schematic of the output stage.

Loss-of-Signal

The SY88313BL generates a chatter-free LOS open-collector TTL output with an internal $4.75\text{k}\Omega$ pull-up resistor as shown in Figure 5. LOS is used to determine that the input amplitude is large enough to be considered a valid input. LOS asserts high if the input amplitude falls below the threshold set by LOS_{LVL} and de-asserts low otherwise. LOS can be fed back to the enable bar (EN) input to maintain output stability under a loss of signal condition. /EN de-asserts the true output signal without removing the input signals. Typical 3.4dB LOS hysteresis is provided to prevent chattering.

Loss-of-Signal Level Set

A programmable LOS level set pin (LOS_{LVL}) sets the threshold of the input amplitude detection. Connecting an external resistor between V_{CC} and LOS_{LVL} sets the voltage at LOS_{LVL} . This voltage ranges from V_{CC} to V_{REF} . The external resistor creates a voltage divider between V_{CC} and V_{REF} as shown in Figure 6.

Hysteresis

The SY88313BL provides typically 3.4dB LOS electrical hysteresis. By definition, a power ratio measured in dB is $10\log$ (power ratio). Power is calculated as $\text{V}_{\text{IN}}^2/\text{R}$ for an electrical signal. Hence, the same ratio can be stated as $20\log$ (voltage ratio). While in linear mode, the electrical voltage input changes linearly with the optical power and therefore, the ratios change linearly. Thus, the optical hysteresis in dB is half the electrical hysteresis in dB given in the data sheet. Since the SY88313BL is an electrical device, this data sheet refers to hysteresis in electrical terms. With 3.4dB LOS hysteresis, a voltage factor of 1.5 is required to assert or de-assert LOS.

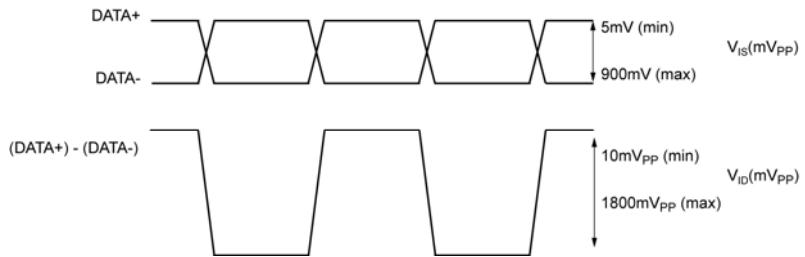
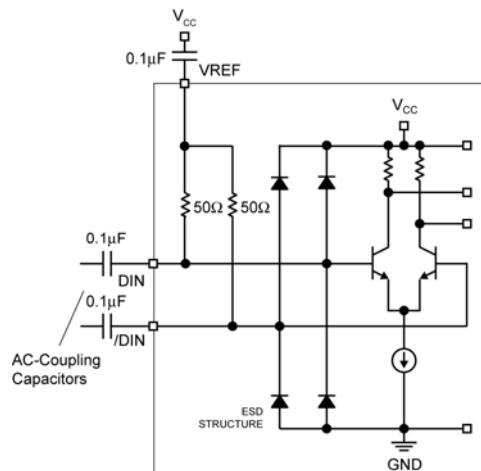


