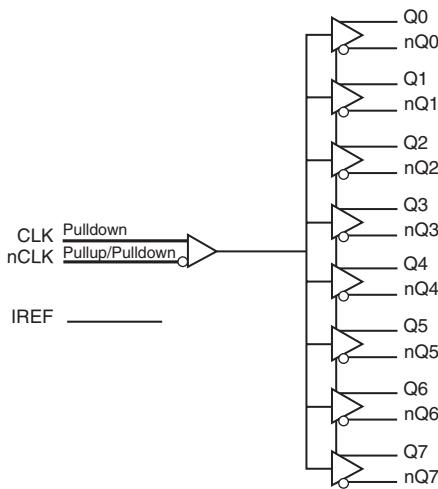


General Description


The ICS85108I is a low skew, high performance 1-to-8 Differential-to-0.7V HCSL Clock Distribution Chip and a member of the HiPerClockS™ family of High Performance Clock Solutions from IDT. The ICS85108I CLK, nCLK pair can accept most differential input levels and translates them to 3.3V HCSL output levels. The ICS85108I provides a low power, low noise, low skew, point-to-point solution for distributing HCSL clock signals.

Guaranteed output and part-to-part skew specifications make the ICS85108I ideal for those applications demanding well defined performance and repeatability.

Features

- Eight 0.7V differential HCSL clock output pairs
- CLK/nCLK input pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL
- Maximum output frequency: 500MHz
- Additive phase jitter, RMS: 0.09ps (typical)
- Output skew: 80ps (maximum)
- Part-to-part skew: 400ps (maximum)
- Propagation delay: 3ns (maximum)
- Full 3.3V operating supply
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

Q0	1	24	Q7
nQ0	2	23	nQ7
V _{DD}	3	22	GND
CLK	4	21	V _{DD}
nCLK	5	20	Q6
Q1	6	19	nQ6
nQ1	7	18	Q5
Q2	8	17	nQ5
nQ2	9	16	V _{DD}
IREF	10	15	GND
Q3	11	14	Q4
nQ3	12	13	nQ4

ICS85108I

24-Lead TSSOP, 173-MIL
4.4mm x 7.8mm x 0.925mm package body
G Package
Top View

Table 1. Pin Descriptions

Number	Name	Type	Description		
1, 2	Q0, nQ0	Output	Differential output pair. HCSL interface levels.		
3, 16, 21	V _{DD}	Power	Power supply pins.		
4	CLK	Input	Pulldown	Non-inverting differential clock input.	
5	nCLK	Input	Pullup/ Pulldown	Inverting differential clock input.	
6, 7	Q1, nQ1	Output		Differential output pair. HCSL interface levels.	
8, 9	Q2, nQ2	Output		Differential output pair. HCSL interface levels.	
10	IREF			External fixed precision resistor (475Ω) from this pin to ground provides a reference current used for differential current-mode Qx/nQx clock outputs.	
11, 12	Q3, nQ3	Output		Differential output pair. HCSL interface levels.	
13, 14	nQ4, Q4	Output		Differential output pair. HCSL interface levels.	
15, 22	GND	Power		Power supply ground.	
17, 18	nQ5, Q5	Output		Differential output pair. HCSL interface levels.	
19, 20	nQ6, Q6	Output		Differential output pair. HCSL interface levels.	
23, 24	nQ7, Q7	Output		Differential output pair. HCSL interface levels.	

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistors			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistors			51		kΩ

Function Tables

Table 3. Clock Input Function Table

Inputs		Outputs		Input to Output Mode	Polarity
CLK	nCLK	Q[0:7]	n[0:7]		
0	1	LOW	HIGH	Differential to Differential	Non-Inverting
1	0	HIGH	LOW	Differential to Differential	Non-Inverting
0	Biased; NOTE 1	LOW	HIGH	Single-Ended to Differential	Non-Inverting
1	Biased; NOTE 1	HIGH	LOW	Single-Ended to Differential	Non-Inverting
Biased; NOTE 1	0	HIGH	LOW	Single-Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single-Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information section *Wiring the Differential Input to Accept Single Ended Levels*.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5V$
Outputs, V_O	-0.5V to $V_{DD} + 0.5V$
Package Thermal Impedance, θ_{JA}	87.8°C/W (0 mps)
Storage Temperature, T_{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 10\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.97	3.3	3.63	V
I_{DD}	Power Supply Current				27	mA

Table 4B. Differential DC Characteristics, $V_{DD} = 3.3V \pm 10\%$, $T_A = -40^\circ C$ to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	$CLK, nCLK$	$V_{DD} = V_{IN} = 3.63V$			μA
I_{IL}	Input Low Current	CLK	$V_{DD} = 3.63V, V_{IN} = 0V$	-5		μA
		$nCLK$	$V_{DD} = 3.635V, V_{IN} = 0V$	-150		μA
V_{PP}	Peak-to-Peak Voltage; NOTE 1		0.15		1.3	V
V_{CMR}	Common Mode Input Voltage; NOTE 1, 2		$GND + 0.5$		$V_{DD} - 0.85$	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as V_{IH} .

