QUADRUPLE BUS TRANSCEIVER WITH 3-STATE OUTPUT (NONINVERTED)

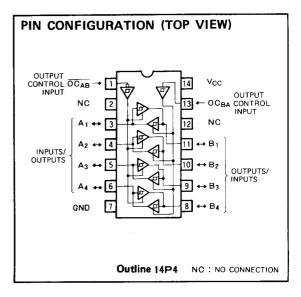
DESCRIPTION

The M74LS243P is a semiconductor integrated circuit containing 4 bus transmitters/receivers with 3-state non-inverted outputs.

FEATURES

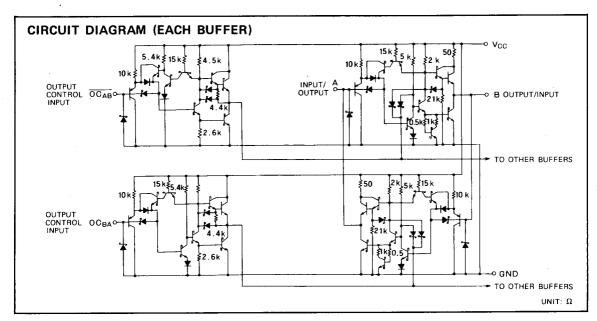
- Two-way transmission for, or isolation from, two 4-bit data words
- Low input load factor (pnp input)
- Hysteresis provided (= 400 mV typical)
- High fan-out (I_{OL} = 24mA, I_{OH} = −15mA)
- Wide operating temperature range $(T_a = -20 \sim +75^{\circ}C)$

APPLICATION


General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

In this device the inputs and outputs are connected mutually to 2 circuits and the buffers with the 3-state non-inverted outputs are made two-way buffers.


Since the input section is provided with hysteresis, the noise margin is increased and the use of pnp transistors in the inputs reduces the input load factor.

The input/output direction is controlled by $\overline{OC_{AB}}$ and OC_{BA} . When $\overline{OC_{AB}}$ and OC_{BA} are low, input/output pins A are made the input pins and the output/input pins B are made the output pins. When $\overline{OC_{AB}}$ and OC_{BA} are high, pins B are made the input pins and A the output pins. When $\overline{OC_{AB}}$ is high and OC_{BA} is low, both A and B are put in the high-impedance state and A and B are isolated. When

 $\overline{\text{OC}_{AB}}$ is low and OC_{BA} is high, both A and B are put to the output state resulting in the possibility of oscillation and damage to the IC. Use in this state must therefore be avoided. This state resulting from the $\overline{\text{OC}_{AB}}$ and OC_{BA} signals should be kept as short as possible. Termination is possible with a load resistor of not less than 133 ohms.

Refer to M74LS241P for the typical characteristics.

QUADRUPLE BUS TRANSCEIVER WITH 3-STATE OUTPUT (NONINVERTED)

FUNCTION TABLE (Note 1)

ÖCAB	OCBA	Α	В
н	Н	0	4
L	Н	*	*
Н	L	Z	Z
L	L	_	0

Note 1: | : Input pin

O: Output (non-inverted) pin

Inhibited (A and B are made output pins)High-impedance (A, B are isolated)

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^{\circ}C$, unless otherwise-noted)

Symbol	Parameter		Parameter Conditions		Unit
Vcc	Supply voltage			-0.5~+7	٧
		A, B		-0.5~+5.5	٧
VI	Input voltage	OCAB, OCBA		-0.5~+15	V
Vo	Output voltage		Off-state	-0.5~+5.5	V
Topr	Operating free-air ambient temperature range			-20~+75	°C
Tstg	Storage temperature range			-65~+150	°C

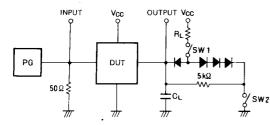
RECOMMENDED OPERATING CONDITIONS (Ta = -20 - +75°C, unless otherwise noted)

	ol Parameter					
Symbol			Min	Тур	Max	Unit
Vcc	Supply voltage		4.75	5	5.25	V
Іон	High-level output current	V _{OH} ≥2.4V	0		-3	mA
	V _{OH} ≥ 2 V		0		- 15	mΑ
IoL		V ₀ L≤0.4V	0		12	mA
	Low-level output current	V _{OL} ≦0.5V	0		24	mA

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75$ °C, unless otherwise noted.)

