

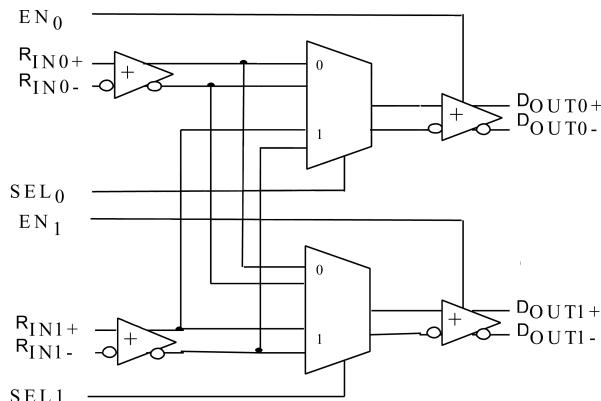
FIN1022

2 X 2 LVDS High Speed Crosspoint Switch

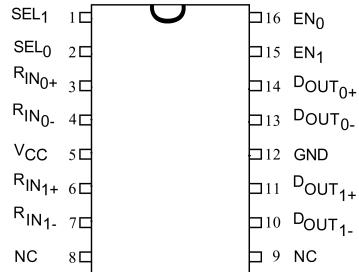
General Description

This non-blocking 2x2 crosspoint switch has a fully differential input to output data path for low noise generation and low pulse width distortion. The device can be used as a high speed crosspoint switch, 2:1 multiplexer, 1:2 demultiplexer or 1:2 signal splitter. The inputs can directly interface with LVDS and LVPECL levels.

Features


- Low jitter, 800 Mbps full differential data path
- Worst case jitter of 190ps with PRBS = $2^{23} - 1$ data pattern at 800 Mbps
- Rail-to-rail common mode range is 0.5V to 3.25V
- Worst case power dissipation is less than 126 mW
- Open-circuit fail safe protection
- Fast switch time of 1.1 ns typical
- 35 ps typical pin channel to channel skew
- 3.3V power supply operation
- Non-blocking switch
- LVDS receiver inputs accept LVPECL signals directly
- 7.5 kV HBM ESD protection
- 16-lead SOIC package and TSSOP package
- Inter-operates with TIA/EIA 644-1995 specification
- See the Fairchild Interface Solutions web page for cross reference information:
www.fairchildsemi.com/products/interface/lvds.html

Ordering Code:


Order Number	Package Number	Package Description
FIN1022M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
FIN1022MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

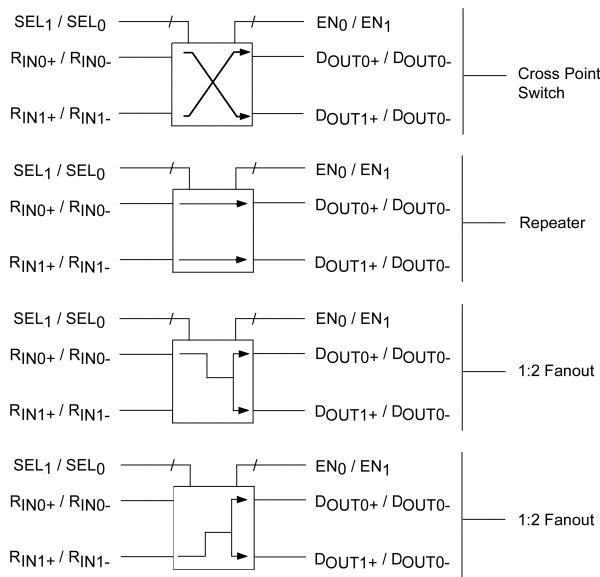
Pin Name	Description
R_{IN0+} , R_{IN1+}	LVDS non-inverting data inputs
R_{IN0-} , R_{IN1-}	LVDS inverting data inputs
D_{OUT0+} , D_{OUT1+}	LVDS non-inverting data outputs
D_{OUT0-} , D_{OUT1-}	LVDS inverting data outputs
EN_0	LVTTL input for enabling D_{OUT0+} / D_{OUT0-}
EN_1	LVTTL input for enabling D_{OUT1+} / D_{OUT1-}
SEL_0	LVTTL input for selecting R_{IN0+} / R_{IN0-} or R_{IN1+} / R_{IN1-} for output D_{OUT0+} / D_{OUT0-}
SEL_1	LVTTL input for selecting R_{IN0+} / R_{IN0-} or R_{IN1+} / R_{IN1-} for output D_{OUT1+} / D_{OUT1-}
V_{CC}	Power Supply
GND	Ground