AC Electrical Characteristics

Table 5. HCSL AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 10\%$, $T_A = -40^\circ\text{C}$ to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Output Frequency				500	MHz
t_{PD}	Propagation Delay; NOTE 1		1.5		3	ns
$tsk(o)$	Output Skew; NOTE 2, 3				80	ps
$tsk(pp)$	Part-to-Part Skew; NOTE 3, 4				400	ps
j_{fit}	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	250MHz, Integration Range: 12kHz – 20MHz		0.09		ps
V_{RB}	Ring-back Voltage Margin; NOTE 5, 6		-100		100	mV
t_{STABLE}	Time before V_{RB} is allowed; NOTE 5, 6		500			ps
V_{MAX}	Absolute Maximum Output Voltage; NOTE 7, 8				1150	mV
V_{MIN}	Absolute Minimum Output Voltage; NOTE 7, 9		-300			mV
V_{CROSS}	Absolute Crossing Voltage; NOTE 7, 10, 11		250		550	mV
ΔV_{CROSS}	Total Variation of V_{CROSS} over all edges; NOTE 7, 10, 12				140	mV
	Rise/Fall Edge Rate; NOTE 5, 13	Measured between -150mV to +150mV	0.6		5.5	V/ns
odc	Output Duty Cycle; NOTE 14		45		55	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \leq 250\text{MHz}$ unless noted otherwise.

NOTE 1: Measured from the differential input to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 5: Measurement taken from differential waveform.

NOTE 6: T_{STABLE} is the time the differential clock must maintain a minimum $\pm 150\text{mV}$ differential voltage after rising/falling edges before it is allowed to drop back into the $V_{RB} \pm 100\text{mV}$ differential range. See Parameter Measurement Information Section.

NOTE 7: Measurement taken from single-ended waveform.

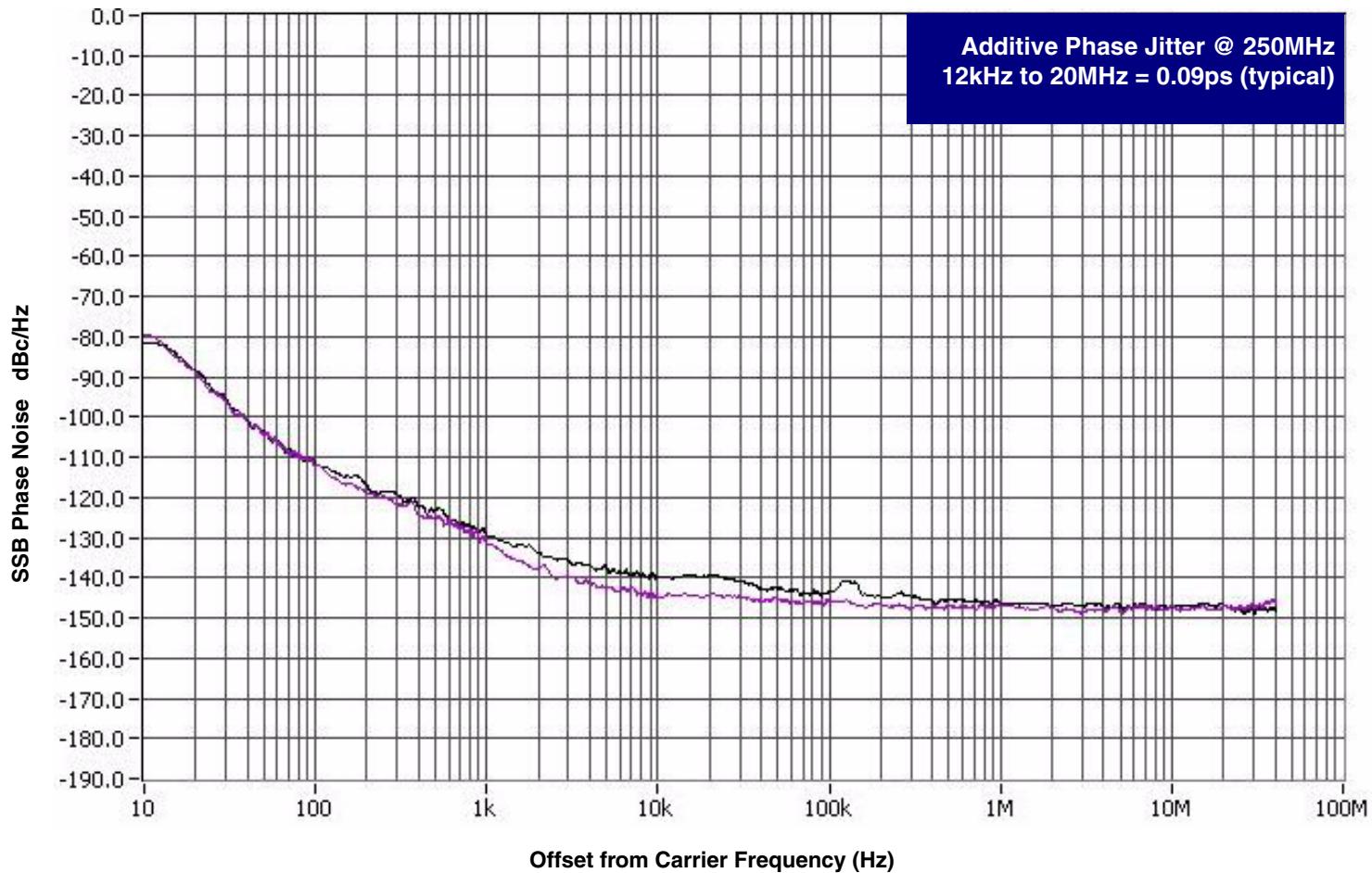
NOTE 8: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.

