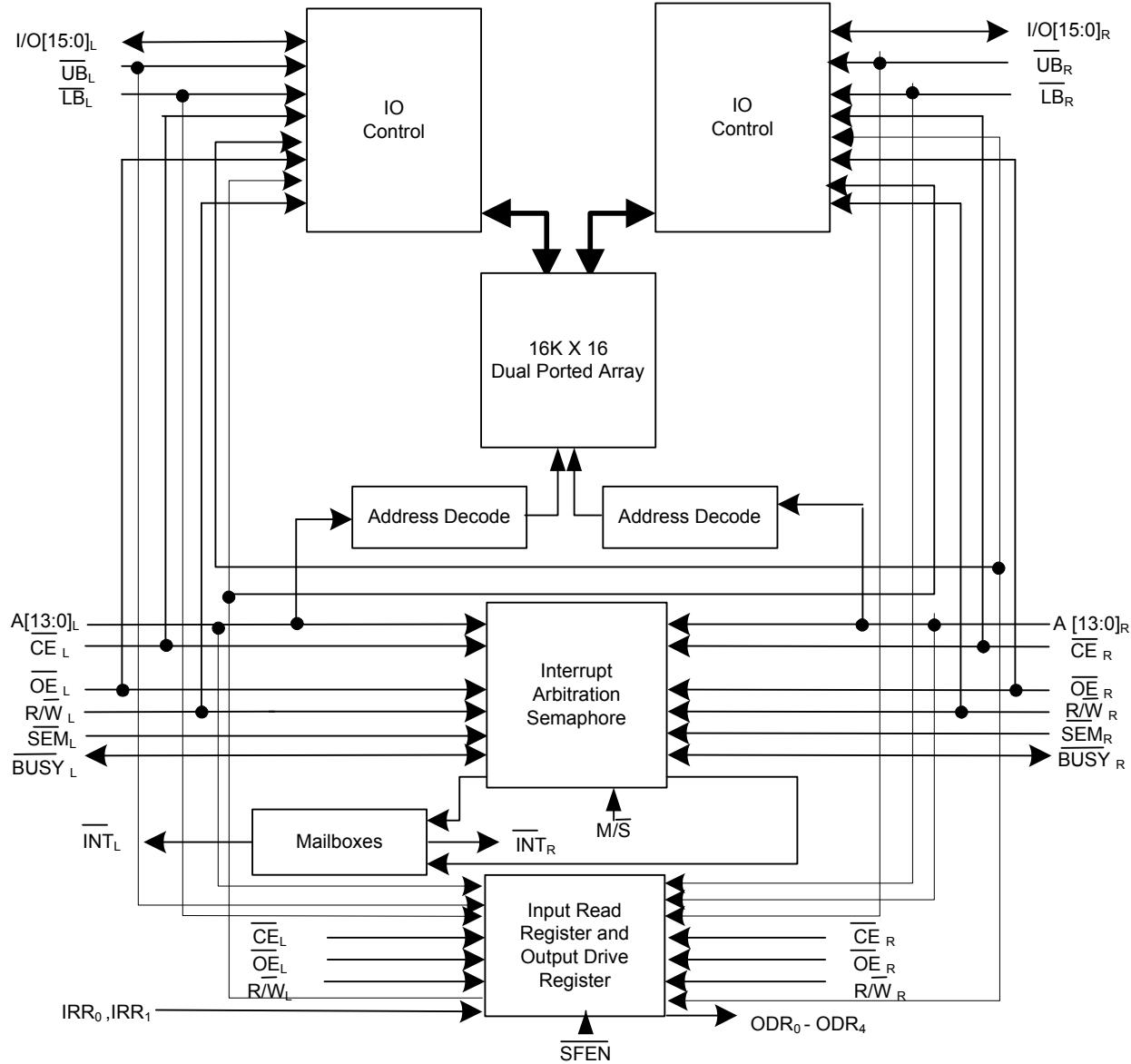


**1.8 V 4 K/8 K/16 K × 16 and 8 K/16 K × 8
ConsuMoBL Dual-Port Static RAM**

Features

- True dual-ported memory cells which allow simultaneous access of the same memory location
- 4/8/16 K × 16 and 8/16 K × 8 organization
- High speed access: 40 ns
- Ultra low operating power
 - Active: $I_{CC} = 15 \text{ mA}$ (typical) at 55 ns
 - Active: $I_{CC} = 25 \text{ mA}$ (typical) at 40 ns
 - Standby: $I_{SB3} = 2 \text{ } \mu\text{A}$ (typical)
- Port-independent 1.8 V, 2.5 V, and 3.0 V I/Os
- Pb-free 14 × 14 × 1.4 mm 100-pin Thin Quad Flat Pack (TQFP) Package
- Full asynchronous operation
- Pin select for master or slave
- Expandable data bus to 32 bits with master/slave chip select when using more than one device
- On-chip arbitration logic
- On-chip semaphore logic
- Input read registers (IRR) and output drive registers (ODR)
- INT flag for port-to-port communication
- Separate upper byte and lower byte control
- Commercial and industrial temperature ranges

Selection Guide for $V_{CC} = 1.8 \text{ V}$


Description	CYDC128B16 -40	CYDC128B16 -55	Unit
Port I/O Voltages (P1-P2)	1.8 V-1.8 V	1.8 V-1.8 V	
Maximum Access Time	40	55	ns
Typical Operating Current	25	15	mA
Typical Standby Current for I_{SB1}	2	2	μA
Typical Standby Current for I_{SB3}	2	2	μA

Selection Guide for $V_{CC} = 2.5 \text{ V}$

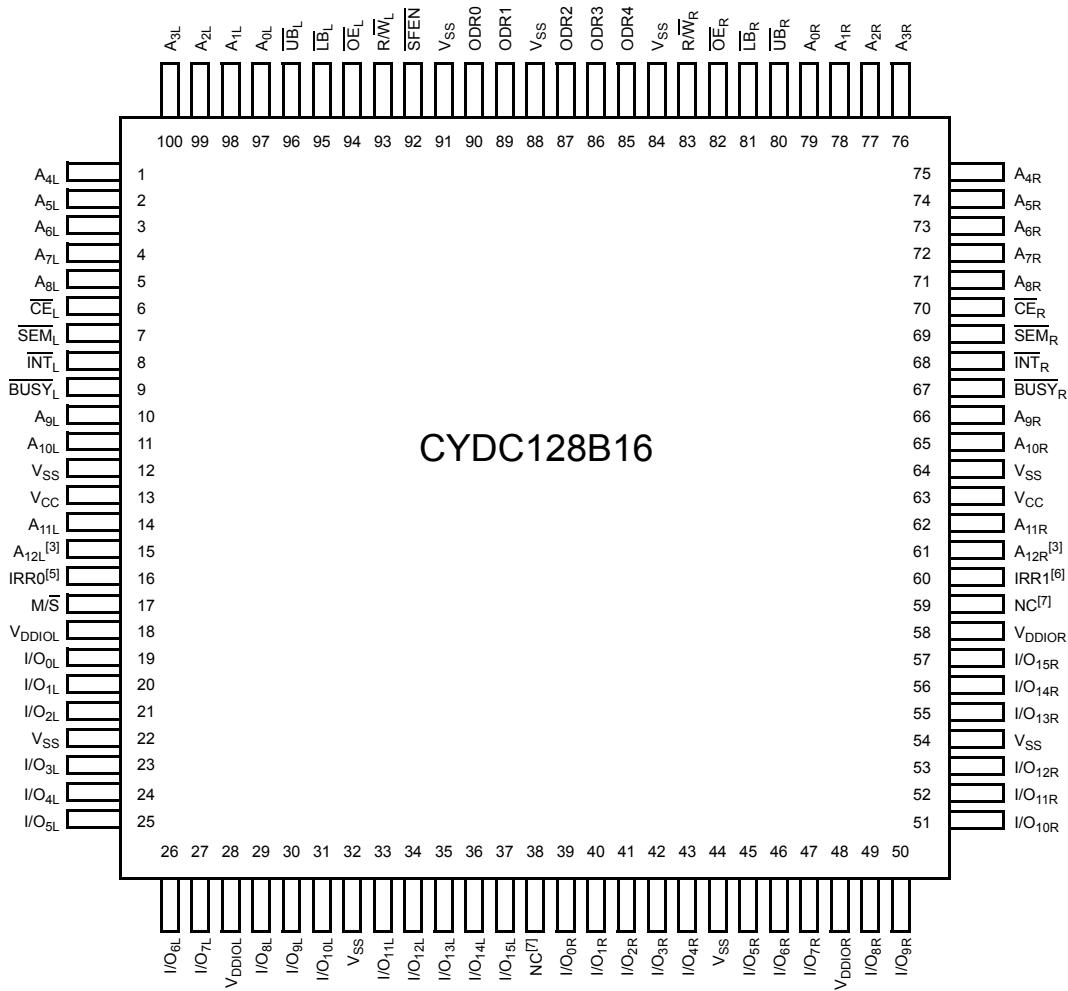
Description	CYDC128B16 -40	CYDC128B16 -55	Unit
Port I/O Voltages (P1-P2)	2.5 V-2.5 V	2.5 V-2.5 V	
Maximum Access Time	40	55	ns
Typical Operating Current	39	28	mA
Typical Standby Current for I_{SB1}	6	6	μA
Typical Standby Current for I_{SB3}	4	4	μA

Selection Guide for $V_{CC} = 3.0 \text{ V}$

Description	CYDC128B16 -40	CYDC128B16 -55	Unit
Port I/O Voltages (P1-P2)	3.0 V-3.0 V	3.0 V-3.0 V	
Maximum Access Time	40	55	ns
Typical Operating Current	49	42	mA
Typical Standby Current for I_{SB1}	7	7	μA
Typical Standby Current for I_{SB3}	6	6	μA

Top Level Block Diagram^[1, 2]

Notes


1. A_0-A_{11} for 4k devices; A_0-A_{12} for 8k devices; A_0-A_{13} for 16k devices.
2. **BUSY** is an output in master mode and an input in slave mode.

Contents

Pin Configurations	4	Switching Characteristics for VCC = 1.8V	15
Pin Definitions	5	Switching Characteristics for VCC = 2.5 V	17
Functional Description	6	Switching Characteristics for VCC = 3.0 V	19
Power Supply	6	Switching Waveforms	21
Write Operation	6	\overline{CE}_L Valid First ^[65]	25
Read Operation	6	Left Address Valid First	25
Interrupts	6	Ordering Information	27
Busy	6	8 K \times 16 1.8 V Asynchronous Dual-Port SRAM	27
Master/Slave	6	Ordering Code Definitions	27
Input Read Register	7	Package Diagram	28
Output Drive Register	7	Acronyms	29
Semaphore Operation	7	Document Conventions	29
Architecture	8	Units of Measure	29
Maximum Ratings	10	Document History Page	30
Operating Range	10	Sales, Solutions, and Legal Information	31
Electrical Characteristics for VCC = 1.8 V	10	Worldwide Sales and Design Support	31
Electrical Characteristics for VCC = 2.5 V	12	Products	31
Electrical Characteristics for 3.0 V	13	PSoC® Solutions	31
Capacitance	14	Cypress Developer Community	31
AC Test Loads and Waveforms	14	Technical Support	31

Pin Configurations

Figure 1. 100-Pin TQFP pinout (Top View) ^[3]

Note

- Leave this pin unconnected. No trace or power component can be connected to this pin.