Function Table

Inputs				Outputs				Mode
SEL_0	SEL_1	EN_0	EN_1	D_{OUT0+}	D_{OUT0-}	D_{OUT1+}	D_{OUT1-}	
L / O	L / O	H	H	R_{IN0+}	R_{IN0-}	R_{IN0+}	R_{IN0-}	1:2 Splitter
L / O	H	H	H	R_{IN0+}	R_{IN0-}	R_{IN1+}	R_{IN1-}	Repeater
H	L / O	H	H	R_{IN1+}	R_{IN1-}	R_{IN0+}	R_{IN0-}	Switch
H	H	H	H	R_{IN1+}	R_{IN1-}	R_{IN1+}	R_{IN1-}	1:2 Splitter
X	L / O	L / O	H	Z	Z	R_{IN0+}	R_{IN0-}	D_{OUT0} Disabled
X	H	L / O	H	Z	Z	R_{IN1+}	R_{IN1-}	D_{OUT0} Disabled
L / O	X	H	L / O	R_{IN0+}	R_{IN0-}	Z	Z	D_{OUT1} Disabled
H	X	H	L / O	R_{IN1+}	R_{IN1-}	Z	Z	D_{OUT1} Disabled
X	X	L / O	L / O	Z	Z	Z	Z	D_{OUT0} and D_{OUT1} Disabled

O = OPEN

L / O = LOW or OPEN


H = HIGH Logic Level

L = LOW Logic Level

X = Don't Care

Z = High Impedance

Function Diagrams

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})	-0.3V to +4.6V	Supply Voltage (V_{CC})	3.0V to 3.6V
DC Input Voltage (V_{IN})	-0.3V to +4.6V	Input Voltage (V_{IN})	0 to V_{CC}
DC Output Voltage (V_{OUT})	-0.3V to +4.6V	Operating Temperature (T_A)	-40°C to +85°C
Driver Short Circuit Current (I_{OSD})	Continuous	Electrostatic Discharge	
Storage Temperature Range (T_{STG})	-65°C to +150°C	(HBM 1.5 kΩ, 100 pF)	>7500V
Max Junction Temperature (T_J)	150°C	Electrostatic Discharge	
Lead Temperature (T_L)	260°C	(MM 0Ω, 100 pF)	>300V
(Soldering, 10 seconds)			

Recommended Operating Conditions

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified (Note 2)

Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
LVDS Differential Driver Characteristics						
V_{OD}	Output Differential Voltage	$R_L = 75 \Omega$, See Figure 3	270	365	475	mV
		$R_L = 75 \Omega$, See Figure 3 $T_A = 25^\circ C$ and $V_{CC} = 3.3V$	285	365	440	
ΔV_{OD}	V_{OD} Magnitude Change from Differential LOW-to-HIGH	$R_L = 75 \Omega$, See Figure 3			35	mV
V_{OS}	Offset Voltage	See Figure 3	1.0	1.2	1.45	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH	See Figure 3			35	mV
I_{OZD}	Disabled Output Leakage Current	$V_{OUT} = 3.6V$ or GND, Driver Disabled			± 10	μA
I_{OFF}	Power-Off Current	$V_{CC} = 0V$, V_{IN} or $V_{OUT} = 3.6V$ or 0V			± 20	μA
I_{OS}	Short Circuit Output Current	$V_{OUT} = 0V$, Driver Enabled			-10	mA
		$V_{OUTX+} = 0V$, $V_{OUTX-} = 0V$, Driver Enabled			-10	
LVDS Differential Receiver Characteristics						
V_{TH}	Differential Input Threshold HIGH	$V_{IC} = 0.05V$ or 1.2V or 3.25V			100	mV
V_{TL}	Differential Input Threshold LOW	$V_{CC} = 3.3V$	-100			
V_{IC}	Input Common Mode Voltage		0.05		3.25	V
I_{IND}	Input Current (Differential Inputs)	$V_{IN} = GND$			± 20	μA
		$V_{IN} = V_{CC}$			± 20	
LVTTL Control Characteristics						
V_{IH}	Input High Voltage		2			V
V_{IL}	Input Low Voltage				0.8	V
I_{IN}	Input Current	$V_{IN} = 3.6V$ or GND			± 20	μA
Device Characteristics						
V_{IK}	Input Clamp Voltage	$I_{IK} = -18 \mu A$	-1.5			V
$I_{PU/PD}$	Output Power-Up/Power-Down High Z Leakage Current	$V_{CC} = 0V$ to 1.5V			± 10	μA
C_{IN}	Input Capacitance			4.5		pF
C_{OUT}	Output Capacitance			4.5		pF
I_{CC}	Power Supply Current	No Load, All Drivers Enabled			35	mA
		$R_L = 75 \Omega$, All Drivers Enabled			35	mA
		$R_L = 75 \Omega$, All Drivers Enabled			35	mA

