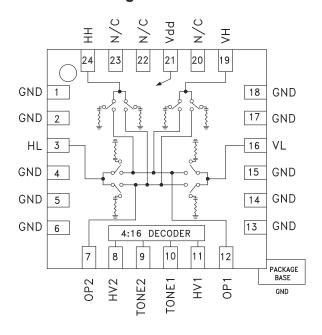


HMC596LP4 / HMC596LP4E

v01.0409


SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz

Typical Applications

4x2 Switch Matrix for 0.2 - 3.0 GHz Applications:

- DBS LNBs & Multiswitches
- Cable Modem / CATV
- Cellular Systems

Functional Diagram

Features

High Isolation / Low Insertion Loss
Integrated CMOS Compatible 4 Bit Decoder
Single Positive Supply: Vdd = +5V
24 Lead 4x4mm QFN Package: 9 mm²
4x4 Switch Matrix Using Two ICs

General Description

The HMC596LP4 & HMC596LP4E are low-cost 4x2 switch matrices in leadless QFN 4x4 mm surface mount packages for use in Satellite / DBS, LNBs and multiswitches from 200 to 3000 MHz. A positive voltage controlled 4 bit decoder is integrated on the switch. The switches may be used in either 75 ohm or 50 ohm systems.

Both switch outputs (OP1 & OP2) can independently select any of the four inputs (HH, HL, VH, VL) or simultaneously select the same inputs. Note that the switch is bi-directional and input/output functionality may be interchanged. All data presented was measured in a 50 ohm (input/output) system.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +5V, 50 Ohm System

Parameter	Conditions	Frequency	Min.	Тур.	Max.	Units
Insertion Loss		200 - 950 950 - 2150 2150 - 3000		6 6.5 7.5	7 8 9	dB dB dB
Isolation		200 - 950 950 - 1450 1450 - 2150 2150 - 3000	42 37	50 45 43 40		dB dB dB dB
Return Loss (VL, HL, VH, HH)	Input Selected	200 - 950 950 - 2150 2150 - 3000	25 10 7	30 15 12		dB dB dB
Return Loss (VL, HL, VH, HH)	Input Deselected	200 - 950 950 - 2150 2150 - 3000		17 22 18		dB dB dB

HMC596* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

· HMC596LP4 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC596 Data Sheet

REFERENCE MATERIALS \Box

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Semiconductor Qualification Test Report: CMOS-A (QTR: 2013-00261)

DESIGN RESOURCES

- HMC596 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC596 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

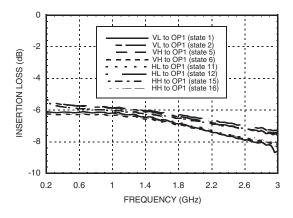
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

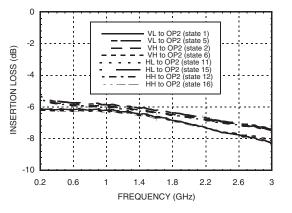
SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +5V, 50 Ohm System (Continued)

Parameter	Conditions	Frequency	Min.	Тур.	Max.	Units
Return Loss (Output OP1/OP2)		200 - 950 950 - 2150 2150 - 3000	9 11 8	13 14 13		dB dB dB
Output IP3		200 - 3000	22	27		dBm
Input Power for 1 dB Compression		200 - 3000	18	22		dBm
Switching Speed tRISE / tFALL (10/90% RF) tON / tOFF (50% CTL to 10/90% RF)				6.0 6.5		ns ns


OP1 Isolation 950 - 1450 MHz

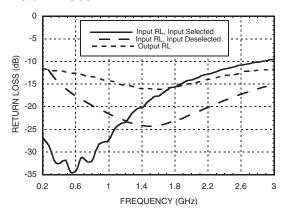
Input to	Interfering	State	Min.	Typ.
Output State	Signal		(dB)	(dB)
HL to OP1	VL to OP1	11	38	41
	All Other States	All Other States	40	>43
VL to OP1	VH to OP1	2	39	42
	All Other States	All Other States	40	>43
VH to OP1	All States	All States	43	>46
HH to OP1	All States	All States	37	>40