Pin Definitions

Left Port	Right Port	Description
\overline{CE}_L	\overline{CE}_R	Chip enable
$\overline{R/W}_L$	$\overline{R/W}_R$	Read/write enable
\overline{OE}_L	\overline{OE}_R	Output enable
$A_{0L}-A_{13L}$	$A_{0R}-A_{13R}$	Address (A_0-A_{11} for 4k devices; A_0-A_{12} for 8k devices; A_0-A_{13} for 16k devices).
$I/O_{0L}-I/O_{15L}$	$I/O_{0R}-I/O_{15R}$	Data bus input/output for x16 devices; $I/O_0-I/O_7$ for x8 devices.
\overline{SEM}_L	\overline{SEM}_R	Semaphore enable
\overline{UB}_L	\overline{UB}_R	Upper byte select ($I/O_8-I/O_{15}$ for x16 devices; Not applicable for x8 devices).
\overline{LB}_L	\overline{LB}_R	Lower byte select ($I/O_0-I/O_7$ for x16 devices; Not applicable for x8 devices).
\overline{INT}_L	\overline{INT}_R	Interrupt flag
\overline{BUSY}_L	\overline{BUSY}_R	Busy flag
IRR0, IRR1		Input read register (IRR) for CYDC128B16.
ODR0-ODR4		Output drive register; these outputs are Open Drain.
\overline{SFEN}		Special function enable
$\overline{M/S}$		Master or slave select
V_{CC}		Core power
GND		Ground
V_{DDIOL}		Left port I/O voltage
V_{DDIOR}		Right port I/O voltage
NC		No connect. Leave this pin unconnected.

Functional Description

The CYDC128B16 is a low power complementary metal oxide semiconductor (CMOS) 4k, 8k, 16k x 16, and 8/16k x 8 dual-port static RAM. Arbitration schemes are included on the devices to handle situations when multiple processors access the same piece of data. Two ports are provided, permitting independent, asynchronous access for reads and writes to any location in memory. The devices can be used as standalone 16-bit dual-port static RAMs or multiple devices can be combined in order to function as a 32-bit or wider master/slave dual-port static RAM. An M/S pin is provided for implementing 32-bit or wider memory applications without the need for separate master and slave devices or additional discrete logic. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

Each port has independent control pins: Chip Enable (\overline{CE}), Read or Write Enable (R/W), and Output Enable (\overline{OE}). Two flags are provided on each port (BUSY and INT). BUSY signals that the port is trying to access the same location currently being accessed by the other port. The interrupt flag (INT) permits communication between ports or systems by means of a mailbox. The semaphores are used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power down feature is controlled independently on each port by a Chip Enable (CE) pin.

The CYDC128B16 are available in 100-pin TQFP packages.

Power Supply

The core voltage (V_{CC}) can be 1.8 V, 2.5 V or 3.0 V, as long as it is lower than or equal to the I/O voltage.

Each port can operate on independent I/O voltages. This is determined by what is connected to the V_{DDIOL} and V_{DDIOR} pins. The supported I/O standards are 1.8-V/2.5-V LVCMOS and 3.0-V LVTTL.

Write Operation

Data must be set up for a duration of t_{SD} before the rising edge of R/W to guarantee a valid write. A write operation is controlled by either the R/W pin (see [Figure 6](#) on page 22) or the CE pin (see [Figure 7](#) on page 22). Required inputs for non-contention operations are summarized in [Table 1](#).

If a location is being written to by one port and the opposite port attempts to read that location, a port-to-port flowthrough delay must occur before the data is read on the output; otherwise the data read is not deterministic. Data will be valid on the port t_{DDD} after the data is presented on the other port.

Read Operation

When reading the device, the user must assert both the \overline{OE} and \overline{CE} pins. Data will be available t_{ACE} after \overline{CE} or t_{DOE} after \overline{OE} is asserted. If the user wishes to access a semaphore flag, then the SEM pin must be asserted instead of the \overline{CE} pin, and \overline{OE} must also be asserted.

Interrupts

The upper two memory locations may be used for message passing. The highest memory location (1FFF for the CYDC128B16) is the mailbox for the right port and the second highest memory location (1FFE for the CYDC128B16) is the mailbox for the left port. When one port writes to the other port's mailbox, an interrupt is generated to the owner. The interrupt is reset when the owner reads the contents of the mailbox. The message is user-defined.

Each port can read the other port's mailbox without resetting the interrupt. The active state of the busy signal (to a port) prevents the port from setting the interrupt to the winning port. Also, an active busy to a port prevents that port from reading its own mailbox and, thus, resetting the interrupt to it.

If an application does not require message passing, do not connect the interrupt pin to the processor's interrupt request input pin. On power up, an initialization program should be run and the interrupts for both ports must be read to reset them.

The operation of the interrupts and their interaction with Busy are summarized in [Table 2](#).

Busy

The CYDC128B16 provide on-chip arbitration to resolve simultaneous memory location access (contention). If both ports' CEs are asserted and an address match occurs within t_{PS} of each other, the busy logic determines which port has access. If t_{PS} is violated, one port will definitely gain permission to the location, but it is not predictable which port gets that permission. BUSY will be asserted t_{BLA} after an address match or t_{BLC} after CE is taken LOW.

Master/Slave

A M/S pin is provided to expand the word width by configuring the device as either a master or a slave. The BUSY output of the master is connected to the BUSY input of the slave. This will allow the device to interface to a master device with no external components. Writing to slave devices must be delayed until after the BUSY input has settled (t_{BLC} or t_{BLA}), otherwise, the slave chip may begin a write cycle during a contention situation. When tied HIGH, the M/S pin allows the device to be used as a master and, therefore, the BUSY line is an output. BUSY can then be used to send the arbitration outcome to a slave.

Input Read Register

The Input Read Register (IRR) captures the status of two external input devices that are connected to the Input Read pins.

The contents of the IRR read from address x0000 from either port. During reads from the IRR, DQ0 and DQ1 are valid bits and DQ<15:2> are don't care. Writes to address x0000 are not allowed from either port.

Address x0000 is not available for standard memory accesses when SFEN = V_{IL} . When SFEN = V_{IH} , address x0000 is available for memory accesses.

The inputs will be 1.8-V/2.5-V LVC MOS or 3.0-V LV TTL, depending on the core voltage supply (V_{CC}). Refer to [Table 3](#) for Input Read Register operation.

Output Drive Register

The Output Drive Register (ODR) determines the state of up to five external binary state devices by providing a path to V_{SS} for the external circuit. These outputs are Open Drain.

The five external devices can operate at different voltages ($1.5\text{ V} \leq V_{DDIO} \leq 3.5\text{ V}$) but the combined current cannot exceed 40 mA (8 mA max for each external device). The status of the ODR bits are set using standard write accesses from either port to address x0001 with a "1" corresponding to on and "0" corresponding to off.

The status of the ODR bits can be read with a standard read access to address x0001. When SFEN = V_{IL} , the ODR is active and address x0001 is not available for memory accesses. When SFEN = V_{IH} , the ODR is inactive and address x0001 can be used for standard accesses.

During reads and writes to ODR DQ<4:0> are valid and DQ<15:5> are don't care. Refer to [Table 4](#) for Output Drive Register operation.

Semaphore Operation

The CYDC128B16 provides eight semaphore latches that are separate from the dual-port memory locations. Semaphores are used to reserve resources that are shared between the two ports. The state of the semaphore indicates that a resource is in use.

For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, SEM or OE must be deasserted for t_{SOP} before attempting to read the semaphore. The semaphore value will be available $t_{SWRD} + t_{DOE}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control of the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side succeeds in gaining control of the semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.

Semaphores are accessed by asserting SEM LOW. The SEM pin functions as a chip select for the semaphore latches (CE must remain HIGH during SEM LOW). A_{0-2} represents the semaphore address. OE and R/W are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.

When writing to the semaphore, only I/O₀ is used. If a zero is written to the left port of an available semaphore, a one appears at the same semaphore address on the right port. That semaphore can now only be modified by the side showing zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore will be set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore as soon as the left port released it. [Table 5](#) shows sample semaphore operations.

When reading a semaphore, all 16/8 data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within t_{SPS} of each other, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side controls the semaphore. On power up, both ports should write "1" to all eight semaphores.

Architecture

The CYDC128B16 consists of an array of 4k, 8k, or 16k words of 16 dual-port RAM cells, I/O and address lines, and control signals (CE, OE, R/W). These control pins permit independent access for reads or writes to any location in memory. To handle simultaneous writes/reads to the same location, a BUSY pin is provided on each port. Two Interrupt (INT) pins can be used for

port-to-port communication. Two Semaphore (SEM) control pins are used for allocating shared resources. With the M/S pin, the device can function as a master (BUSY pins are outputs) or as a slave (BUSY pins are inputs). The device also has an automatic power down feature controlled by CE. Each port is provided with its own output enable control (OE), which allows data to be read from the device.

Table 1. Non-Contending Read/Write

Inputs						Outputs ^[4]		Operation
CE	R/W	OE	UB	LB	SEM	I/O ₈ –I/O ₁₅	I/O ₀ –I/O ₇	
H	X	X	X	X	H	High Z	High Z	Deselected: power down
X	X	X	H	H	H	High Z	High Z	Deselected: power down
L	L	X	L	H	H	Data In	High Z	Write to upper byte only
L	L	X	H	L	H	High Z	Data In	Write to lower byte only
L	L	X	L	L	H	Data In	Data In	Write to both bytes
L	H	L	L	H	H	Data Out	High Z	Read upper byte only
L	H	L	H	L	H	High Z	Data Out	Read lower byte only
L	H	L	L	L	H	Data Out	Data Out	Read both bytes
X	X	H	X	X	X	High Z	High Z	Outputs disabled
H	H	L	X	X	L	Data Out	Data Out	Read data in semaphore flag
X	H	L	H	H	L	Data Out	Data Out	Read data in semaphore flag
H	—	X	X	X	L	Data In	Data In	Write D _{IN0} into semaphore flag
X	—	X	H	H	L	Data In	Data In	Write D _{IN0} into semaphore flag
L	X	X	L	X	L			Not allowed
L	X	X	X	L	L			Not allowed

Table 2. Interrupt Operation Example (Assumes BUSY_L = BUSY_R = HIGH)^[5]

Function	Left Port					Right Port				
	R/W _L	CE _L	OE _L	A _{0L–13L}	INT _L	R/W _R	CE _R	OE _R	A _{0R–13R}	INT _R
Set right INT _R flag	L	L	X	3FFF ^[6]	X	X	X	X	X	L ^[7]
Reset right INT _R flag	X	X	X	X	X	X	L	L	3FFF ^[6]	H ^[8]
Set left INT _L flag	X	X	X	X	L ^[8]	L	L	X	3FFE ^[6]	X
Reset left INT _L flag	X	L	L	3FFE ^[6]	H ^[7]	X	X	X	X	X

Notes

4. This column applies to x16 devices only.
5. See Interrupts Functional Description for specific highest memory locations by device.
6. See Functional Description for specific addresses by device.
7. If BUSY_L = L, then no change.
8. If BUSY_R = L, then no change.