Note 2: This part will only function with datasheet specification when a resistive load is applied to the driver outputs.

Note 3: All typical values are at $T_A = 25^\circ C$ and with $V_{CC} = 3.3V$.

AC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 4)	Max	Units
t_{PLHD}	Differential Output Propagation Delay LOW-to-HIGH	$R_L = 75 \Omega$, $C_L = 5 \text{ pF}$, $V_{CC} = 3.3V$, $T_A = 25^\circ\text{C}$ See Figure 4 and Figure 5	0.7		1.6	ns
t_{PHLD}	Differential Output Propagation Delay HIGH-to-LOW		1.0	1.2	1.3	
t_{TLHD}	Differential Output Rise Time (20% to 80%)		0.7		1.6	ns
t_{THLD}	Differential Output Fall Time (80% to 20%)		1.0	1.2	1.3	
t_{PLH}	Selection Propagation Delay LOW-to-HIGH (SEL_n to OUT_n)	$R_L = 75 \Omega$, $C_L = 5 \text{ pF}$, $V_{CC} = 3.3V$, $T_A = 25^\circ\text{C}$ See Figure 6 and Figure 7	0.6		1.5	ns
t_{PHL}	Selection Propagation Delay HIGH-to-LOW (SEL_n to OUT_n)		0.9	1.1	1.2	
t_{ZHD}	Differential Output Enable Time from Z-to-HIGH		0.6		1.5	ns
t_{ZLD}	Differential Output Enable Time from Z-to-LOW		0.9	1.1	1.2	
t_{HZD}	Differential Output Disable Time from HIGH-to-Z	$R_L = 75 \Omega$, $C_L = 5 \text{ pF}$ See Figure 8 and Figure 9	0.6		1.5	ns
t_{LZD}	Differential Output Disable Time from LOW-to-Z		0.9	1.1	1.2	
t_{SET}	Input (IN_{n+} / IN_{n-}) Setup Time to SEL_n	See Figure 10	0.5	0.3		ns
t_{HOLD}	Input (IN_{n+} / IN_{n-}) Hold Time to SEL_n		0.5	0.3		ns
t_{UIT}	Output Peak-to-Peak Jitter		2 ²³ – 1 PRBS Sequence at 800 Mbps		190	ps
			50% Duty Cycle at 800 Mbps		20	35
f_{TOG}	Maximum Toggle Frequency	$R_L = 75 \Omega$, $C_L = 5 \text{ pF}$, See Figure 4	800	900		Mbps
t_{SKEW}	Within Device Channel-to-Channel Skew			35	80	ps
	Pulse Skew $ t_{PLHD} - t_{PHLD} $			0	225	ps
	Part-to-Part Skew (Note 5)			100	500	ps

Note 4: All typical values are at $T_A = 25^\circ\text{C}$ and with $V_{CC} = 3.3V$.

Note 5: Part-to-part skew is the maximum delay time difference on like edges (LOW-to-HIGH or HIGH-to-LOW) for the same V_{CC} and temperature conditions.

