
Rev. 1.1 12/03 Copyright © 2003 by Silicon Laboratories AN133-DS11

AN133

EMBEDDED ETHERNET REFERENCE DESIGN

Relevant Devices
This application note applies to the following devices:
C8051F120, C8051F121, C8051F122, C8051F123,
C8051F124, C8051F125, C8051F126, and
C8051F127.

Introduction
This reference design demonstrates how to set up
an Embedded Ethernet web server on a C8051F12x
device. It provides instructions on how to set up
and use the AB2 Ethernet Daughter Cards and
example web servers that use the CMX Micronet™
protocol stack. It also provides example low-level
Ethernet transmit and receive routines.

Note: We encourage you to read all documentation
before starting a new project.

This reference design includes:

• A schematic and bill of materials for the AB2
Ethernet board.

• Example Ethernet transmit and receive routines
that communicate with a CS8900A Ethernet
Controller.

• A simple example of configuring and using the
CMX Micronet™ HTTP Web Server.

• Instructions on how to create a simple
“Hello World” web server.

• Downloadable object files in HEX format for
the “Hello World” server and “uWeb”, an
interactive temperature measurement demo
server.

Building an Ethernet
Interface
The Ethernet interface to the C8051F12x consists
of an Ethernet Adapter, an RJ-45 connector, and
magnetics. The AB2 Ethernet cards available from
the Silicon Labs website use a Cirrus Logic
CS8900A Ethernet adapter and a Trans-Power RJ-
45 connector with integrated magnetics and LEDs.
The AB2 board schematic can be found in
Appendix E. For more information about interfac-
ing to a CS8900A, please visit the Cirrus Logic
website at www.cirruslogic.com.

Step by Step Guide to
Setting Up the CMX
Micronet™ HTTP Web
Server (Version 2.17j)
1. The first step in using the CMX Micronet™

protocol stack is to install it in a known direc-
tory. In the following text, we refer to this
directory as the ‘Micronet’ directory.

Creating a New Project
2. To create a new project, copy all files from the

‘Micronet\netlib’ directory to a new directory.
We refer to the folder as the ‘HelloWorld’
directory. Copy the files in Table 1 into the
‘HelloWorld’ directory.

Table 1. Files to Copy to the ‘HelloWorld’
Directory

1. All files in ‘Micronet\netlib’

2. ‘callback.c’ found in the ‘Micro-
net\k51app’ folder

http://www.cirruslogic.com/

AN133

2 Rev. 1.1

3. Next create a subdirectory called ‘HTML’ in
the ‘HelloWorld’ folder. Copy the files listed in
Table 2 to the ‘HTML’ folder. This folder con-
tains all HTML files, graphics, Java applets,
and a copy of ‘mn_defs.h’. It is also handy, but
not required, to place a copy of ‘html2c.exe’ in
this folder.

4. Start a new project in the Silicon Labs IDE.
Add all ‘.C’ files in the project directory to the
project except for ‘RTL8019.c’, ‘physmc65’
and ‘ipseth16.c’. Also add the files in Table 3
to the project.

The ‘STARTUP.A51’ file is necessary for this
project because the CMX protocol stack uses

re-entrant functions and the LARGE memory
model. The ‘mnconfig.h’, ‘mn_env.h’, and
‘micronet.h’ header files are added to the
project for convenience.

5. Add a new group to the project. Add all ‘.C’
files in the ‘HTML’ directory to this group.
Separating project files into several groups is
recommended because it makes searching for a
specific file much easier.

6. Next select the LARGE memory model from
the Compiler tab of the ‘Tool Chain Integra-
tion’ window in the Project menu. Be sure to
save the project settings using the Save Project
command.

Configuring the CMX Micronet™
Protocol Stack
This section outlines the changes required for the
CMX Micronet™ HTTP Web Server to run on a
C8051F12x device. The following steps involve
modifying constants or small blocks of code in
select files.

Modifying ‘STARTUP.A51’

7. Depending on your version of ‘STAR-
TUP.A51’, you may need to add the following
include statement to the beginning of the file:

$include (C8051F120.H)

8. This step initializes the re-entrant stack pointer.
This is accomplished by setting XBPSTACK to
‘1’ and XBPSTACKTOP to ‘1FFFH+1’. XBP-
STACKTOP is set to the highest memory loca-
tion in XRAM plus one. For 8KB of XRAM on
‘F12x devices, this equates to 0x2000.

3. ‘STARTUP.A51’ found in
AN001SW.zip

4. ‘sfrdefs.h’ found in AN001SW.zip

5. ‘main.c’ found in AN001SW.zip

Table 2. Files to Copy to the ‘HTML’ Folder

1. ‘index.h’ found in AN001SW.zip

2. ‘index.c’ found in AN001SW.zip

3. ‘index.html’ found in AN001SW.zip

4. ‘mn_defs.h’ found in the project folder

5. ‘html2c.exe’ found in the ‘Micro-
net\Tools’ folder (optional)

Table 3. Files to Add to a New Project

1. All ‘.C’ files in the project directory

2. ‘STARTUP.A51’

3. ‘mnconfig.h’

4. ‘mn_env.h’

5. ‘micronet.h’

Table 1. Files to Copy to the ‘HelloWorld’
Directory

AN133

Rev. 1.1 3

Modifying ‘micronet.h’

9. Figure 1 contains bolded definitions that
should be added at the beginning of
‘micronet.h’ to specify the base address of
the CS8900A in external memory and that
the Ethernet controller is being used in
polled mode.