NOTE 9: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.

NOTE 10: Measured at crossing point where the instantaneous voltage value of the rising edge of Q_x equals the falling edge of nQ_x . See Parameter Measurement Information Section.

NOTE 11: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Parameter Measurement Information Section.

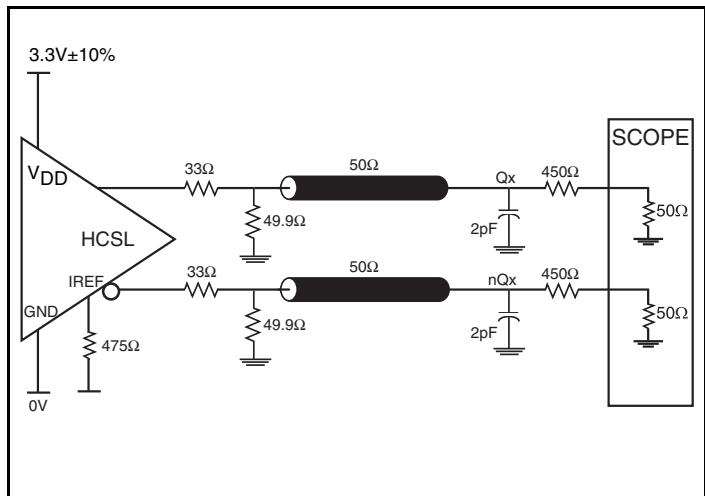
NOTE 12: Defined as the total variation of all crossing voltage of rising Q_x and falling nQ_x . This is the maximum allowed variance in the V_{CROSS} for any particular system. See Parameter Measurement Information Section.

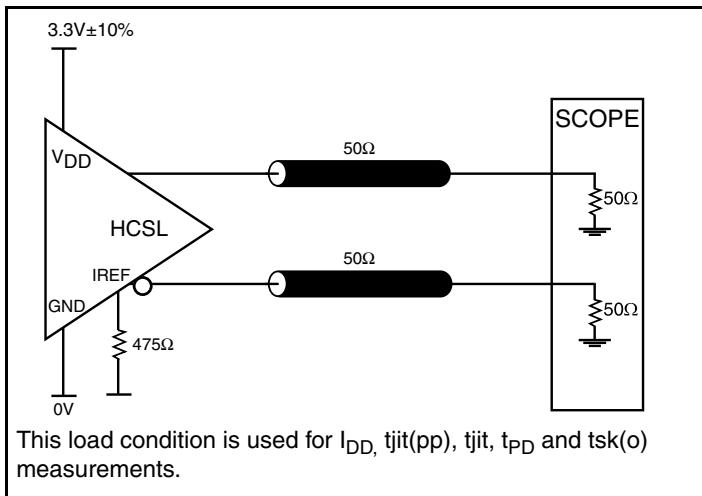

NOTE 13: Measured from -150mV to +150mV on the differential waveform (derived from Q_x minus nQ_x). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.

NOTE 14: Input duty cycle must be 50%.

Additive Phase Jitter

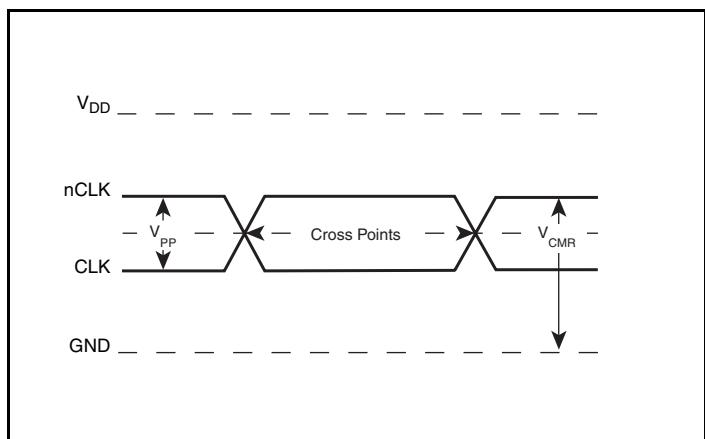
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio


of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

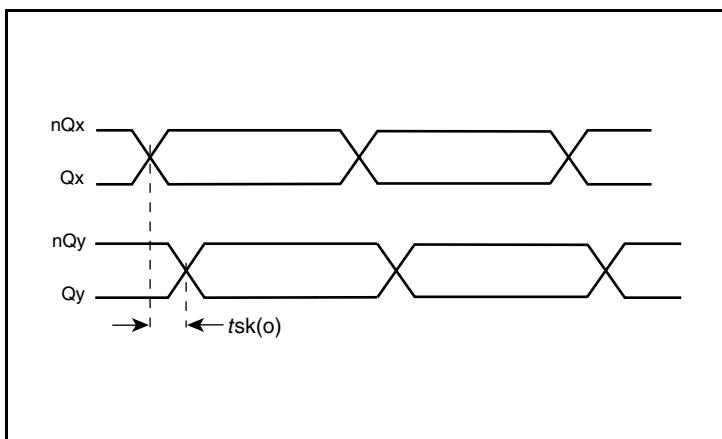

As with most timing specifications, phase noise measurements have issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This