Required Specifications

- When the true and complement LVDS outputs (having a 75Ω connected between outputs) are connected to $3.75\text{ k}\Omega$ resistors and the common point of those $3.75\text{ k}\Omega$ resistors are connected to a voltage source that sweeps from 0 to 2.4V, the DC V_{OD} and ΔV_{OD} are still maintained (see Figure 1).
- When the true and complement LVDS outputs (having a 5 pF capacitor attached between outputs) are connected with 37.5Ω resistors each to common point, then the common point does not vary by more than 150 mV under all process, temperature and voltage conditions when the outputs switch either from LOW-to-HIGH or from HIGH-to-LOW (see Figure 2).
- Pull-down resistors are required on Enable (EN_0 and EN_1) and select (SEL_0 and SEL_1) inputs.
- Fail safe protection on the outputs that draw less than $20\text{ }\mu\text{A}$ of current (worst case) on the LVDS inputs. In this condition, if the input is in fail safe selected to OUT_{0+}/OUT_{0-} (say) and the outputs are Enabled then $OUT_{0+} = \text{HIGH}$ and $OUT_{0-} = \text{LOW}$. This prevents noise from being amplified when the connection is broken.
- In the disabled state the outputs can go beyond V_{CC} but there should be no appreciable leakage (see I_{OZD} and I_{OFF} specifications)

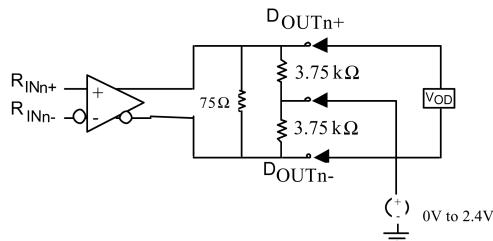


FIGURE 1. Common Mode Supply Test Circuit

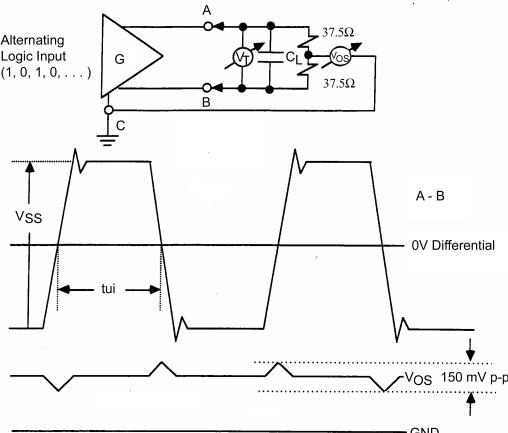


FIGURE 2. Dynamic V_{OS} Test Circuit and Waveforms

Required Specifications (Continued)

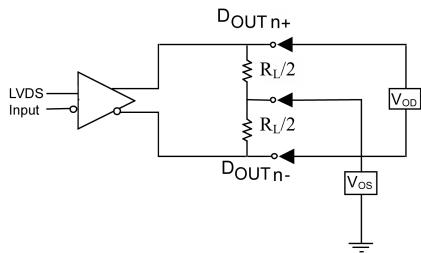
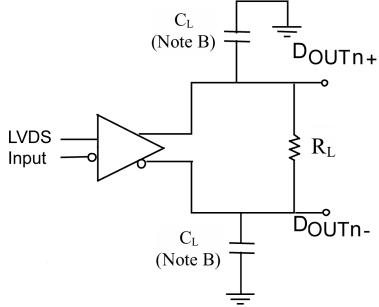



FIGURE 3. LVDS Driver DC Test Circuit

Note A: All input pulses have frequency = 50 MHz, t_R or t_F = 500 ps
 Note B: C_L includes all probe and jig capacitances

FIGURE 4. LVDS Input to LVDS Driver Propagation Delay and Transition Time Circuit

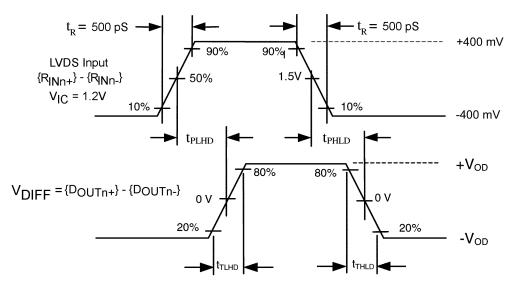


FIGURE 5. LVDS Input to LVDS Output AC Waveforms

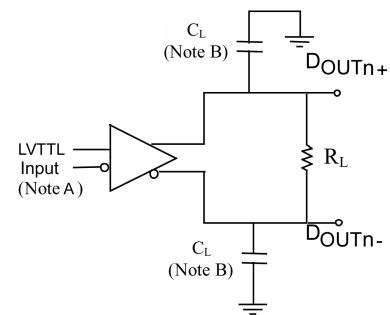


FIGURE 6. LVTTL Input to LVDS Driver Propagation Delay and Transition Time Test Circuit