Table 3. Input Read Register Operation^[9, 10]

SFEN	CE	R/W	OE	UB	LB	ADDR	I/O ₀ –I/O ₁	I/O ₂ –I/O ₁₅	Mode
H	L	H	L	L	L	x0000-Max	VALID ^[11]	VALID ^[11]	Standard memory access
L	L	H	L	X	L	x0000	VALID ^[12]	X	IRR read

Table 4. Output Drive Register^[13]

SFEN	CE	R/W	OE	UB	LB	ADDR	I/O ₀ –I/O ₄	I/O ₅ –I/O ₁₅	Mode
H	L	H	X ^[14]	L ^[11]	L ^[11]	x0000-Max	VALID ^[11]	VALID ^[11]	Standard memory access
L	L	L	X	X	L	x0001	VALID ^[12]	X	ODR write ^[13, 15]
L	L	H	L	X	L	x0001	VALID ^[12]	X	ODR read ^[13]

Table 5. Semaphore Operation Example

Function	I/O ₀ –I/O ₁₅ Left	I/O ₀ –I/O ₁₅ Right	Status
No action	1	1	Semaphore-free
Left port writes 0 to semaphore	0	1	Left port has semaphore token
Right port writes 0 to semaphore	0	1	No change. Right side has no write access to semaphore
Left port writes 1 to semaphore	1	0	Right port obtains semaphore token
Left port writes 0 to semaphore	1	0	No change. Left port has no write access to semaphore
Right port writes 1 to semaphore	0	1	Left port obtains semaphore token
Left port writes 1 to semaphore	1	1	Semaphore-free
Right port writes 0 to semaphore	1	0	Right port has semaphore token
Right port writes 1 to semaphore	1	1	Semaphore free
Left port writes 0 to semaphore	0	1	Left port has semaphore token
Left port writes 1 to semaphore	1	1	Semaphore-free

Notes

9. SFEN = V_{IL} for IRR reads.
10. SFEN active when either $\overline{CE}_L = V_{IL}$ or $\overline{CE}_R = V_{IL}$. It is inactive when $\overline{CE}_L = \overline{CE}_R = V_{IH}$.
11. UB or LB = V_{IL}. If LB = V_{IL}, then DQ<7:0> are valid. If UB = V_{IL} then DQ<15:8> are valid.
12. LB must be active (LB = V_{IL}) for these bits to be valid.
13. SFEN = V_{IL} for ODR reads and writes.
14. Output enable must be low (OE = V_{IL}) during reads for valid data to be output.
15. During ODR writes data will also be written to the memory.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.^[16]

Storage temperature -65°C to $+150^{\circ}\text{C}$

Ambient temperature with power applied -55°C to $+125^{\circ}\text{C}$

Supply voltage to ground potential -0.5 V to $+3.3\text{ V}$

DC voltage applied to outputs in High-Z State -0.5 V to $V_{\text{CC}} + 0.5\text{ V}$

DC input voltage^[17] -0.5 V to $V_{\text{CC}} + 0.5\text{ V}$

Output current into outputs (LOW) 90 mA
 Static discharge voltage $> 2000\text{ V}$
 Latch up current $> 200\text{ mA}$

Operating Range

Range	Ambient Temperature	V_{CC}
Commercial	0°C to $+70^{\circ}\text{C}$	$1.8\text{ V} \pm 100\text{ mV}$ $2.5\text{ V} \pm 100\text{ mV}$ $3.0\text{ V} \pm 300\text{ mV}$
Industrial	-40°C to $+85^{\circ}\text{C}$	$1.8\text{ V} \pm 100\text{ mV}$ $2.5\text{ V} \pm 100\text{ mV}$ $3.0\text{ V} \pm 300\text{ mV}$

Electrical Characteristics for $V_{\text{CC}} = 1.8\text{ V}$

Over the Operating Range

Parameter	Description			CYDC128B16			CYDC128B16			Unit
		P1 I/O Voltage	P2 I/O Voltage	Min	Typ	Max	Min	Typ	Max	
V_{OH}	Output HIGH voltage ($I_{\text{OH}} = -100\text{ }\mu\text{A}$)	1.8 V (any port)	$V_{\text{DDIO}} - 0.2$				$V_{\text{DDIO}} - 0.2$			V
	Output HIGH voltage ($I_{\text{OH}} = -2\text{ mA}$)	2.5 V (any port)	2.0				2.0			V
	Output HIGH voltage ($I_{\text{OH}} = -2\text{ mA}$)	3.0 V (any port)	2.1				2.1			V
V_{OL}	Output LOW voltage ($I_{\text{OL}} = 100\text{ }\mu\text{A}$)	1.8 V (any port)				0.2			0.2	V
	Output HIGH voltage ($I_{\text{OL}} = 2\text{ mA}$)	2.5 V (any port)				0.4			0.4	V
	Output HIGH voltage ($I_{\text{OL}} = 2\text{ mA}$)	3.0 V (any port)				0.4			0.4	V
$V_{\text{OL ODR}}$	ODR Output LOW voltage ($I_{\text{OL}} = 8\text{ mA}$)	1.8 V (any port)				0.2			0.2	V
		2.5 V (any port)				0.2			0.2	V
		3.0 V (any port)				0.2			0.2	V
V_{IH}	Input HIGH voltage	1.8 V (any port)	1.2		$V_{\text{DDIO}} + 0.2$	1.2		$V_{\text{DDIO}} + 0.2$	V	
		2.5 V (any port)	1.7		$V_{\text{DDIO}} + 0.3$	1.7		$V_{\text{DDIO}} + 0.3$	V	
		3.0 V (any port)	2.0		$V_{\text{DDIO}} + 0.2$	2.0		$V_{\text{DDIO}} + 0.2$	V	
V_{IL}	Input LOW voltage	1.8 V (any port)	-0.2		0.4	-0.2		0.4	V	
		2.5 V (any port)	-0.3		0.6	-0.3		0.6	V	
		3.0 V (any port)	-0.2		0.7	-0.2		0.7	V	
I_{OZ}	Output leakage current	1.8 V	1.8 V	-1		1	-1		1	μA
		2.5 V	2.5 V	-1		1	-1		1	μA
		3.0 V	3.0 V	-1		1	-1		1	μA
$I_{\text{CEx ODR}}$	ODR output leakage current. $V_{\text{OUT}} = V_{\text{DDIO}}$	1.8 V	1.8 V	-1		1	-1		1	μA
		2.5 V	2.5 V	-1		1	-1		1	μA
		3.0 V	3.0 V	-1		1	-1		1	μA

Notes

16. The voltage on any input or I/O pin can not exceed the power pin during power-up.
 17. Pulse width $< 20\text{ ns}$.

Electrical Characteristics for $V_{CC} = 1.8\text{ V}$ (continued)

Over the Operating Range

Parameter	Description			CYDC128B16			CYDC128B16			Unit	
		-40		-55							
		P1 I/O Voltage	P2 I/O Voltage	Min	Typ	Max	Min	Typ	Max		
I_{IX}	Input leakage current	1.8 V	1.8 V	-1		1	-1		1	μA	
		2.5 V	2.5 V	-1		1	-1		1	μA	
		3.0 V	3.0 V	-1		1	-1		1	μA	
I_{CC}	Operating current ($V_{CC} = \text{Max}$, $I_{OUT} = 0\text{ mA}$) Outputs Disabled	Industrial	1.8 V	1.8 V		25	40		15	25	mA
I_{SB1}	Standby current (both ports TTL Level) CE_L and $CE_R \geq V_{CC} - 0.2$, $SEM_L = SEM_R = V_{CC} - 0.2$, $f = f_{MAX}$	Industrial	1.8 V	1.8 V		2	6		2	6	μA
I_{SB2}	Standby current (one port TTL level) CE_L $CE_R \geq V_{IH}$, $f = f_{MAX}$	Industrial	1.8 V	1.8 V		8.5	18		8.5	14	mA
I_{SB3}	Standby current (both ports CMOS level) CE_L and $CE_R \geq V_{CC} - 0.2\text{V}$, SEM_L and $SEM_R > V_{CC} - 0.2\text{V}$, $f = 0$	Industrial	1.8 V	1.8 V		2	6		2	6	μA
I_{SB4}	Standby current (one port CMOS level) CE_L $CE_R \geq V_{IH}$, $f = f_{MAX}$ ^[18]	Industrial	1.8 V	1.8 V		8.5	18		8.5	14	mA

Note

 18. $\text{MAX} = 1/t_{RC}$ = All inputs cycling at $f = 1/t_{RC}$ (except output enable). $f = 0$ means no address or control lines change. This applies only to inputs at CMOS level standby I_{SB3} .

Electrical Characteristics for $V_{CC} = 2.5$ V

Over the Operating Range

Parameter	Description			CYDC128B16			CYDC128B16			Unit	
		-40		-55							
		P1 I/O Voltage	P2 I/O Voltage	Min	Typ	Max	Min	Typ	Max		
V_{OH}	Output HIGH voltage ($I_{OH} = -2$ mA)	2.5 V (any port)	2.0			2.0				V	
	Output HIGH voltage ($I_{OH} = -2$ mA)	3.0 V (any port)	2.1			2.1				V	
V_{OL}	Output LOW voltage ($I_{OL} = 2$ mA)	2.5 V (any port)			0.4				0.4	V	
	Output LOW voltage ($I_{OL} = 2$ mA)	3.0 V (any port)			0.4				0.4	V	
V_{OL} ODR	ODR Output LOW voltage ($I_{OL} = 8$ mA)	2.5 V (any port)			0.2				0.2	V	
		3.0 V (any port)			0.2				0.2	V	
V_{IH}	Input HIGH voltage	2.5 V (any port)	1.7		$V_{DDIO} + 0.3$	1.7		$V_{DDIO} + 0.3$		V	
		3.0 V (any port)	2.0		$V_{DDIO} + 0.2$	2.0		$V_{DDIO} + 0.2$		V	
V_{IL}	Input LOW voltage	2.5 V (any port)	-0.3		0.6	-0.3		0.6		V	
		3.0 V (any port)	-0.2		0.7	-0.2		0.7		V	
I_{OZ}	Output leakage current	2.5 V	2.5 V	-1		1	-1		1	μ A	
		3.0 V	3.0 V	-1		1	-1		1	μ A	
I_{CEX} ODR	ODR output leakage current. $V_{OUT} = V_{CC}$	2.5 V	2.5 V	-1		1	-1		1	μ A	
		3.0 V	3.0 V	-1		1	-1		1	μ A	
I_{IX}	Input leakage current	2.5 V	2.5 V	-1		1	-1		1	μ A	
		3.0 V	3.0 V	-1		1	-1		1	μ A	
I_{CC}	Operating current ($V_{CC} = \text{Max.}$, $I_{OUT} = 0$ mA) Outputs disabled	Industrial	2.5 V	2.5 V		39	55		28	40	mA
I_{SB1}	Standby current (both ports TTL level) CE_L and $CE_R \geq V_{CC} - 0.2$, $SEM_L = SEM_R = V_{CC} - 0.2$, $f = f_{MAX}$	Industrial	2.5 V	2.5 V		6	8		6	8	μ A
I_{SB2}	Standby current (one port TTL level) CE_L $CE_R \geq V_{IH}$, $f = f_{MAX}$	Industrial	2.5 V	2.5 V		21	30		18	25	mA
I_{SB3}	Standby current (both ports CMOS level) CE_L and $CE_R \geq V_{CC} - 0.2V$, SEM_L and $SEM_R > V_{CC} - 0.2V$, $f = 0$	Industrial	2.5 V	2.5 V		4	6		4	6	μ A
I_{SB4}	Standby current (one port CMOS level) CE_L $CE_R \geq V_{IH}$, $f = f_{MAX}$ ^[19]	Industrial	2.5 V	2.5 V		21	30		18	25	mA