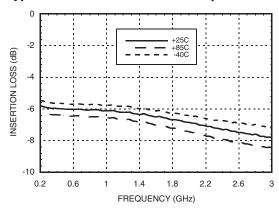

OP2 Isolation 950 - 1450 MHz

Input to	Interfering	State	Min.	Typ.
Output State	Signal		(dB)	(dB)
HL to OP2	HH to OP2	15	38	41
	All Other States	All Other States	40	>43
VH to OP2	HL to OP2	6	37	40
	All Other States	All Other States	40	>43
VL to OP2	HL to OP2	1	37	40
	All Other States	All Other States	40	>43
HH to OP2	All States	All States	38	>41

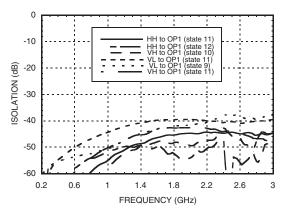
Insertion Loss on OP1

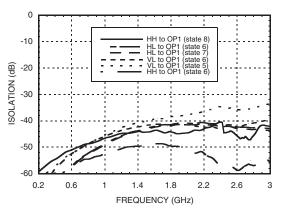
Insertion Loss on OP2

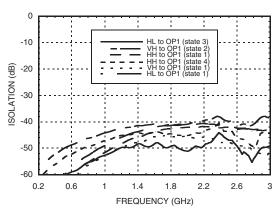


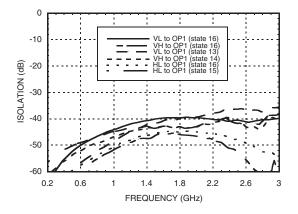


SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz


Return Loss

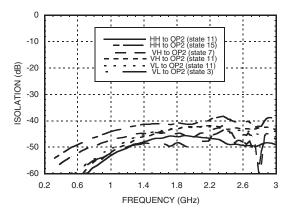

Typical Insertion Loss vs. Temperature

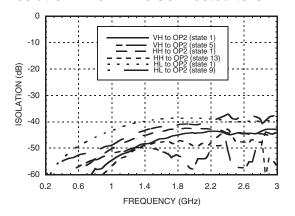

Isolation When HL is Connected to OP1*


Isolation When VH is Connected to OP1*

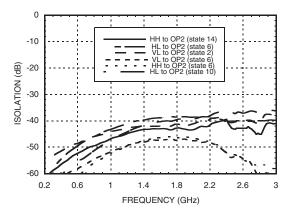
Isolation When VL is Connected to OP1*

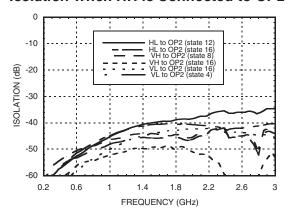
Isolation When HH is Connected to OP1*


^{*} Isolation is recorded above insertion loss & measured at output of switch.



SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz


Isolation When HL is Connected to OP2*


Isolation When VL is Connected to OP2*

Isolation When VH is Connected to OP2*

Isolation When HH is Connected to OP2*

Output Third Order Intercept Point

Path	State	F1 & F2 Pout (dBm)	Intermod Pout (dBm)	Intermodulation Ratio (dBc)	Output IP3 (dBm)
VL to OP1	1	-12	-91	79	27.5
VL to OP2	1	-12	-91	79	27.5
HL to OP1	11	-12	-92	80	28
HL to OP2	11	-12	-91	79	27.5
VH to OP1	6	-12	-90	78	27
VH to OP2	6	-12	-90	78	27
HH to OP1	16	-12	-91	79	27.5
HH to OP2	16	-12	-91	79	27.5
Test Conditions Temperature = +25° C F1 = 2150 (MHz): -12 dBm at the Output F2 = 2151 (MHz): -12 dBm at the Output				Vdd = +5V VCTL Low = 0V, High =	+5V

^{*} Isolation is recorded above insertion loss & measured at output of switch.

SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz

Truth Table

		Contro	ol Input			tput it State				RF Pat	h State			
State	HV 1	Tone 1	HV 2	Tone 2	OP1	OP2	VL to OP1	HL to OP1	VH to OP1	HH to OP1	VL to OP2	HL to OP2	VH to OP2	HH to OP2
1	0	0	0	0	VL	VL	LOSS	ISOL	ISOL	ISOL	LOSS	ISOL	ISOL	ISOL
2	0	0	0	1	VL	VH	LOSS	ISOL	ISOL	ISOL	ISOL	ISOL	LOSS	ISOL
3	0	0	1	0	VL	HL	LOSS	ISOL	ISOL	ISOL	ISOL	LOSS	ISOL	ISOL
4	0	0	1	1	VL	НН	LOSS	ISOL	ISOL	ISOL	ISOL	ISOL	ISOL	LOSS
5	0	1	0	0	VH	VL	ISOL	ISOL	LOSS	ISOL	LOSS	ISOL	ISOL	ISOL
6	0	1	0	1	VH	VH	ISOL	ISOL	LOSS	ISOL	ISOL	ISOL	LOSS	ISOL
7	0	1	1	0	VH	HL	ISOL	ISOL	LOSS	ISOL	ISOL	LOSS	ISOL	ISOL
8	0	1	1	1	VH	НН	ISOL	ISOL	LOSS	ISOL	ISOL	ISOL	ISOL	LOSS
9	1	0	0	0	HL	VL	ISOL	LOSS	ISOL	ISOL	LOSS	ISOL	ISOL	ISOL
10	1	0	0	1	HL	VH	ISOL	LOSS	ISOL	ISOL	ISOL	ISOL	LOSS	ISOL
11	1	0	1	0	HL	HL	ISOL	LOSS	ISOL	ISOL	ISOL	LOSS	ISOL	ISOL
12	1	0	1	1	HL	НН	ISOL	LOSS	ISOL	ISOL	ISOL	ISOL	ISOL	LOSS
13	1	1	0	0	НН	VL	ISOL	ISOL	ISOL	LOSS	LOSS	ISOL	ISOL	ISOL
14	1	1	0	1	НН	VH	ISOL	ISOL	ISOL	LOSS	ISOL	ISOL	LOSS	ISOL
15	1	1	1	0	НН	HL	ISOL	ISOL	ISOL	LOSS	ISOL	LOSS	ISOL	ISOL
16	1	1	1	1	НН	НН	ISOL	ISOL	ISOL	LOSS	ISOL	ISOL	ISOL	LOSS

Control Voltages

HV1, Tone1, HV2, Tone2

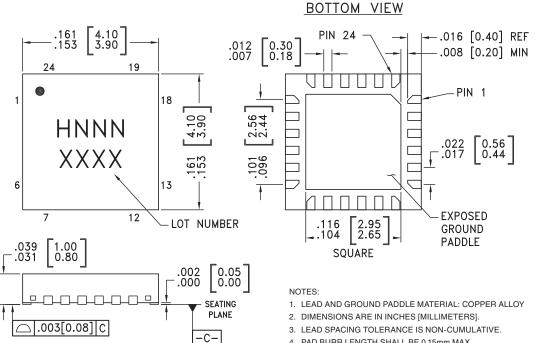
State	Bias Condition
Low (0)	0 to 0.8 Vdc @ 0.5 μA Typical
High (1)	+2.0 to +5.0 Vdc @ 0.5 μA Typical

Bias Voltage

Vdd Range = +5.0 Vdc ± 10 %						
Vdd (Vdc)	100 (1) [1]					
+5.0	+5.0 0.2 0.4					

DC Blocking And Decoupling Capacitors

The HMC596LP4(E) requires DC blocks on all 6 RF ports (OP1, OP2, VL, HL, VH, HH). Characterization on the HMC596LP4(E) was done using 0402 size 330pF capacitors on all RF ports. A 1,000 pF DC decoupling capacitor (0603 size) is recommended for the Vdd pin.


SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz

Absolute Maximum Ratings

Bias Voltage Range (Vdd)	+8.0 Vdc
Control Voltage Range (All Logic Lines)	Vdd +0.5 to -0.2V Vdc
Channel Temperature	150 °C
Thermal Resistance	325 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Maximum Input Power (Each Input)	+23 dBm (200 - 2150 MHz)

Outline Drawing

- PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.05mm MAX.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL NC LEADS, GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC596LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H596 XXXX
HMC596LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H596</u> XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4 - 6, 13 - 15, 17, 18	GND	Package bottom has exposed metal paddle that must be connected to PCB RF ground.	○ GND —
3, 16, 19, 24	HL, VL, VH, HH	Switch RF Input. This pin is DC coupled and should be DC blocked externally using a series capacitor. Select value based on lowest frequency of operation.	HL,VL
7, 12	OP1, OP2	Switch RF Input. This pin is DC coupled and should be DC blocked externally using a series capacitor. Select value based on lowest frequency of operation.	OP1 OP2
8	HV2		
9	TONE2	Control Inputs. See truth and control voltage table.	HV2 T2
10	TONE1	Control inputs. See truth and control voltage table.	HV1 L
11	HV1		
20, 22, 23	N/C	Not connected.	
21	Vdd	Supply Voltage	

Switch Application Circuit for 4x4 Switch Matrix

The HMC596LP4(E) switch can operate as a 4x4 switch by connecting the 4 inputs of two switches directly together.

The VL, VH, HL, and HH inputs of the first switch should be connected to the second switch, as illustrated.

Mirror image switch performance can be realized by inverting the HV1 & HV2 logic control signals of one of the HMC596LP4(E) switches.

The input loading impedance of two switches in parallel should be 31.25 ohms. The output loading impedance on each output should be 75 ohms. The interconnect RF line between the switch's inputs should be an RF trace with a characteristic impedance of 62.5 ohms. This will allow the switch to remain matched in all possible switch states.

The HMC596LP4(E) does not provide output to output (OP1 to OP2) isolation. For this reason, it is recommended that external amplifiers should be used at each output. The

amplifier's reverse isolation will provide output to output isolation, if this is necessary.

۷Н OP2 НН HL OP1 ٧L HMC596LP4(E) НН OP2 VΗ

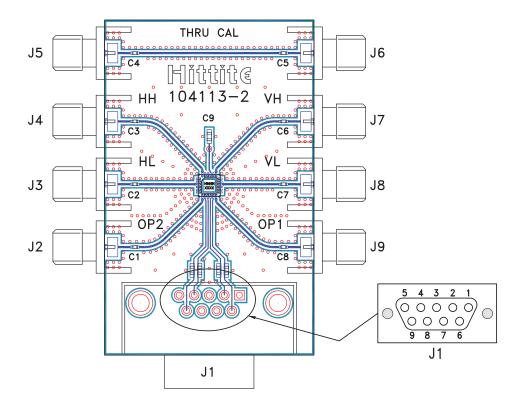
HMC596LP4(E)

VL

 HL

OP1

Each HMC596LP4(E) requires DC blocking capacitors on ALL RF input and output ports.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SMT CMOS 4x2 SWITCH MATRIX, 0.2 - 3.0 GHz

Evaluation PCB

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. A generous number of ground vias should be used to interconnect top/bottom ground planes. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

List of Materials for Evaluation PCB 104130 [1]

Item	Description
J2 - J9	PCB Mount SMA RF Connector
J1	DC Connector
C1 - C8	330 pF Capacitor, 0402 Pkg.
C9	1,000 pF Capacitor, 0603 Pkg.
U1	HMC596LP4 / HMC596LP4E 4x2 Switch Matrix
PCB [2]	104113 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

Multi Pin DC Interface (J1)

Pin	Line
1	Vdd
2	Tone 1
3	GND
4	Tone 2
5	GND
6	HV1
7	N/C
8	N/C
9	HV2

^[2] Circuit Board Material: Rogers 4350