is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

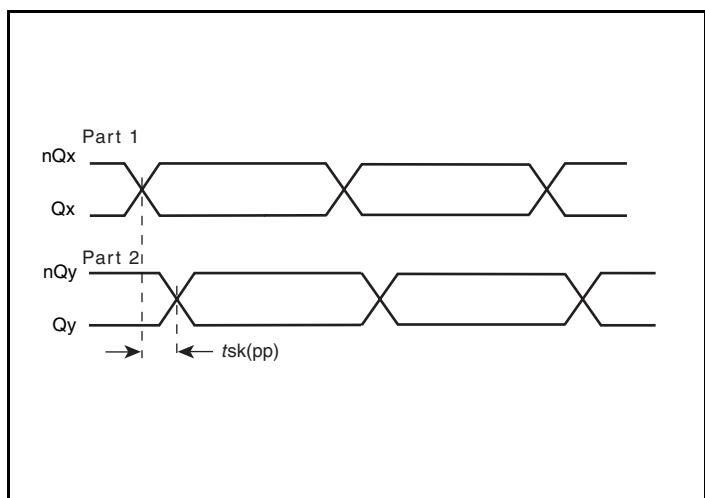
Parameter Measurement Information

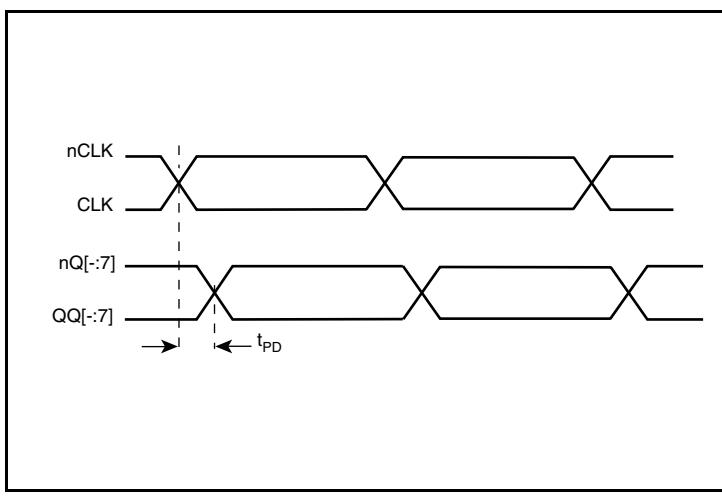


Output Load AC Test Circuit

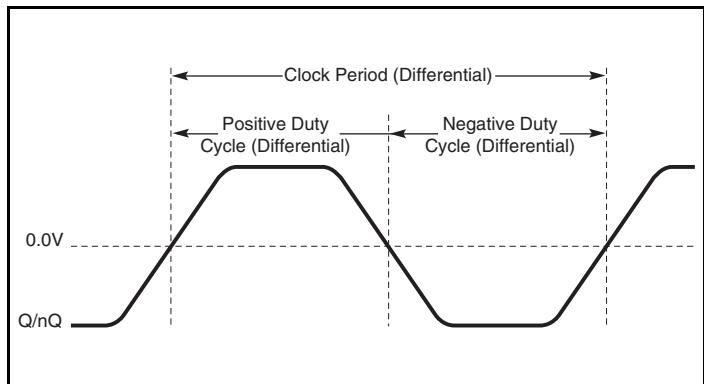


This load condition is used for I_{DD} , $t_{jif}(pp)$, t_{jif} , t_{PD} and $tsk(o)$ measurements.