Note

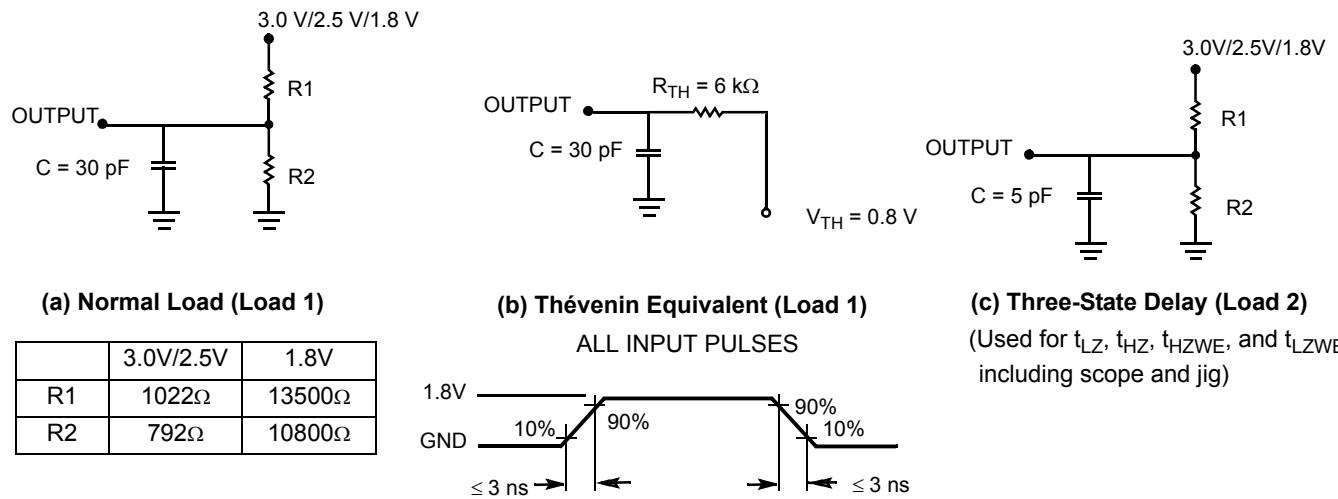
19. $MAX = 1/t_{RC}$ = All inputs cycling at $f = 1/t_{RC}$ (except output enable). $f = 0$ means no address or control lines change. This applies only to inputs at CMOS level standby I_{SB3} .

Electrical Characteristics for 3.0 V

Over the Operating Range

Parameter	Description			CYDC128B16			CYDC128B16			Unit	
		-40		-55							
		P1 I/O Voltage	P2 I/O Voltage	Min	Typ	Max	Min	Typ	Max		
V_{OH}	Output HIGH voltage ($I_{OH} = -2$ mA)	3.0 V (any port)		2.1			2.1			V	
V_{OL}	Output LOW voltage ($I_{OL} = 2$ mA)	3.0 V (any port)			0.4				0.4	V	
$V_{OL\ ODR}$	ODR output LOW voltage ($I_{OL} = 8$ mA)	3.0 V (any port)			0.2				0.2	V	
V_{IH}	Input HIGH voltage	3.0 V (any port)		2.0		$V_{DDIO} + 0.2$	2.0		$V_{DDIO} + 0.2$	V	
V_{IL}	Input LOW voltage	3.0 V (any port)		-0.2		0.7	-0.2		0.7	V	
I_{OZ}	Output leakage current	3.0 V	3.0 V	-1		1	-1		1	μ A	
$I_{CEX\ ODR}$	ODR output leakage current. $V_{OUT} = V_{CC}$	3.0 V	3.0 V	-1		1	-1		1	μ A	
I_{IX}	Input leakage current	3.0V	3.0 V	-1		1	-1		1	μ A	
I_{CC}	Operating current ($V_{CC} = \text{Max}$, $I_{OUT} = 0$ mA) Outputs disabled	Industrial	3.0V	3.0 V		49	70		42	60 mA	
I_{SB1}	Standby current (both ports TTL Level) CE_L and $CE_R \geq V_{CC} - 0.2$, $SEM_L = SEM_R = V_{CC} - 0.2$, $f = f_{MAX}$	Industrial	3.0 V	3.0 V		7	10		7	10 μ A	
I_{SB2}	Standby current (one port TTL Level) $CE_L \mid CE_R \geq V_{IH}$, $f = f_{MAX}$	Industrial	3.0 V	3.0 V		28	40		25	35 mA	
I_{SB3}	Standby current (both ports CMOS Level) CE_L and $CE_R \geq V_{CC} - 0.2V$, SEM_L and $SEM_R > V_{CC} - 0.2V$, $f = 0$	Industrial	3.0 V	3.0 V		6	8		6	8 μ A	
I_{SB4}	Standby current (one port CMOS Level) $CE_L \mid CE_R \geq V_{IH}$, $f = f_{MAX}$ ^[20]	Industrial	3.0 V	3.0 V		28	40		25	35 mA	

Note


20. MAX = $1/t_{RC}$ = All inputs cycling at $f = 1/t_{RC}$ (except output enable). $f = 0$ means no address or control lines change. This applies only to inputs at CMOS level standby I_{SB3} .

Capacitance

Parameter ^[21]	Description	Test Conditions	Max	Unit
C_{IN}	Input capacitance	$T_A = 25^\circ C$, $f = 1$ MHz, $V_{CC} = 3.0$ V	9	pF
C_{OUT}	Output capacitance		10	pF

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

Note

21. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics for $V_{CC} = 1.8V$

Over the Operating Range ^[22]

Parameter	Description	CYDC128B16		CYDC128B16		Unit	
		-40		-55			
		Min	Max	Min	Max		
Read Cycle							
t_{RC}	Read cycle time	40		55		ns	
t_{AA}	Address to data valid		40		55	ns	
t_{OHA}	Output hold from address change	5		5		ns	
t_{ACE} ^[23]	CE LOW to data valid		40		55	ns	
t_{DOE}	OE LOW to data valid		25		30	ns	
t_{LZOE} ^[24, 25, 26]	OE Low to Low Z	5		5		ns	
t_{HZOE} ^[24, 25, 26]	OE HIGH to High Z		15		25	ns	
t_{LZCE} ^[24, 25, 26]	CE LOW to Low Z	5		5		ns	
t_{HZCE} ^[24, 25, 26]	CE HIGH to High Z		15		25	ns	
t_{PU} ^[26]	CE LOW to power up	0		0		ns	
t_{PD} ^[26]	CE HIGH to power down		40		55	ns	
t_{ABE} ^[23]	Byte enable access time		40		55	ns	
Write Cycle							
t_{WC}	Write cycle time	40		55		ns	
t_{SCE} ^[23]	CE LOW to write end	30		45		ns	
t_{AW}	Address valid to write end	30		45		ns	
t_{HA}	Address hold from write end	0		0		ns	
t_{SA} ^[23]	Address setup to write start	0		0		ns	
t_{PWE}	Write pulse width	25		40		ns	
t_{SD}	Data setup to write end	20		30		ns	
t_{HD}	Data hold from write end	0		0		ns	
t_{HZWE} ^[25, 26]	R/W LOW to High Z		15		25	ns	
t_{LZWE} ^[25, 26]	R/W HIGH to Low Z	0		0		ns	
t_{WDD} ^[27]	Write pulse to data delay		55		80	ns	
t_{DDD} ^[27]	Write data valid to read data valid		55		80	ns	

Notes

22. Test conditions assume signal transition time of 3 ns or less, timing reference levels of $V_{CC}/2$, input pulse levels of 0 to V_{CC} , and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
23. To access RAM, $\overline{CE} = L$, $\overline{UB} = L$, $\overline{SEM} = H$. To access semaphore, $\overline{CE} = H$ and $\overline{SEM} = L$. Either condition must be valid for the entire t_{SCE} time.
24. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZOE} is less than t_{LZOE} .
25. Test conditions used are Load 3.
26. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.
27. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.

Switching Characteristics for $V_{CC} = 1.8V$ (continued)

Over the Operating Range [22]

Parameter	Description	CYDC128B16		CYDC128B16		Unit	
		-40		-55			
		Min	Max	Min	Max		
Busy Timing ^[28]							
t_{BLA}	BUSY LOW from address match		30		45	ns	
t_{BHA}	BUSY HIGH from address mismatch		30		45	ns	
t_{BLC}	BUSY LOW from \overline{CE} LOW		30		45	ns	
t_{BHC}	BUSY HIGH from \overline{CE} HIGH		30		45	ns	
t_{PS} ^[29]	Port setup for priority	5		5		ns	
t_{WB}	R/W HIGH after BUSY (Slave)	0		0		ns	
t_{WH}	R/W HIGH after BUSY HIGH (Slave)	20		35		ns	
t_{BDD} ^[30]	BUSY HIGH to data valid		30		40	ns	
Interrupt Timing ^[28]							
t_{INS}	INT set time		35		45	ns	
t_{INR}	INT reset time		35		45	ns	
Semaphore Timing							
t_{SOP}	SEM flag update pulse (\overline{OE} or \overline{SEM})	10		15		ns	
t_{SWRD}	SEM flag write to read time	10		10		ns	
t_{SPS}	SEM flag contention window	10		10		ns	
t_{SAA}	SEM address access time		40		55	ns	

Notes

28. Test conditions used are Load 2.
 29. Add 2ns to this value when the I/O ports are operating at different voltages.
 30. t_{BDD} is a calculated parameter and is the greater of $t_{WDD}-t_{PWE}$ (actual) or $t_{DDD}-t_{SD}$ (actual).

