Power MOSFET

8.5 A, 20 V, Logic Level, N-Channel Micro8[™] Leadless

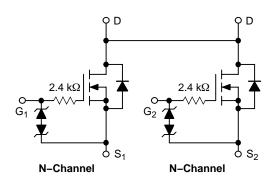
EZFETs™ are an advanced series of Power MOSFETs which contain monolithic back-to-back zener diodes. These zener diodes provide protection against ESD and unexpected transients. These miniature surface mount MOSFETs feature ultra low R_{DS(on)} and true logic level performance. EZFET devices are designed for use in low voltage, high speed switching applications where power efficiency is important. Typical applications are dc-dc converters, and power management in portable and battery powered products such as computers, printers, cellular and cordless phones.

Applications

- Zener Protected Gates Provide Electrostatic Discharge Protection
- Designed to Withstand 4000 V Human Body Model
- Ultra Low R_{DS(on)} Provides Higher Efficiency and Extends **Battery Life**
- Logic Level Gate Drive Can be Driven by Logic ICs
- Micro8 Leadless Surface Mount Package Saves Board Space
- I_{DSS} Specified at Elevated Temperature
- Pb-Free Package is Available*

MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted)

Rating	Symbol	10 Secs	Steady State	Unit
Drain-to-Source Voltage	V_{DSS}	20		V
Gate-to-Source Voltage	V_{GS}	±12		V
Continuous Drain Current (Note 1) $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	I _D	8.5 6.1	6.0 4.2	A
Pulsed Drain Current (tp ≤ 600 μs)	I _{DM}	30		Α
Continuous Source–Diode Conduction (Note 1)	I _s	2.9	1.4	Α
Total Power Dissipation (Note 1) $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	P _D	3.1 1.6	1.5 0.79	W
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to 150		°C
Thermal Resistance (Note 1) Junction–to–Ambient	$R_{\theta JA}$	40	82	°C/W


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

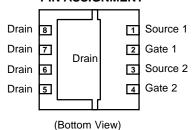
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
20 V	20 mΩ @ 4.5 V	8.5 A	
	22 mΩ @ 2.5 V	0.5 A	

Micro8 Leadless

CASE 846C


MARKING DIAGRAM

= Assembly Location Α = Year WW = Work Week

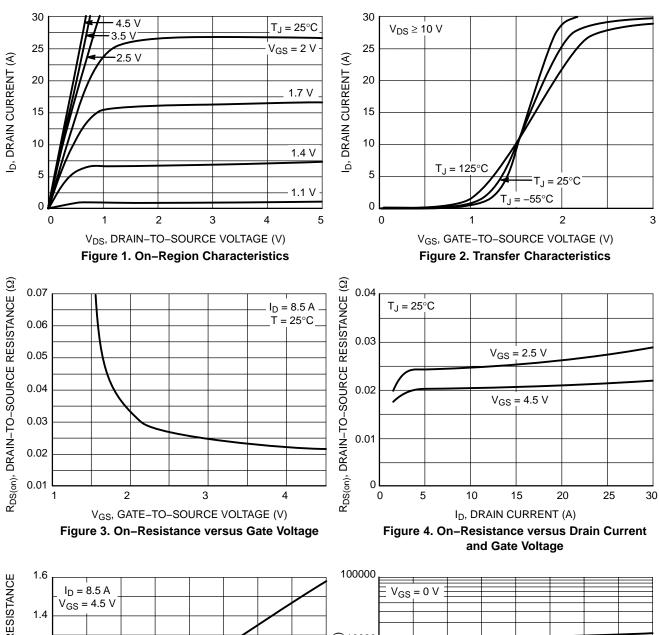
= Pb-Free Package

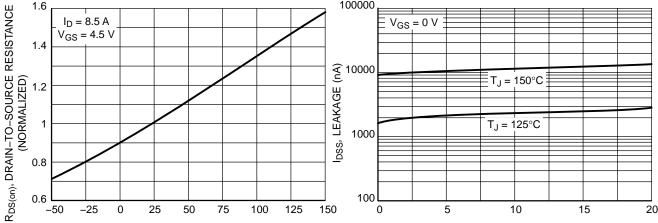
PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

^{1.} When surface mounted to 1" x 1" FR-4 board.