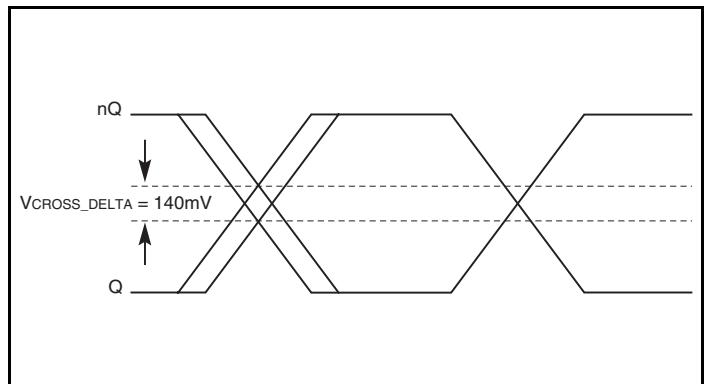

Output Load AC Test Circuit


Differential Input Level

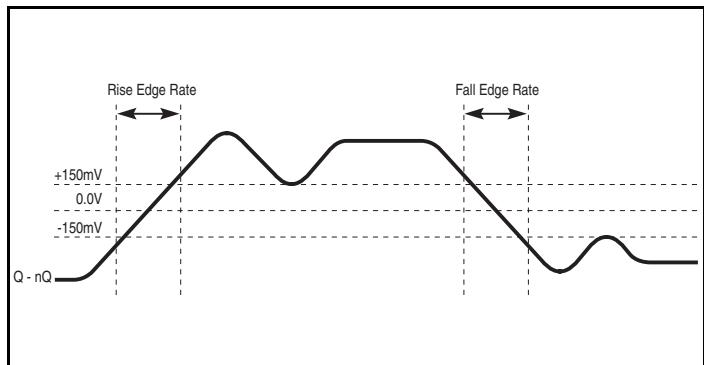
Output Skew

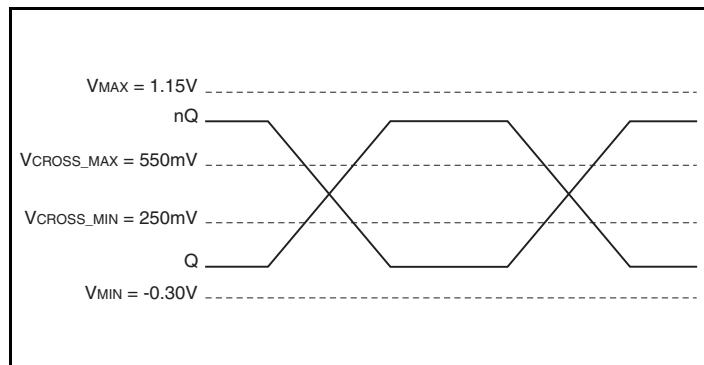


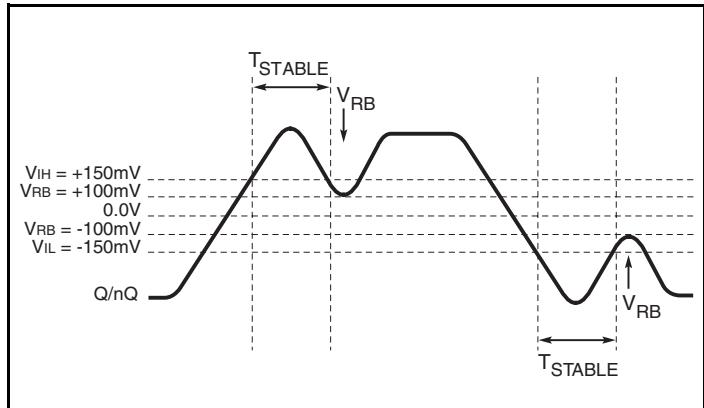
Part-to-Part Skew



Propagation Delay


Parameter Measurement Information, continued


Differential Measurement Points for Duty Cycle/Period


Single-ended Measurement Points for Delta Cross Point

Differential Measurement Points for Rise/Fall Edge Rate

Single-ended Measurement Points for Absolute Cross Point/Swing

Differential Measurement Points for Ringback

Application Information

Wiring the Differential Input to Accept Single Ended Levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of

R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and $R2/R1 = 0.609$.

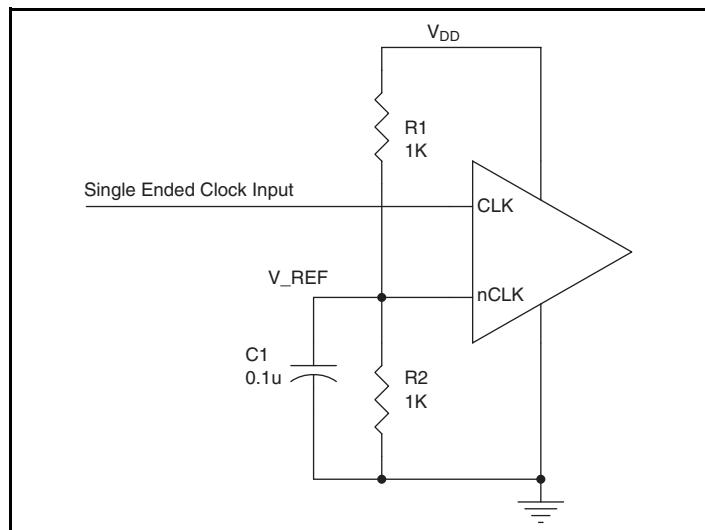
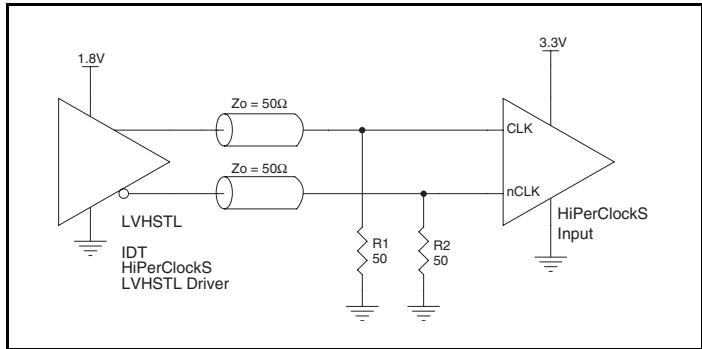