Switching Characteristics for $V_{CC} = 2.5\text{ V}$

Over the Operating Range

Parameter	Description	CYDC128B16		CYDC128B16		Unit	
		-40		-55			
		Min	Max	Min	Max		
Read Cycle							
t_{RC}	Read cycle time	40		55		ns	
t_{AA}	Address to data valid		40		55	ns	
t_{OHA}	Output hold from address change	5		5		ns	
$t_{ACE}^{[31]}$	\overline{CE} LOW to data valid		40		55	ns	
t_{DOE}	\overline{OE} LOW to data valid		25		30	ns	
$t_{LZOE}^{[32, 33, 34]}$	\overline{OE} LOW to low Z	2		2		ns	
$t_{HZOE}^{[32, 33, 34]}$	\overline{OE} HIGH to high Z		15		15	ns	
$t_{LZCE}^{[32, 33, 34]}$	\overline{CE} LOW to low Z	2		2		ns	
$t_{HZCE}^{[32, 33, 34]}$	\overline{CE} HIGH to high Z		15		15	ns	
$t_{PU}^{[34]}$	\overline{CE} LOW to power up	0		0		ns	
$t_{PD}^{[34]}$	\overline{CE} HIGH to power down		40		55	ns	
$t_{ABE}^{[31]}$	Byte enable access time		40		55	ns	
Write Cycle							
t_{WC}	Write cycle time	40		55		ns	
$t_{SCE}^{[31]}$	\overline{CE} LOW to write end	30		45		ns	
t_{AW}	Address valid to write end	30		45		ns	
t_{HA}	Address hold from write end	0		0		ns	
$t_{SA}^{[31]}$	Address setup to write start	0		0		ns	
t_{PWE}	Write pulse width	25		40		ns	
t_{SD}	Data setup to write end	20		30		ns	
t_{HD}	Data hold from write end	0		0		ns	
$t_{HZWE}^{[33, 34]}$	R/W LOW to high Z		15		25	ns	
$t_{LZWE}^{[33, 34]}$	R/W HIGH to low Z	0		0		ns	
$t_{WDD}^{[35]}$	Write pulse to data delay		55		80	ns	
$t_{DDD}^{[35]}$	Write data valid to read data valid		55		80	ns	

Notes

31. To access RAM, $\overline{CE} = L$, $\overline{UB} = L$, $\overline{SEM} = H$. To access semaphore, $\overline{CE} = H$ and $\overline{SEM} = L$. Either condition must be valid for the entire t_{SCE} time.
32. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZOE} is less than t_{LZOE} .
33. Test conditions used are Load 3.
34. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.
35. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.

Switching Characteristics for $V_{CC} = 2.5\text{ V}$ (continued)

Over the Operating Range

Parameter	Description	CYDC128B16		CYDC128B16		Unit	
		-40		-55			
		Min	Max	Min	Max		
Busy Timing^[36]							
t_{BLA}	BUSY LOW from address match		30		45	ns	
t_{BHA}	BUSY HIGH from address mismatch		30		45	ns	
t_{BLC}	BUSY LOW from \overline{CE} LOW		30		45	ns	
t_{BHC}	BUSY HIGH from \overline{CE} HIGH		30		45	ns	
$t_{PS}^{[37]}$	Port set up for priority	5		5		ns	
t_{WB}	R/W HIGH after BUSY (Slave)	0		0		ns	
t_{WH}	R/W HIGH after BUSY HIGH (Slave)	20		35		ns	
$t_{BDD}^{[38]}$	BUSY HIGH to data valid		30		40	ns	
Interrupt Timing^[36]							
t_{INS}	INT set time		35		45	ns	
t_{INR}	INT reset time		35		45	ns	
Semaphore Timing							
t_{SOP}	SEM flag update pulse (\overline{OE} or \overline{SEM})	10		15		ns	
t_{SWRD}	SEM flag write to read time	10		10		ns	
t_{SPS}	SEM Flag Contention Window	10		10		ns	
t_{SAA}	SEM Address Access Time		40		55	ns	

Notes

36. Test conditions used are Load 2.
 37. Add 2ns to this value when the I/O ports are operating at different voltages.
 38. t_{BDD} is a calculated parameter and is the greater of $t_{WDD} - t_{PWE}$ (actual) or $t_{DOD} - t_{SD}$ (actual).

Switching Characteristics for $V_{CC} = 3.0$ V

Over the Operating Range

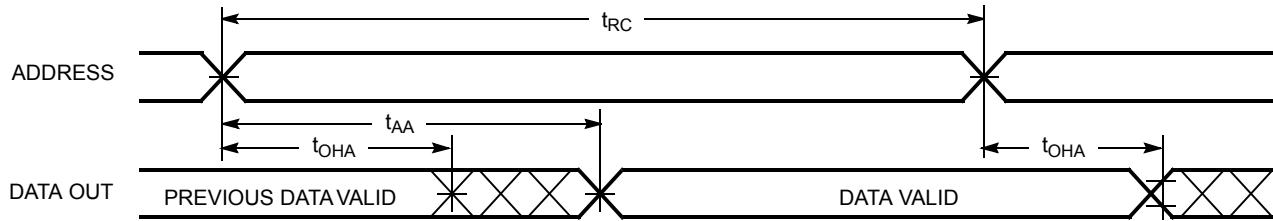
Parameter	Description	CYDC128B16		CYDC128B16		Unit	
		-40		-55			
		Min	Max	Min	Max		
Read Cycle							
t_{RC}	Read cycle time	40		55		ns	
t_{AA}	Address to data valid		40		55	ns	
t_{OHA}	Output hold from address change	5		5		ns	
$t_{ACE}^{[39]}$	CE LOW to data valid		40		55	ns	
t_{DOE}	OE LOW to data valid		25		30	ns	
$t_{LZOE}^{[40, 41, 42]}$	OE Low to low Z	1		1		ns	
$t_{HZOE}^{[40, 41, 42]}$	OE HIGH to high Z		15		15	ns	
$t_{LZCE}^{[40, 41, 42]}$	CE LOW to low Z	1		1		ns	
$t_{HZCE}^{[40, 41, 42]}$	CE HIGH to high Z		15		15	ns	
$t_{PU}^{[42]}$	CE LOW to power up	0		0		ns	
$t_{PD}^{[42]}$	CE HIGH to power down		40		55	ns	
$t_{ABE}^{[39]}$	Byte enable access time		40		55	ns	
Write Cycle							
t_{WC}	Write cycle time	40		55		ns	
$t_{SCE}^{[39]}$	CE LOW to write end	30		45		ns	
t_{AW}	Address valid to write end	30		45		ns	
t_{HA}	Address hold from write end	0		0		ns	
$t_{SA}^{[39]}$	Address setup to write start	0		0		ns	
t_{PWE}	Write pulse width	25		40		ns	
t_{SD}	Data setup to write end	20		30		ns	
t_{HD}	Data hold from write end	0		0		ns	
$t_{HZWE}^{[41, 42]}$	R/W LOW to high Z		15		25	ns	
$t_{LZWE}^{[41, 42]}$	R/W HIGH to low Z	0		0		ns	
$t_{WDD}^{[43]}$	Write pulse to data delay		55		80	ns	
$t_{DDD}^{[43]}$	Write data valid to read data valid		55		80	ns	

Notes

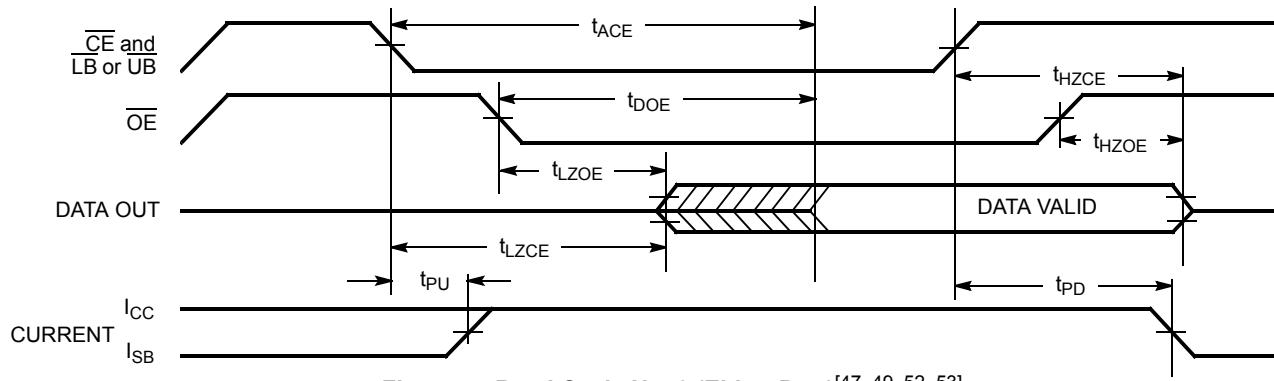
39. To access RAM, $\overline{CE} = L$, $\overline{UB} = L$, $\overline{SEM} = H$. To access semaphore, $\overline{CE} = H$ and $\overline{SEM} = L$. Either condition must be valid for the entire t_{SCE} time.
40. At any given temperature and voltage condition for any given device, t_{HZCE} is less than t_{LZCE} and t_{HZOE} is less than t_{LZOE} .
41. Test conditions used are Load 3.
42. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.
43. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.

Switching Characteristics for $V_{CC} = 3.0$ V (continued)

Over the Operating Range


Parameter	Description	CYDC128B16		CYDC128B16		Unit	
		-40		-55			
		Min	Max	Min	Max		
Busy Timing^[44]							
t_{BLA}	BUSY LOW from address match		30		45	ns	
t_{BHA}	BUSY HIGH from address mismatch		30		45	ns	
t_{BLC}	BUSY LOW from \overline{CE} LOW		30		45	ns	
t_{BHC}	BUSY HIGH from \overline{CE} HIGH		30		45	ns	
$t_{PS}^{[45]}$	Port set up for priority	5		5		ns	
t_{WB}	R/W HIGH after BUSY (Slave)	0		0		ns	
t_{WH}	R/W HIGH after BUSY HIGH (Slave)	20		35		ns	
$t_{BDD}^{[46]}$	BUSY HIGH to data valid		30		40	ns	
Interrupt Timing^[44]							
t_{INS}	INT set time		35		45	ns	
t_{INR}	INT reset time		35		45	ns	
Semaphore Timing							
t_{SOP}	SEM flag update pulse (OE or SEM)	10		15		ns	
t_{SWRD}	SEM flag write to read time	10		10		ns	
t_{SPS}	SEM flag contention window	10		10		ns	
t_{SAA}	SEM address access time		40		55	ns	

Notes


44. Test conditions used are Load 2.
 45. Add 2ns to this value when the I/O ports are operating at different voltages.
 46. t_{BDD} is a calculated parameter and is the greater of $t_{WDD} - t_{PWE}$ (actual) or $t_{DSD} - t_{SD}$ (actual).