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		_				
Drain-to-Source Breakdown Voltag (V _{GS} = 0 Vdc, I _D = 250 μAdc)	e (Note 2)	V _{(BR)DSS}	20	_	_	Vdc
Zero Gate Voltage Drain Current $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J}$	= 85°C)	I _{DSS}	- -	- -	1.0 20	μAdc
$\begin{aligned} &\text{Gate-Body Leakage Current} \\ &(\text{V}_{\text{GS}} = \pm 4.5 \text{ Vdc}, \text{V}_{\text{DS}} = 0 \text{ Vdc}) \\ &(\text{V}_{\text{GS}} = \pm 12 \text{ Vdc}, \text{V}_{\text{DS}} = 0 \text{ Vdc}) \end{aligned}$		I _{GSS}	- -	- -	1.0 500	μAdc
ON CHARACTERISTICS (Note 2)						
Gate Threshold Voltage (Note 2) (V _{DS} = V _{GS} , I _D = 250 μ Adc)		V _{GS(th)}	0.4	_	0.9	Vdc
Static Drain-to-Source On-Resista ($V_{GS} = 4.5 \text{ Vdc}$, $I_D = 6.5 \text{ Adc}$) ($V_{GS} = 2.5 \text{ Vdc}$, $I_D = 5.8 \text{ Adc}$)	nce (Note 2)	R _{DS(on)}	- -	20 22	26 31	mΩ
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	_	785	_	pF
Output Capacitance	$(V_{DS} = 16 \text{ Vdc}, V_{GS} = 0 \text{ V}, $ f = 10 kHz)	C _{oss}	-	135	_	
Transfer Capacitance]	C _{rss}	-	100	_	
SWITCHING CHARACTERISTICS	(Note 3)					
Gate Charge	$(V_{GS} = 4.5 \text{ Vdc}, I_D = 6.5 \text{ Adc}, V_{DS} = 10 \text{ Vdc})$ (Note 2)	Q _T	-	12.4	16	nC
		Q ₁	_	1.3	_	
		Q ₂	-	3.5	_	
Turn-On Delay Time		t _{d(on)}	-	0.55	1.1	μS
Rise Time	$(V_{GS} = 4.5 \text{ Vdc}, V_{DD} = 10 \text{ Vdc}, I_{D} = 1.0 \text{ Adc}, R_{G} = 9.1 \Omega)$ (Note 2)	t _r	-	1.17	2.2	
Turn-Off Delay Time		t _{d(off)}	-	2.9	5.8	
Fall Time	1	t _f	-	3.8	7.7	
SOURCE-DRAIN DIODE CHARAC	TERISTICS	•		•	•	•
Forward On-Voltage	$(I_S = 1.5 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $I_S = 1.5 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 85^{\circ}\text{C})$ (Note 2)	V _{SD}	- -	0.65 0.60	1.0	Vdc

Pulse Test: Pulse Width • 300 μs, Duty Cycle • 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

 $\label{eq:TJ} \mbox{$T_J$, TEMPERATURE (°C)$} \mbox{Figure 5. On-Resistance Variation with } \mbox{T_{CM} Temperature}$

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

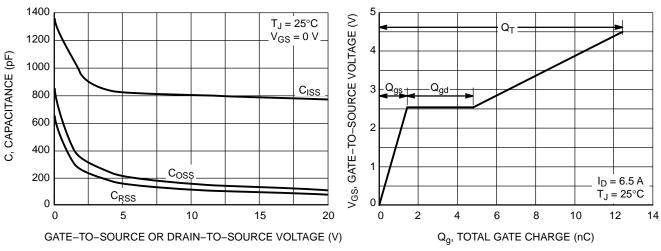


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

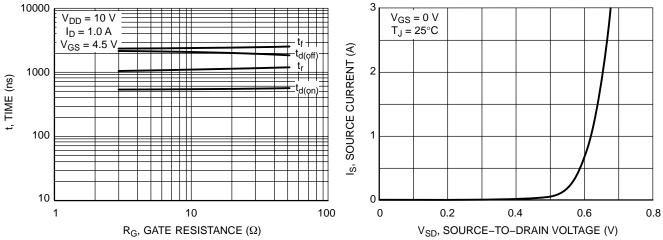


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

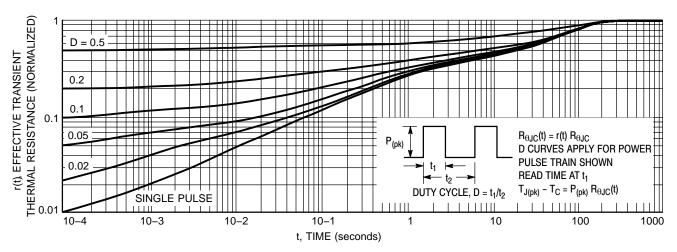


Figure 11. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLTD7900NR2G	Micro8 LL (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

Micro8 Leadless CASE 846C-01 ISSUE O

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER ASME
- Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER.
- 3. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.

 4. DIMENSION D APPLIES TO METALLIZED
- DIMENSION DAPPLES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 MM AND 0.30 MM FROM TERMINAL TIP. DIMENSION 1.1 IS THE TERMINAL PULL BACK FROM PACKAGE EDGE, UP TO 0.1 MM IS ACCEPTABLE. L1 IS OPTIONAL.
- DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	3.20	3.40	
В	3.20	3.40	
O	0.85	0.95	
D	0.28	0.33	
Е	1.30	1.50	
F	2.55	2.75	
G	0.65 BSC		
Н	0.95	1.15	
۲	0.25 BSC		
K	0.00	0.05	
L	0.35	0.45	
M	1.60	1.70	
N	1.60	1.70	
Р	1.28	1.38	
R	0.200	0.250	
S	0.18	0.23	
U	0.20		

EZFET is a trademark of Semiconductor Components Industries, LLC (SCILLC). Micro8 is a trademark of International Rectifier.

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.