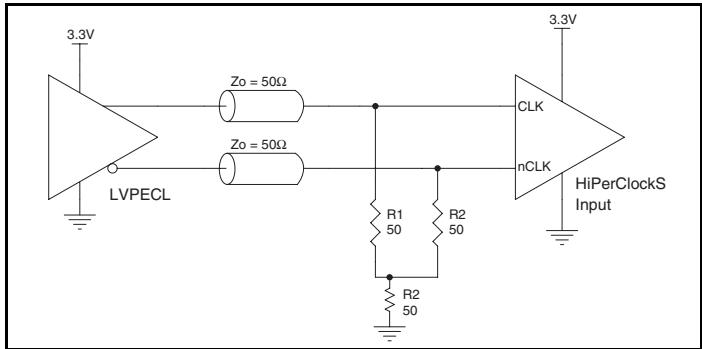
Figure 1. Single-Ended Signal Driving Differential Input

Recommendations for Unused Output Pins

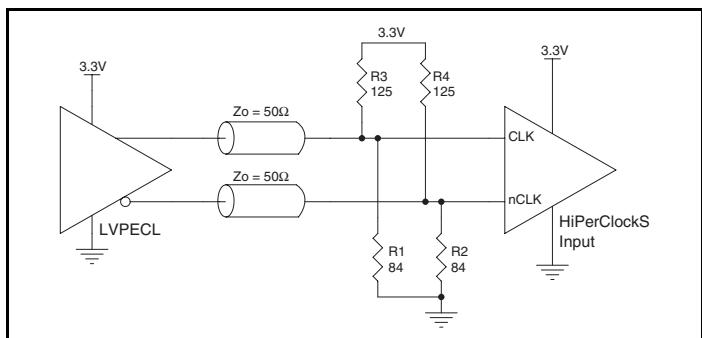
Outputs:

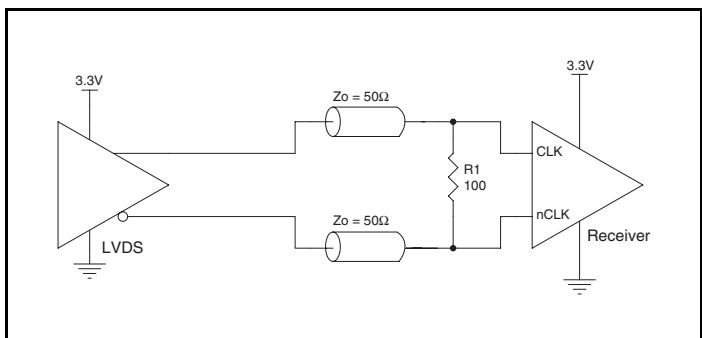

Differential Outputs

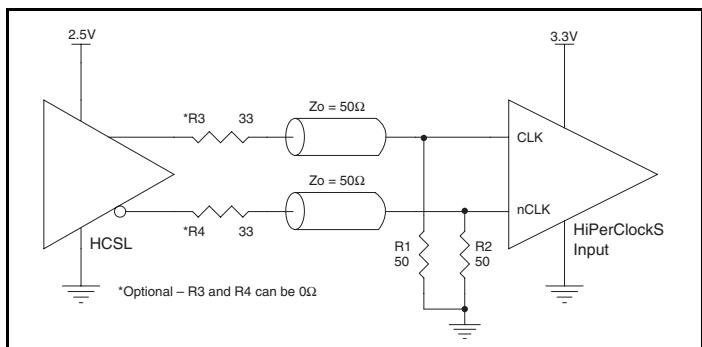
All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.


Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. The differential signals must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2F show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver


component to confirm the driver termination requirements. For example, in Figure 2A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.


Figure 2A. HiPerClockS CLK/nCLK Input Driven by an IDT Open Emitter HiPerClockS LVHSTL Driver


Figure 2B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

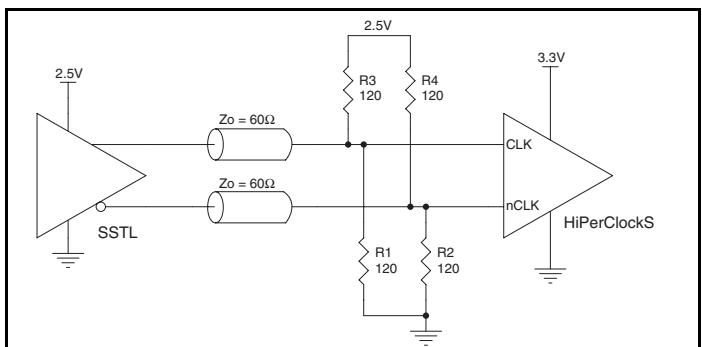

Figure 2C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 2D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

Figure 2E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

Figure 2F. HiPerClockS CLK/nCLK Input Driven by a 2.5V SSTL Driver

Recommended Termination

Figure 3A is the recommended termination for applications which require the receiver and driver to be on a separate PCB. All traces should be 50Ω impedance.