Switching Waveforms

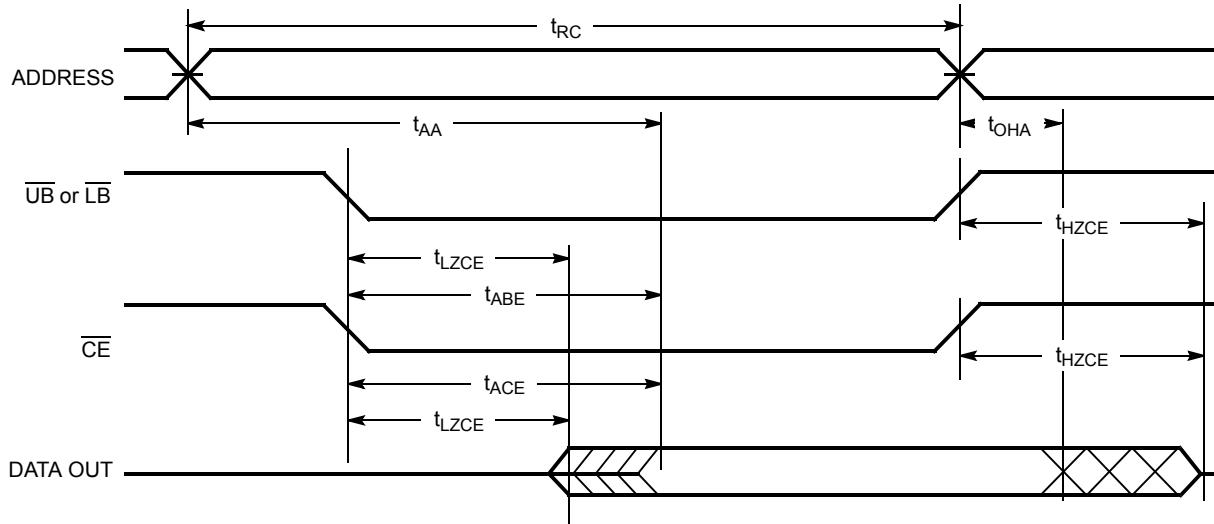
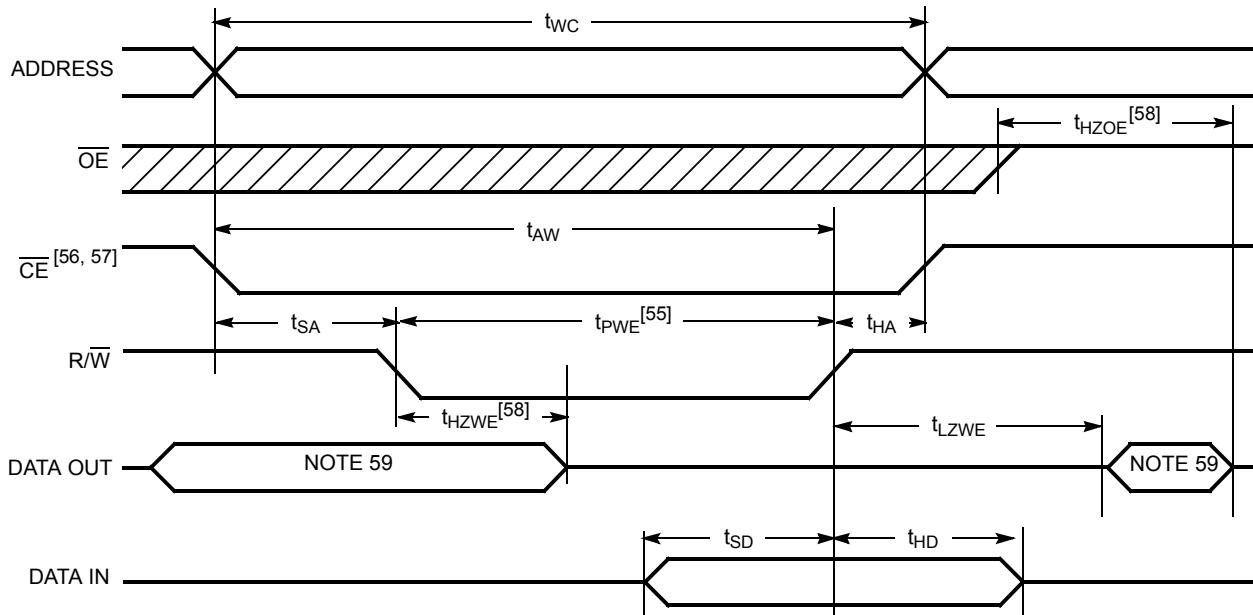
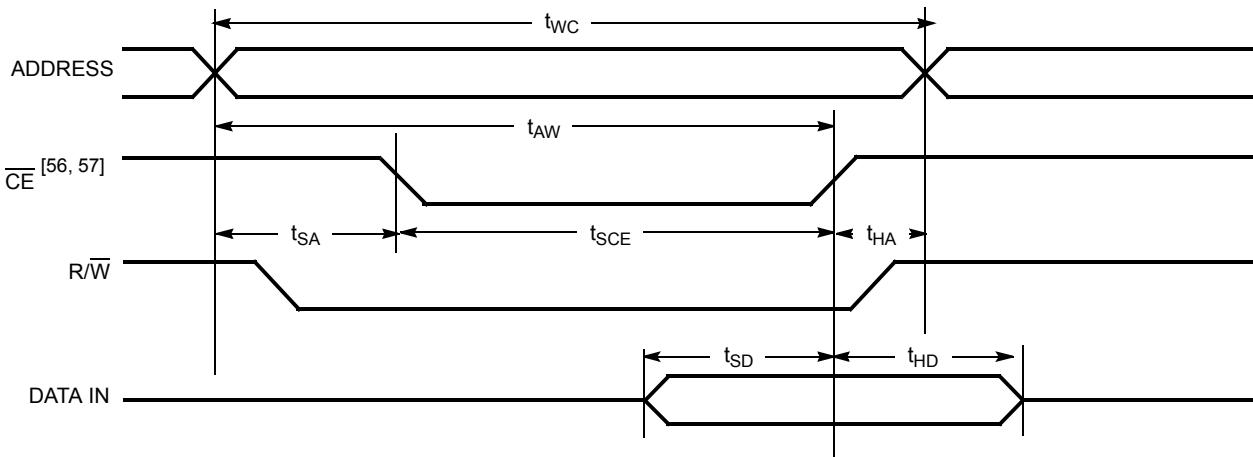

Figure 3. Read Cycle No.1 (Either Port Address Access)^[47, 48, 49]

Figure 4. Read Cycle No.2 (Either Port $\overline{CE}/\overline{OE}$ Access)^[47, 50, 51]

Figure 5. Read Cycle No. 3 (Either Port)^[47, 49, 52, 53]



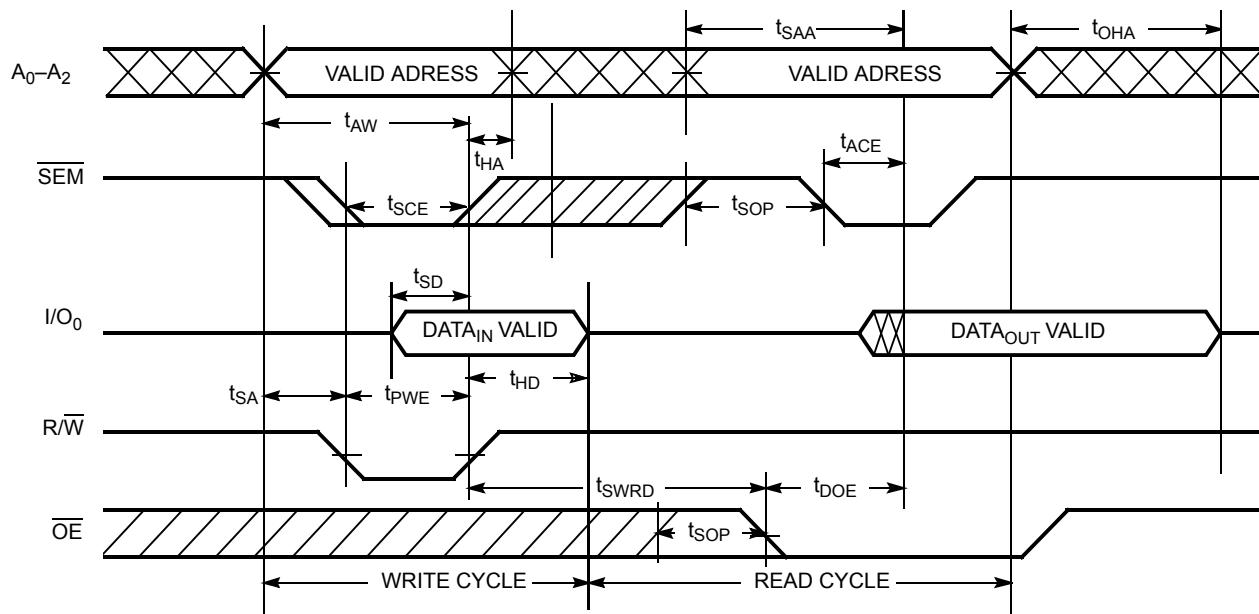
Notes


47. R/W is HIGH for read cycles.
48. Device is continuously selected $\overline{CE} = V_{IL}$ and $\overline{UB} = V_{IL}$ or $\overline{LB} = V_{IL}$. This waveform cannot be used for semaphore reads.
49. $OE = V_{IL}$.
50. Address valid prior to or coincident with \overline{CE} transition LOW.
51. To access RAM, $CE = V_{IL}$, UB or $LB = V_{IL}$, $SEM = V_{IH}$. To access semaphore, $\overline{CE} = V_{IH}$, $\overline{SEM} = V_{IL}$.
52. R/W must be HIGH during all address transitions.
53. A write occurs during the overlap (t_{SCE} or t_{PWE}) of a LOW \overline{CE} or \overline{SEM} and a LOW \overline{UB} or \overline{LB} .

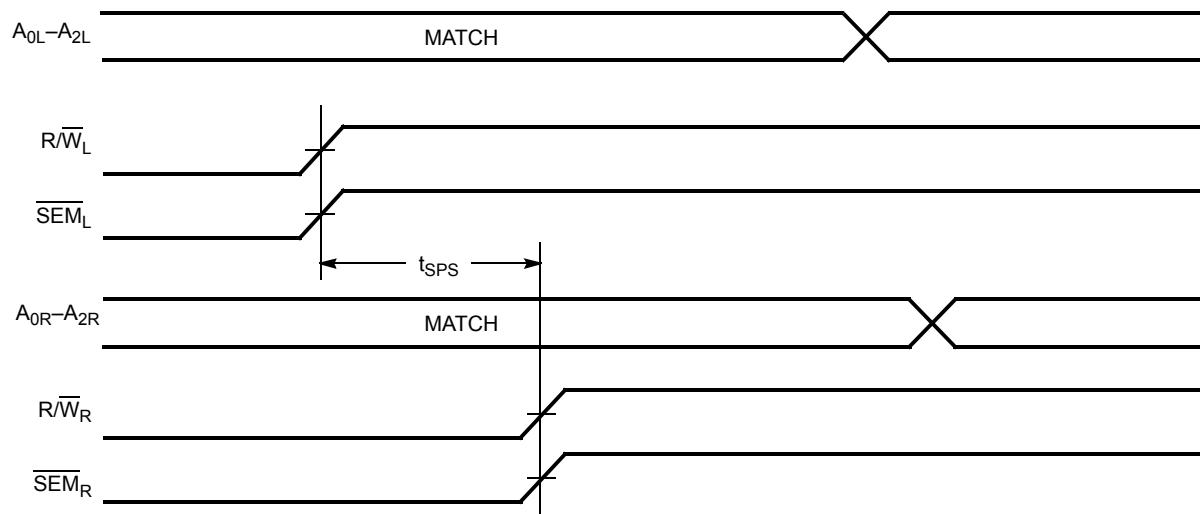
Switching Waveforms (continued)

Figure 6. Write Cycle No.1: R/W Controlled Timing^[52, 53, 54, 55, 56, 57]

Figure 7. Write Cycle No. 2: CE Controlled Timing^[52, 53, 54, 59]



Notes


54. t_{HA} is measured from the earlier of \overline{CE} or R/W or $(\overline{SEM}$ or R/W) going HIGH at the end of write cycle.
55. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t_{PWE} or $(t_{HZWE} + t_{SD})$ to allow the I/O drivers to turn off and data to be placed on the bus for the required t_{SD} . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified t_{PWE} .
56. To access RAM, $CE = V_{IL}$, $\overline{SEM} = V_{IH}$.
57. To access upper byte, $\overline{CE} = V_{IL}$, $\overline{UB} = V_{IL}$, $\overline{SEM} = V_{IH}$.
- To access lower byte, $CE = V_{IL}$, $LB = V_{IL}$, $SEM = V_{IH}$.
58. Transition is measured ± 0 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.
59. During this period, the I/O pins are in the output state, and input signals must not be applied.