Modifying ‘mn_env.h’

10. In ‘mn_env.h’ header file, change the
DYNAMIC_MEM_AVAILABLE con-
stant to ‘0’.

Modifying ‘mn_port.c

11. In ‘mn_port.c’, modify the Timer 0 reload
value to overflow every 10 ms. For exam-
ple, if SYSCLK is 49 MHz and Timer 0 is
clocked by SYSCLK/12, then the reload
value should be -(SYSCLK/12/100) =
-40833d = 0x607F.

Modifying ‘mnconfig.h’

12. The ‘mnconfig.h’ header file allows the
user to select the protocols used, size of
buffers, and other options. Disabling
unneccessary options will save memory
and code space. Table 4 shows the options
enabled for the ‘HelloWorld’ web server.

All other protocols and options are
assumed to be inactive or at their default
state.

Figure 1. Definitions to Add to ‘micronet.h’

#ifndef MICRONET_H_INC
#define MICRONET_H_INC 1

#define POL8051
#define iPS_ETH8_100_RDWR ((volatile unsigned char xdata*)0xC000)

#include "mn_defs.h"
#include "mn_env.h"
...

Table 4. Constant Settings in ‘mnconfig.h’

Constant Value

TCP 1

ETHERNET 1

SLIP 0

PING 1

NUM_SOCKETS 2

RECV_BUFF_SIZE 1024

POLLED_ETHERNET 1

ARP 1

ARP_TIMEOUT 0

ARP_AUTO_UPDATE 1

ARP_CACHE_SIZE 2

DHCP 0

HTTP 1

SERVER_SIDE_INCLUDES 0

INCLUDE_HEAD 0

FTP 0

NEED_MEM_POOL 0

AN133

4 Rev. 1.1

Designing an Application
Around the CMX Micronet™
HTTP Server
All projects that use the CMX stack require the the
user to provide the main() routine, callback rou-
tines, device and protocol stack initialization rou-
tines, and HTML content.

Typical Project Structure
A typical web-enabled project structure is shown in
Figure 2. In most cases, the user will only be writ-
ing the initialization and callback routines in
‘main.c’ and ‘callback.c’. All HTML content is
added to the project in the form of a file array gen-
erated by the ‘html2c.exe’ utility. The linker com-
bines all project files to generate an object file that
is downloaded to FLASH.

Initialization Routines
Because of device dependencies, the order of per-
forming initializations is important for the system
to function properly. The first set of initializations
should include peripherals. In the software exam-
ple, these would include the following function
calls:

SYSCLK_Init (); // Initialize PLL
EMIF_Init (); // Initialize External

// Memory Interface
PORT_Init (); // Initialize Port I/O
UART1_Init (); // Initialize UART1

// to 9600 baud

The second initialization includes programming the
device IP and MAC addresses, or copying these
addresses from FLASH if the device has already
been programmed. This is done by the following
function call:

ipconfig();

Since CMX Micronet™ uses Timer 0, the ipcon-
fig() routine sets the Timer Mode (TMOD) and
Clock Control (CKCON) registers to their reset
value.

VIRTUAL_FILE 1

Table 4. Constant Settings in ‘mnconfig.h’

Constant Value

#include webpage.h

void main(){
...
}

void device_init(){
...
}

HTML Content
examples

 .html (web pages),
.jpg, .gif (images),

.class (Java),

CMX source and
configuration files

html2c

.H files
ex.

(webpage.h)

Linker

.C files
ex.

(webpage.c)

main.c

OMF-51
Object File

C8051F12x Target
Board + AB2 Ethernet

Card

Figure 2. A Typical Web-Enabled Project Structure

AN133

Rev. 1.1 5

The fourth set of initializations includes the CMX
Micronet™ variables. This is accomplished with
the following function call:

mn_init(); // initialize all
// protocol stack
// variables

Please note that the CMX stack variables must be
initialized before any other CMX-provided func-
tions are called.

Adding Files to the Virtual File
System

The Virtual File System associates a file name with
a file array generated by the ‘html2c’ utility. Files
added to the Virtual File System can be requested
from a web browser.

The ‘html2c’ Utility

To converting HTML content to file array, use the
‘html2c.exe’ utility provided with the CMX pack-
age. The ‘html2c.exe’ utility outputs a ‘.c’ file and
a ‘.h’ file with the same name as the HTML content
file. These source and header files declare and ini-
tialize a ‘char’ array in FLASH. The file arrays can
represent binary or ASCII files.

Adding File Arrays to the Project

Once the source and header files for the file arrays
have been created, incorporate them into the
project by adding the ‘.c’ file to the Project Build
List and #include-ing the ‘.h’ file at the top of
‘main.c’.