	Parameter		Test conditions		Limits			Unit	
Symbol					Min	Тур 🛊	Max	Onit	
ViH	High-level input voltage	1				2	٠		٧
VIL	Low-level input voltage		-					0.8	V
V _{T+} -V _{T-}	Hysteresis width		V _{CC} =4.75V			0.2	0.4		٧.
Vic	Input clamp voltage	· · · ·	V _{CC} =4.75V	I _{IC} = - 18	nΑ			-1.5	٧
			V _{CC} =4.75V	V1 = 0.8V	, I _{OH} = - 3mA	2.4	3.1		٧
Voн	High-level output voltage		V1=2V	$V_1 = 0.5V$, I _{OH} = - 15 mA	2			V
			V _{CC} =4.75V		I _{OL} = 12mA		0.25	0.4	V
V _{OL}	Low-level output voltage		V _I =0.8V, V _I	== 2V	I _{OL} =24mA	,	0.35	0.5	V
lozh	Off-stage high-level output current		V _{CC} =5.25V, V _I =0.8V, V _I =2V, V _O =2.7V				40	μА	
lozL	Off-state low-level output current		V _{CC} =5.25V,	√ _I =0.8∨,∨	= 2V, V ₀ =0.4V			-200	μА
		A, B				20			
	High-level input current	OCAB, OCBA	$V_{OC} = 5.25V, V_1 = 2.7V$				20	μА	
ЧΗ		A, B	V _{CC} =5.25V, V _I =5.5V				0.1	mΑ	
		OCAB, OCBA	V _{CC} =5.25V	V _I = 10V				0.1	ПΑ
		OCAB, OCBA	V _{CC} =5.25V V _I =0.4V			-0.2			
l _{IL}	Low-level input current	Α		OCA	B=0CBA=0V			-0.2	mA
į		В		B=0CBA=4.5V			-0.2		
los	Short-circuit output current (Note 2)		V _{CC} =5.25V	V0=0V		40		-225	mA
1ccH	Supply current, all output high		V _{CC} =5.25V,	$V_{I} = 0 V$,	V _I =4.5V		22	38	mA
CCL	Supply current, all outputs low		V _{CC} =5.25V,	$V_I = 0 V$,	V ₁ = 4.5V		29	50	mΑ
Iccz	Supply current, all outputs of	its off $V_{CC} = 5.25V, V_1 = 0.V, V_1 = 4.5V$			32	54	mA		

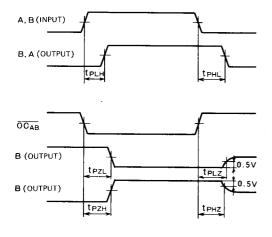
^{* :} All typical values are at $V_{CC} = 5V$, $Ta = 25^{\circ}C$.

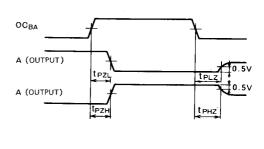

Note 2: All measurements should be done quickly and not more than one outputs should be shorted at a time.

QUADRUPLE BUS TRANSCEIVER WITH 3-STATE OUTPUT (NONINVERTED)

SWITCHING CHARACTERISTICS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$, unless otherwise noted)

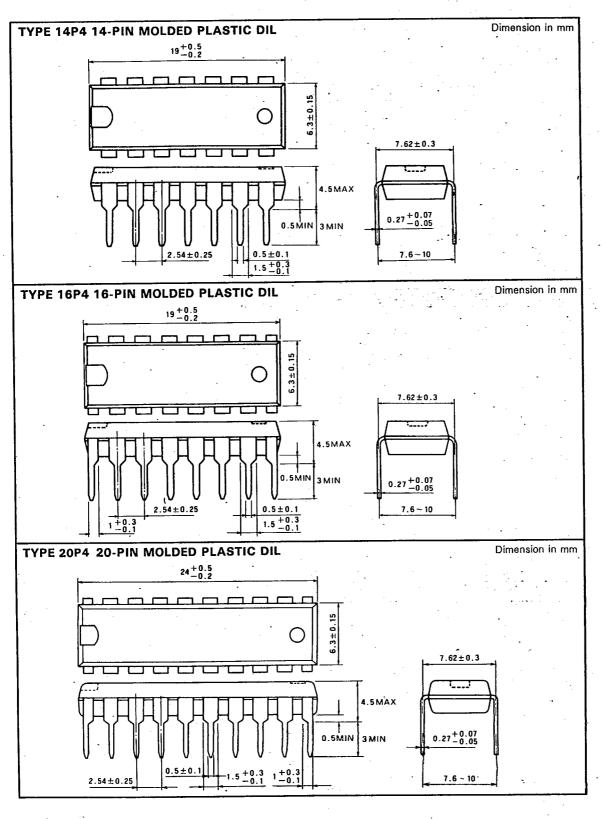
Symbol Para	Parameter	Test conditions		Limits		
	rarameter	Test conditions		Тур	Max	Unit
t _{PLH}	Low-to-high-level, high-to-low-level output propagation time,	C _L = 45pF		8	18	ns
t _{PHL}	from inputs A, B to outputs B, A	(Note 3)		9	18	· ns
t _{PZH}	Output enable time to high-level	$R_L = 667\Omega$, $C_L = 45pF$ (Note 3)		15	40	ns
t _{PZL}	Output enable time to low-level	$R_L = 667\Omega$, $C_L = 45pF$ (Note 3)		12	40	ns
t _{PLZ}	Output disable time from low-level	$R_L = 667\Omega$, $C_L = 5 pF$ (Note 3)		11	25	ns
tpHZ	Output disable time from high-level	$R_{\perp}=667\Omega$ $C_{\perp}=5$ pF (Note 3)		12	18	ns


Note 3: Measurement circuit



	Symbol	SW1	SW2		
	t ezh	Open	Closed		
	t PZL	Closed	Open		
	t PLZ	Closed	Closed		
٠	t _{PHZ}	Closed	Closed		

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_f = 6ns, t_f = 6ns, t_W = 500ns, V_P = $3V_{P,P}$, Z_O = 50Ω
- (2) All diodes are switching diodes ($t_{rr} \le 4ns$).
- (3) Ct includes probe and jig capacitance.


TIMING DIAGRAM (Reference level = 1.3V)

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