Switching Waveforms (continued)

Figure 8. Semaphore Read After Write Timing, Either Side^[60, 61]

Figure 9. Timing Diagram of Semaphore Contention^[62, 63]

Notes

60. If the \overline{CE} or \overline{SEM} LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.
61. \overline{CE} = HIGH for the duration of the above timing (both write and read cycle).
62. $I/O_{0R} = I/O_{0L} = \text{LOW}$ (request semaphore); $CE_R = CE_L = \text{HIGH}$.
63. If t_{SPS} is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.

Switching Waveforms (continued)

Figure 10. Timing Diagram of Read with $\overline{\text{BUSY}} (\text{M/S}=\text{HIGH})$ ^[64]

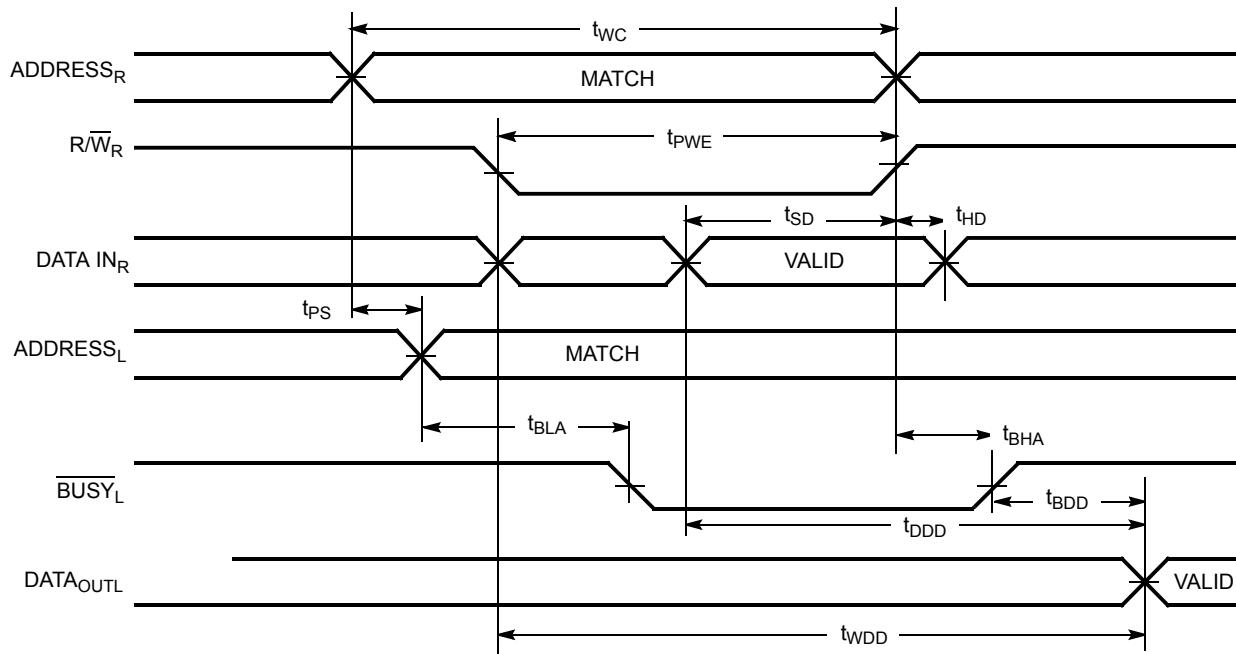
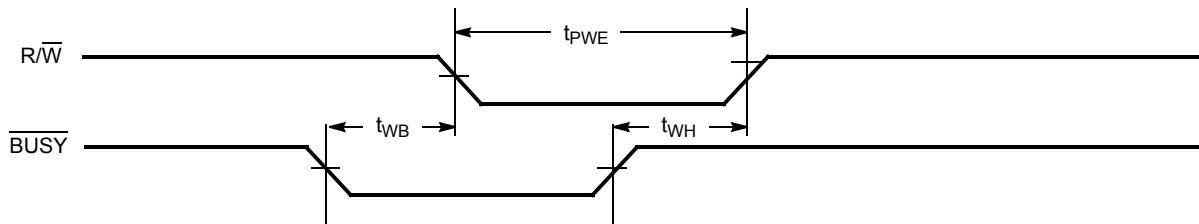



Figure 11. Write Timing with Busy Input (M/S = LOW)

Note

64. $\overline{\text{CE}}_L = \overline{\text{CE}}_R = \text{LOW}$.

Switching Waveforms (continued)

Figure 12. Busy Timing Diagram No.1 (CE Arbitration)

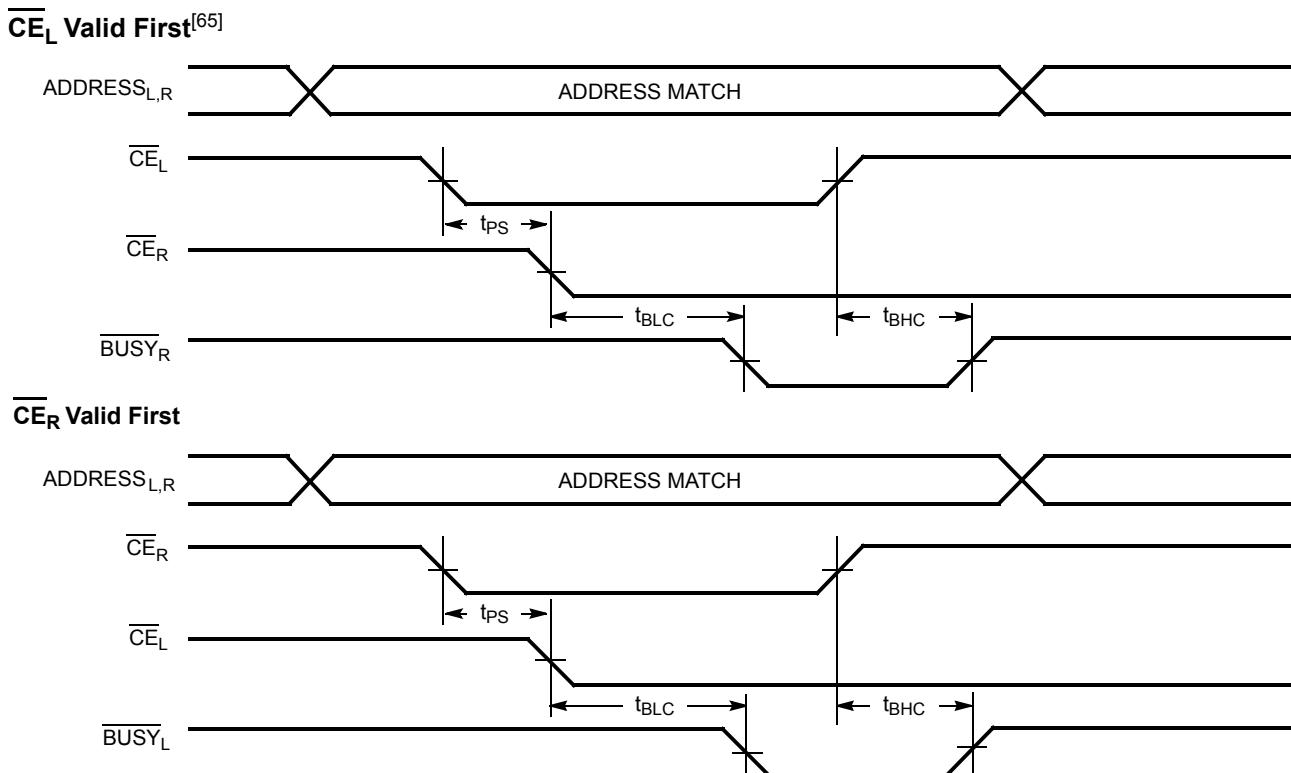
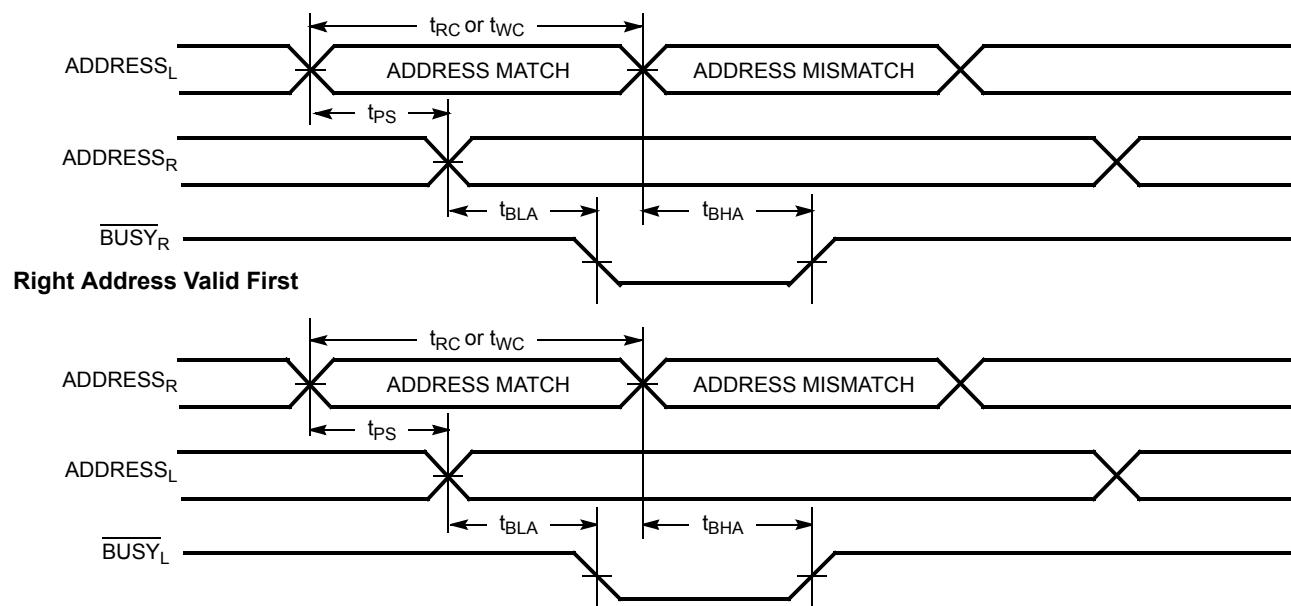
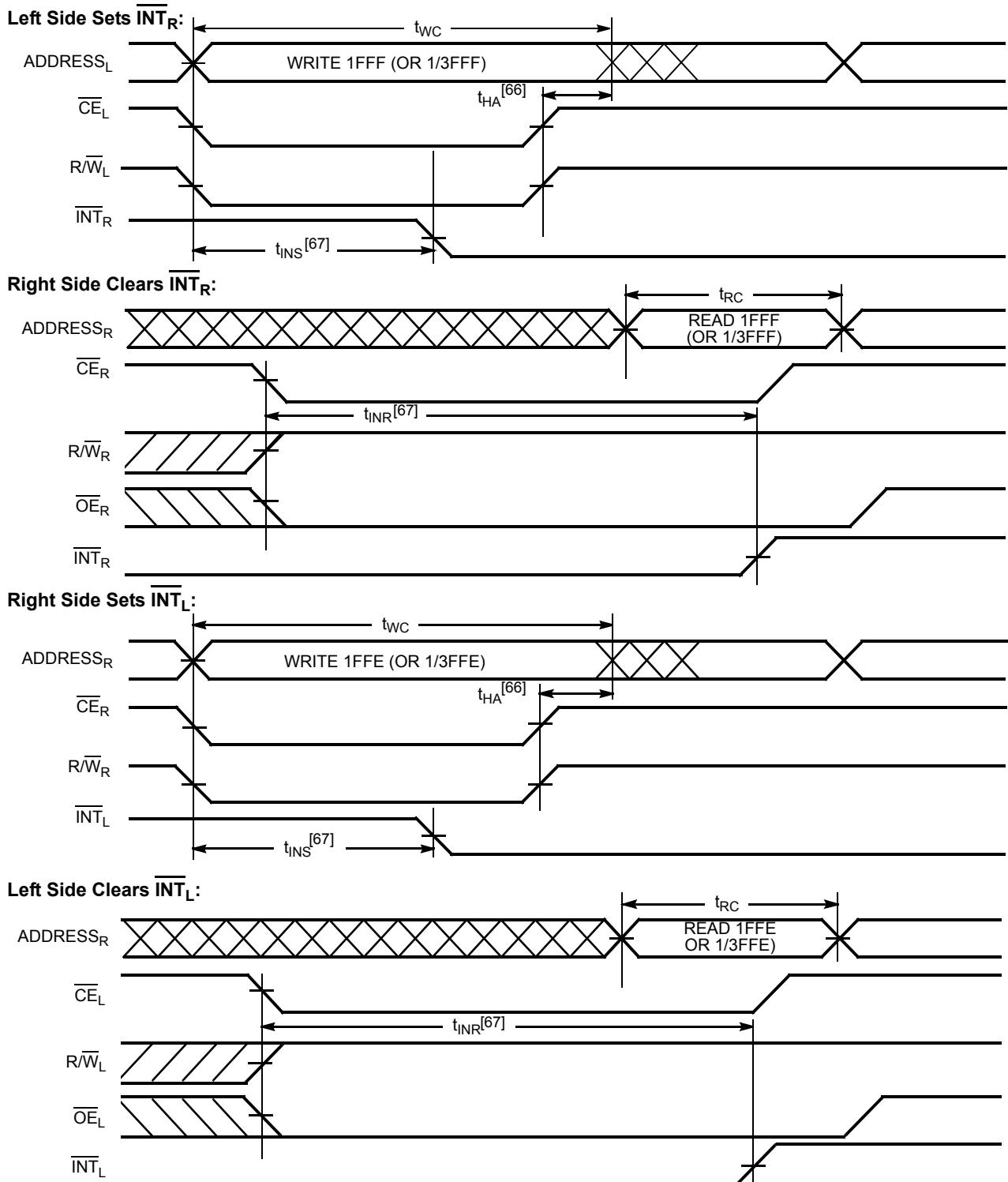