Figure 1. V_{IS} and V_{ID} Definition

Figure 2. Input Structure

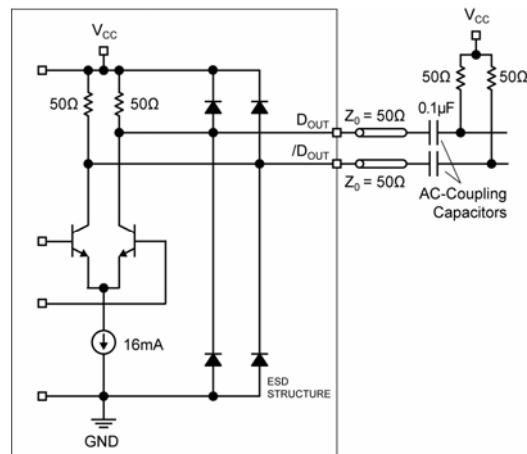


Figure 3. Output Structure

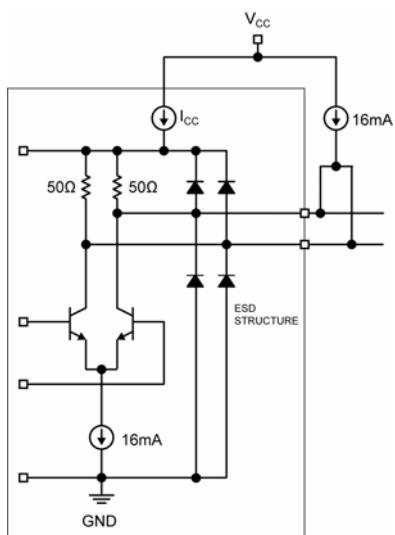


Figure 4. Power Supply Current Measurement

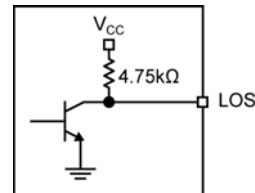
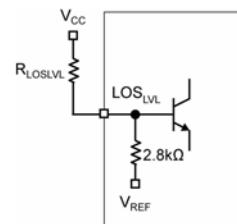
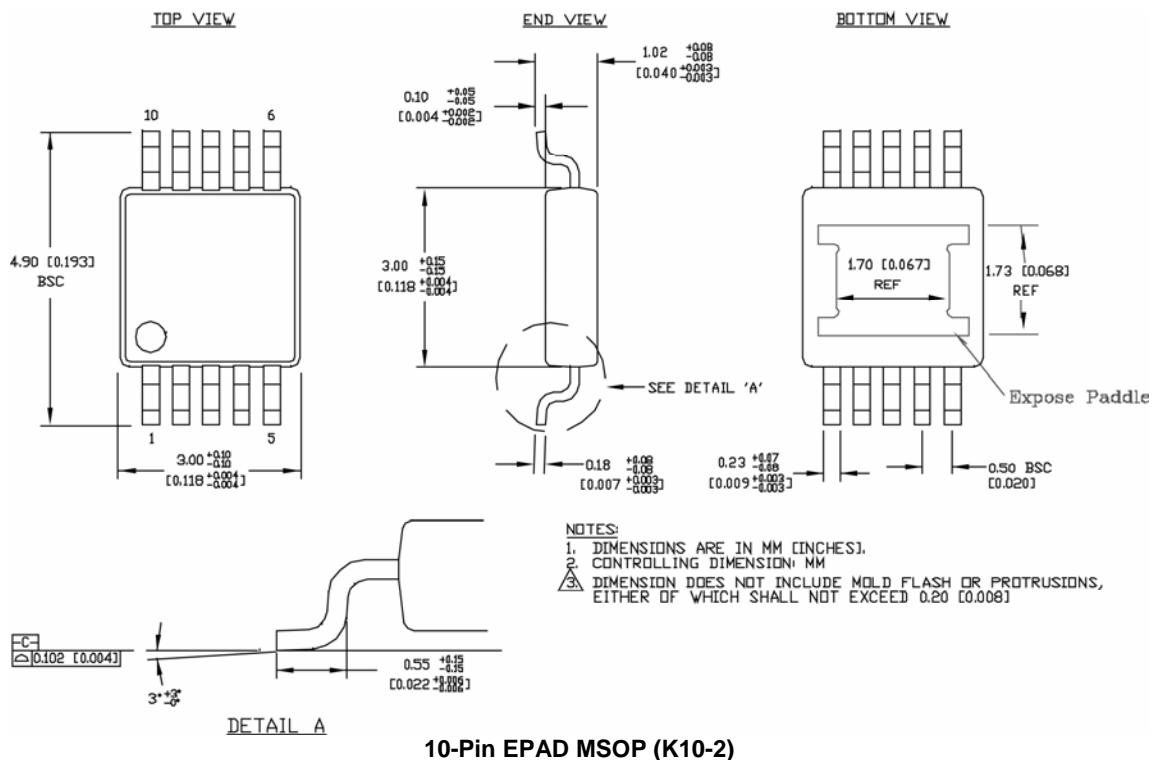
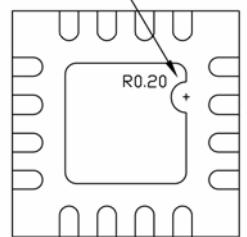
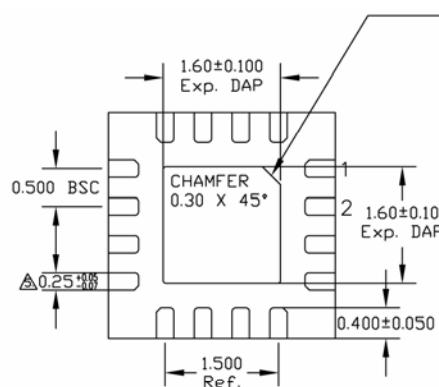
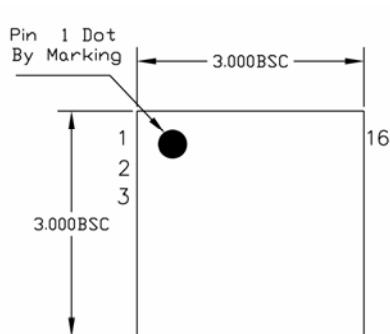
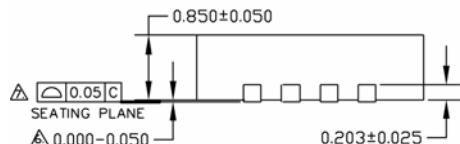







Figure 5. LOS Output Structure

Figure 6. LOS_{LVL} Setting Circuit


Package Information

TOP VIEW

BOTTOM VIEW

SIDE VIEW

16-Pin MLF™ (MLF-16)

NOTE:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. MAX. PACKAGE WARPING IS 0.05 mm.
3. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
4. PIN #1 ID ON TOP WILL BE LASER/INK MARKED.

⚠ DIMENSION APPLIES TO METALIZED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.

⚠ APPLIED ONLY FOR TERMINALS.

⚠ APPLIED FOR EXPOSED PAD AND TERMINALS.

VARIATION A

VARIATION B

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <http://www.micrel.com>

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.