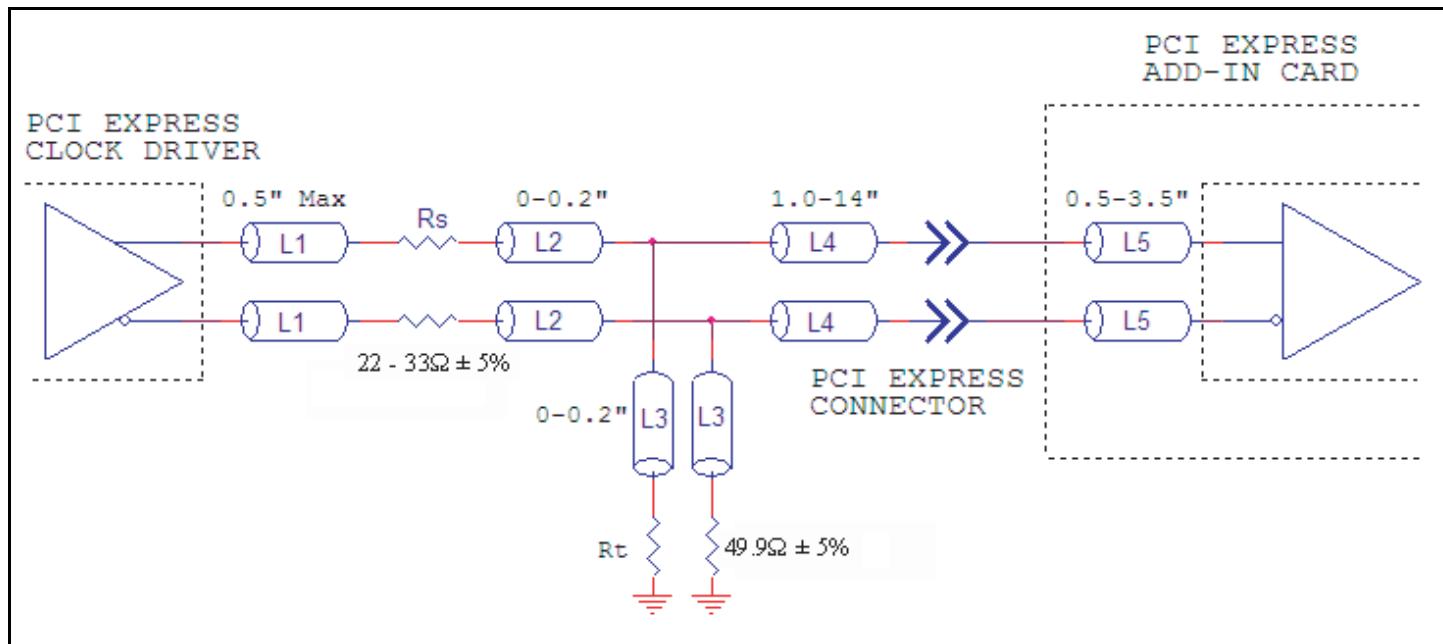


Figure 3A. Recommended Termination

Figure 3B is the recommended termination for applications which require a point to point connection and contain the driver and receiver

on the same PCB. All traces should all be 50Ω impedance.

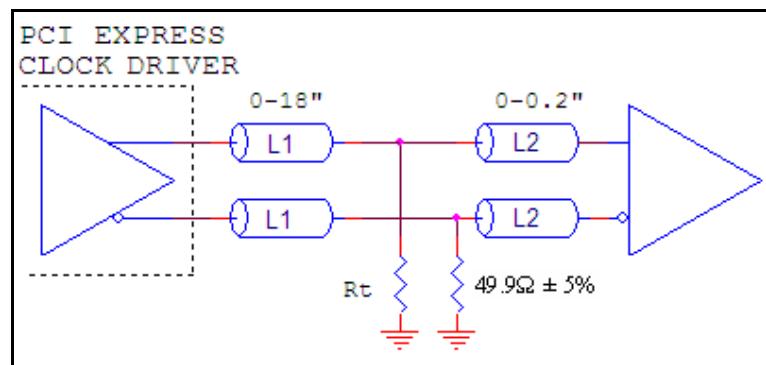


Figure 3B. Recommended Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS85108I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS85108I is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 10\% = 3.63V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = $V_{DD_MAX} * I_{DD_MAX} = 3.63V * 27mA = 98.01\text{mW}$
- Power (outputs)_{MAX} = **47.3mW/Loaded Output Pair**
If all outputs are loaded, the total power is $8 * 47.3\text{mW} = 378.4\text{mW}$

Total Power_{MAX} = (3.465V, with all outputs switching) = $98.01\text{mW} + 378.4\text{mW} = 476.41\text{mW}$

2. Junction Temperature.

Junction temperature, T_j , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C. Limiting the internal transistor junction temperature, T_j , to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} * P_{d_total} + T_A$

T_j = Junction Temperature

θ_{JA} = Junction-to-Ambient Thermal Resistance

P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)