Figure 13. Busy Timing Diagram No.2 (Address Arbitration)^[65]

Left Address Valid First



Note

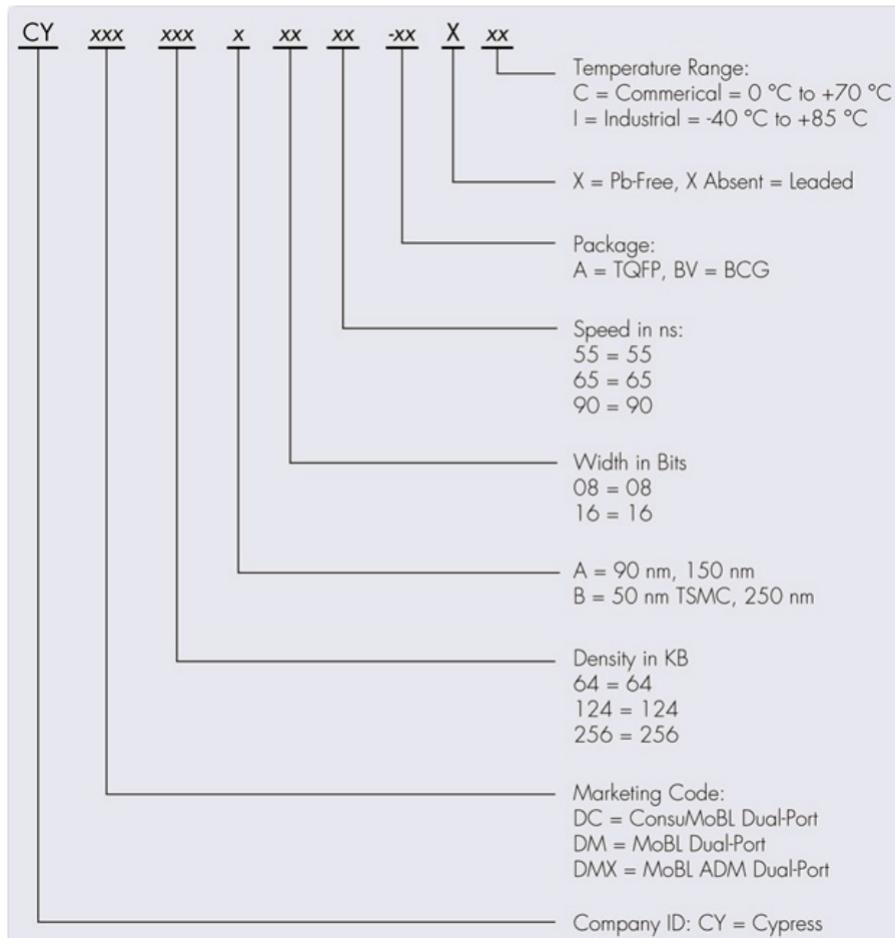
65. If t_{PS} is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.

Switching Waveforms (continued)

Figure 14. Interrupt Timing Diagrams

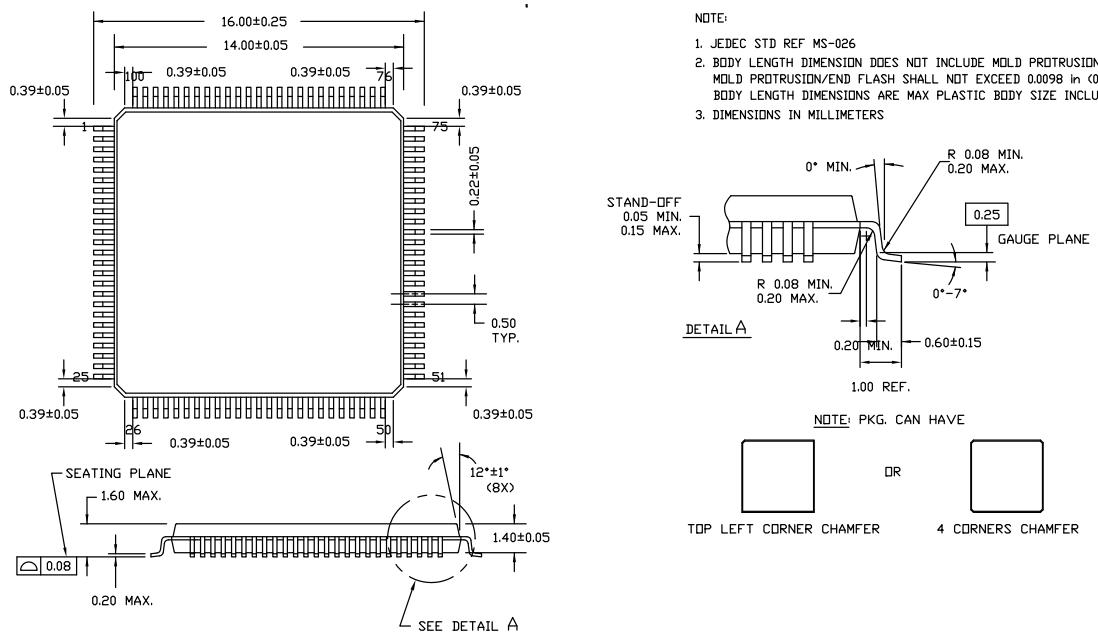
Notes

66. t_{HA} depends on which enable pin (\overline{CE}_L or $\overline{R/W}_L$) is deasserted first.


67. t_{INS} or t_{INR} depends on which enable pin (\overline{CE}_L or $\overline{R/W}_L$) is asserted last.

Ordering Information

8 K × 16 1.8 V Asynchronous Dual-Port SRAM


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CYDC128B16-55AXI	AZ0AB	100-pin Pb-free TQFP	Industrial

Ordering Code Definitions

Package Diagram

Figure 15. 100-pin TQFP (14 × 14 × 1.4 mm) Package Outline, 51-85048

51-85048 *I

Acronyms

Acronym	Description
CE	chip enable
CMOS	complementary metal oxide semiconductor
I/O	input/output
IRR	input read registers
ODR	output drive registers
OE	output enable
SEM	semaphore
SRAM	static random access memory
TQDP	thin quad flat pack
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
Hz	hertz
kHz	kilohertz
kΩ	kilohm
MHz	megahertz
µA	microampere
µF	microfarad
µs	microsecond
mA	milliampere
mm	millimeter
ms	millisecond
mV	millivolt
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CYDC128B16 1.8 V 4 K/8 K/16 K × 16 and 8 K/16 K × 8 ConsuMoBL Dual-Port Static RAM Document Number: 001-01638				
Revision	ECN	Submission Date	Orig. of Change	Description of Change
**	385185	SEE ECN	YDT	New data sheet
*A	396697	SEE ECN	KGH	Updated ISB2 and ISB4 typo to mA. Updated tINS and tINR for -55 to 31ns.
*B	404777	SEE ECN	KGH	Updated I_{OH} and I_{OL} values for the 1.8V, 2.5V and 3.0V parameters V_{OH} and V_{OL} Replaced -35 speed bin with -40 Updated Switching Characteristics for $V_{CC} = 2.5V$ and $V_{CC} = 3.0V$ Included note 34
*C	463014	SEE ECN	HKH	Changed spec title to from "Consumer Dual-Port" to "ConsuMoBL Dual-Port" Cypress Internet Release
*D	505803	SEE ECN	HKH	Corrected typo in Features and Ordering Info sections. Cypress external web release.
*E	735537	SEE ECN	HKH	Corrected typo in Pg5 power supply section Updated tDDD timing value to be consistent with tWDD
*F	2905507	04/06/2010	YDT	Removed parts CYDC064B08-55AXI, CYDC064B16-55AXI. Updated package diagram.
*G	2930445	05/11/2010	AVF	Removed references to inactive parts from the data sheet. Updated template.
*H	3183900	02/28/11	ESH	Added ordering code definitions.
*I	4301267	03/07/2014	HBM	Updated Package Diagram : spec 51-85048 – Changed revision from *E to *I. Updated in new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at [Cypress Locations](#).

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

[Community](#) | [Forums](#) | [Blogs](#) | [Video](#) | [Training](#)

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2005-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and/or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.