Required Specifications (Continued)

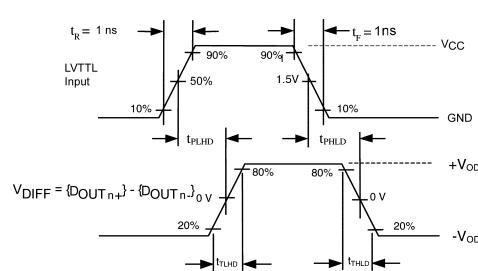
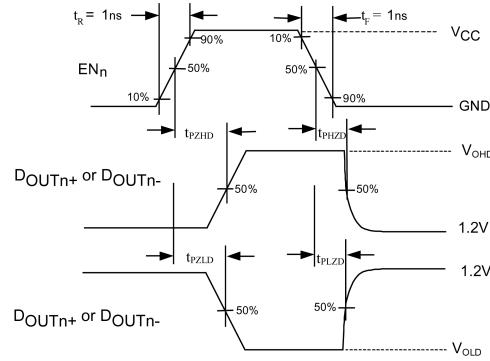
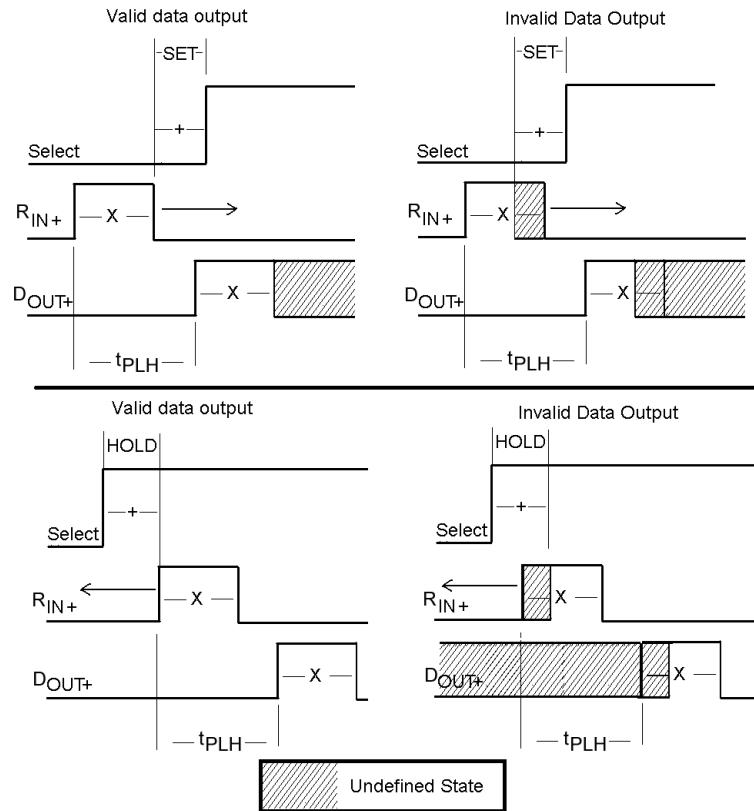
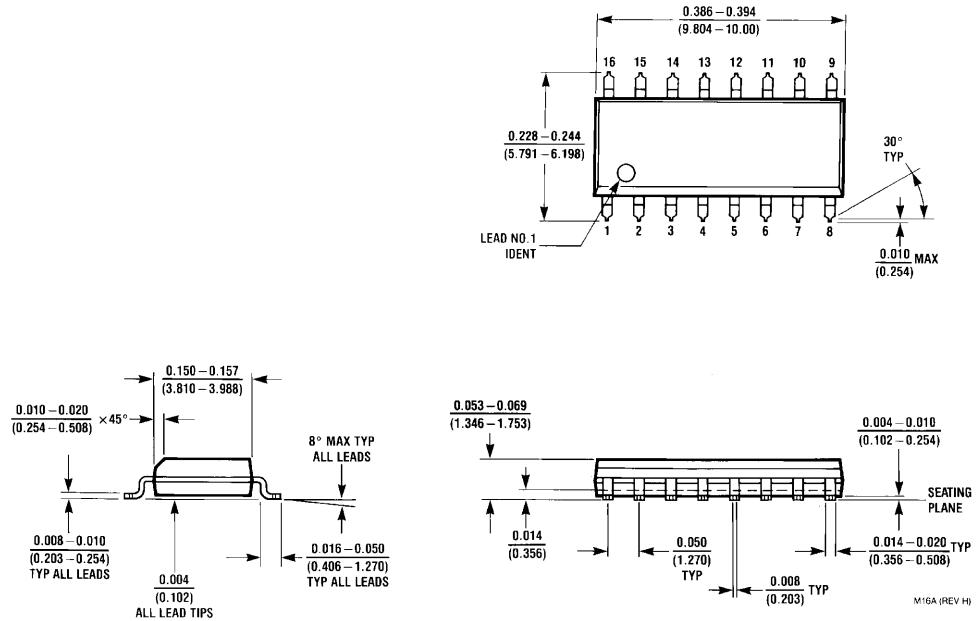
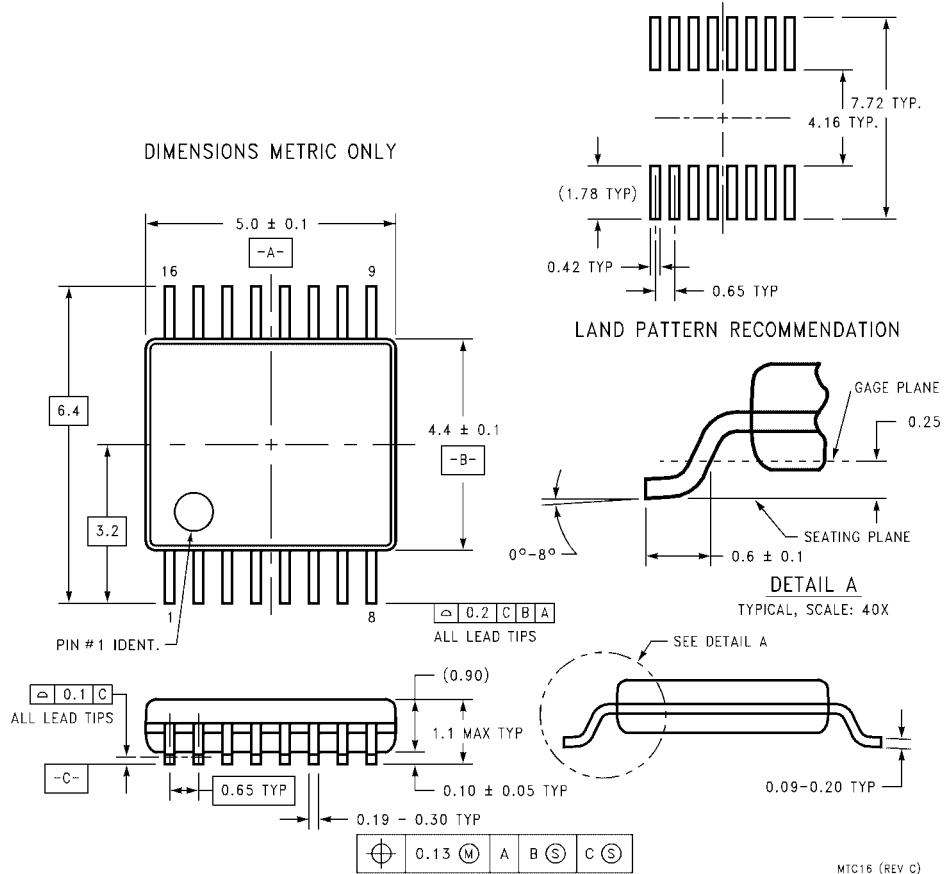


FIGURE 7. LVTTL Input to LVDS Output AC Waveforms

Note A: All input pulses have frequency = 10MHz, t_R or $t_F \leq 1$ ns.
 Note B: C_L includes all probe and jig capacitances.

FIGURE 8. Differential Driver Enable
and Disable Test Circuits


FIGURE 9. Enable and Disable AC Waveforms

Required Specifications (Continued)**FIGURE 10. Set-up and Hold Time Specification**

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com