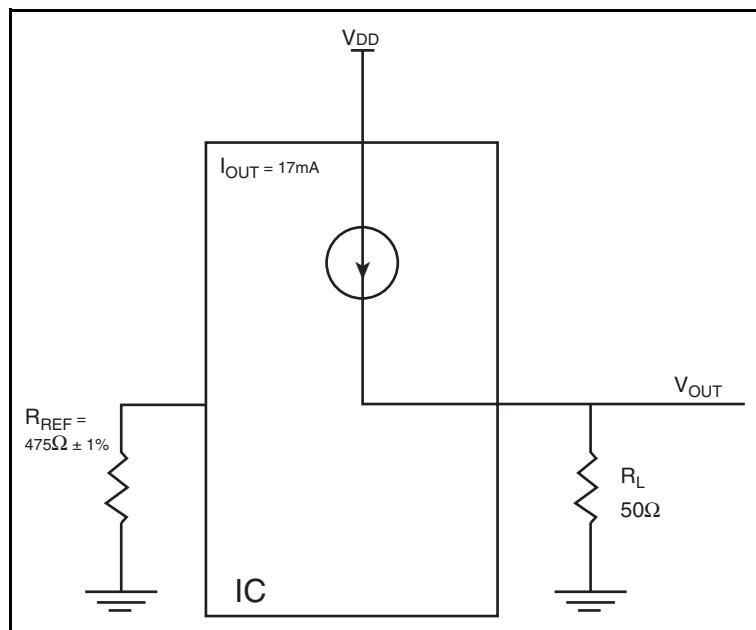
T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming 1 meter per second and a multi-layer board, the appropriate value is 83.5°C/W per Table 6 below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

$85^\circ\text{C} + 0.476\text{W} * 83.5^\circ\text{C/W} = 124.7^\circ\text{C}$. This is below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).


Table 6. Thermal Resistance θ_{JA} for 24 Lead TSSOP, Forced Convection

θ_{JA} Vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	87.8°C/W	83.5°C/W	81.3°C/W

3. Calculations and Equations.

The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.

HCSL output driver circuit and termination are shown in *Figure 4*.

Figure 4. HCSL Driver Circuit and Termination

HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power dissipation, use the following equations which assume a 50Ω load to ground.

The highest power dissipation occurs when V_{DD_MAX} .

$$\begin{aligned}
 \text{Power} &= (V_{DD_MAX} - V_{OUT}) * I_{OUT}, \\
 \text{since } V_{OUT} &= I_{OUT} * R_L \\
 &= (V_{DD_MAX} - I_{OUT} * R_L) * I_{OUT} \\
 &= (3.63V - 17\text{mA} * 50\Omega) * 17\text{mA}
 \end{aligned}$$

Total Power Dissipation per output pair = **47.3mW**

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 24 Lead TSSOP

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	87.8°C/W	83.5°C/W	81.3°C/W

Transistor Count

The transistor count for ICS85108I is: 583

Package Outline and Package Dimensions

Package Outline - G Suffix for 24 Lead TSSOP

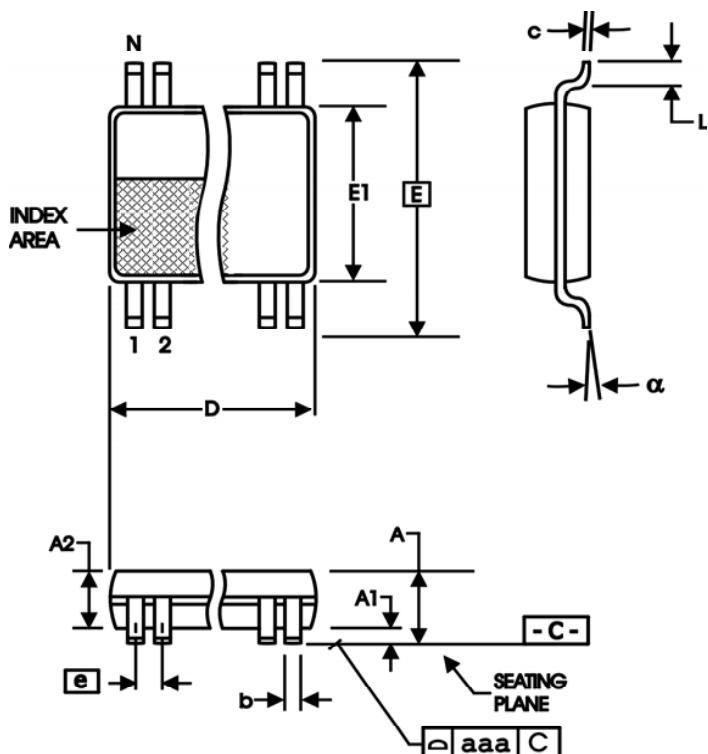


Table 8. Package Dimensions

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	24	
A		1.20
A1	0.5	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	7.70	7.90
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
85108AGI	ICS85108AGI	24 Lead TSSOP	Tray	-40°C to 85°C
85108AGIT	ICS85108AGI	24 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C
85108AGILF	ICS85108AGILF	“Lead-Free” 24 Lead TSSOP	Tray	-40°C to 85°C
85108AGILFT	ICS85108AGILF	“Lead-Free” 24 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	T1	2	Pin Description Table - corrected sequence of pin names to correspond to Pin Assignment. Pin 13 should be nQ4 and pin 14 should be Q4.	10/22/09
A	T1	2	Pin Description Table - corrected sequence of pin names to correspond to Pin Assignment. Pins 17 - 20 and pins 23 - 24 are in reverse order of Pin Assignment.	10/23/09

6024 Silver Creek Valley Road

San Jose, California 95138

Sales

800-345-7015 (inside USA)
+408-284-8200 (outside USA)
Fax: 408-284-2775
www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com
+480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2009. All rights reserved.