When the file arrays have been added to the
project, the final step is to create an entry in the file
system for each file array by calling the
mn_vf_set_entry() function as shown in Figure 3.
In this example, ‘index.html’, ‘image1.gif’, and
‘image2.gif’ can be downloaded from a web
browser by typing the proper URL into the address
bar.

Starting the HTTP Server
The last function call in ‘main.c’ should start the
HTTP server as follows:

mn_server();

Once the HTTP server is started, it takes control of
program execution. Code that needs to be executed
after the server has started must reside in a CGI
script, in one of the special blank functions defined
in ‘callback.c’, or in an interrupt service routine.

Figure 3. Adding files to the Virtual File System

#include “index.h” // index.c is in the project build list
#include “image1.h” // image1.c is in the project build list
#include “image2.h” // image2.c is in the project build list
...
void main()
{

...
// sample virtual file entries
mn_vf_set_entry((byte *)"index.html", INDEX_SIZE, index_html, VF_PTYPE_FLASH);
mn_vf_set_entry((byte *)"image1.gif", IMAGE1_SIZE, image1_gif, VF_PTYPE_FLASH);
mn_vf_set_entry((byte *)"image2.gif", IMAGE2_SIZE, image2_gif, VF_PTYPE_FLASH);

...
}

AN133

6 Rev. 1.1

A “Hello World” Application
This example project demonstrates developing a
basic web-enabled application. The OMF-51 object
file for this example is included as part of the refer-
ence design package. It is recommended that you
run this project from the provided object file first to
get a feeling for what lies ahead. We recommend
following the steps in Appendix A to set up the
“uWeb” server or the “Hello World” server from
their object files before continuing.

Starting the “Hello World”
Application From Scratch
Create a new Silicon Labs IDE project and make
the necessary changes to CMX Micronet™ out-
lined in the previous sections. The “Hello World”
project includes ‘main.c’, the CMX source files,
STARTUP.A51, and a C source file named
‘index.c’, which contains the file array for the pri-
mary web page.

Description of ‘main.c’ for the
“Hello World” Project
The ‘main.c’ source file contains all user written
code in the ‘Hello World’ project. The #include
statements at the top of the file and their signifi-
cance to the project are listed in Table 5 .

The three global variables listed in Table 6 are all
located in FLASH. Each of the variables has an
xdata pointer associated with it to allow writing to
FLASH memory.

The <first_time> variable can be written one time
after every FLASH download because it is initial-
ized to 0xFF. It is used as a flag to indicate that the
IP and MAC addresses for the device have already
been assigned and are stored in the Scratchpad area
of FLASH.

The <ip_address> and <mac_address> variables
are stored in the Scratchpad area of FLASH. This
Scratchpad area allows the device to erase and
rewrite the variables as many times as desired with-
out interfering with program code. The two
Scratchpad area variables generate memory over-
lap warnings by the linker because the Scratchpad
shares the first 256 bytes of the 64KB CODE
address space with program code. 0Please see the
C8051F12x datasheet for more information about
the Scratchpad area.

The purpose of the main() routine is to initialize the
system, to add file arrays to the Virtual File Sys-
tem, and to start the HTTP Web Server. Once
started, the HTTP Web Server takes control of the
processor. The while(1) loop at the end of ‘main.c’
should not be reached unless there is an error start-
ing the server and may be replaced with error han-
dling code. Please refer to the CMX Micronet
documentation for error codes returned from the
mn_server() function.

Creating HTML Content
HTML content consists of HTML documents,
images, Java applets, or any binary file suitable for

Table 5. Header File Descriptions

Header
File Purpose

stdio.h Used for UART communi-
cation

micronet.h Defines all CMX-provided
functions.

sfrdefs.h Defines the Silicon Labs-
specific SFRs not already
defined by the CMX stack

index.h Defines the size of the
‘index_html’ file array

Table 6. Global Variables in ‘main.c’

first_time

ip_address[4]

mac_address[6]

AN133

Rev. 1.1 7

downloading from an embedded web server. Since
the ‘Hello World’ server only has one HTML page,
the only tool needed to create it is a text editor.

Figure 4 shows the contents of ‘index.html’. After
it has been created in a text editor and saved in the
‘HTML’ subdirectory, it needs to be converted to a
file array using the ‘html2c.exe’ utility. Open a
command window and type in the commands listed
in Figure 5. These commands assume the project
directory is located at ‘C:\Projects\HelloWorld’ and
that a copy of ‘html2c.exe’ is in the HTML folder..

The commands in Figure 5 will create ‘index.c’
and ‘index.h’. The ‘index.c’ source file should be
added to the Project Build List and the ‘index.h’
header file should be #include-ed at the top of
‘main.c’. You should now be able to build the
project and test the embedded web server.

Figure 4. The Contents of ‘index.html’

<html>
<head><title>Hello World</title><head>

<body bgcolor="green" text="white" link="yellow" vlink="red" alink="blue">

<h1>Hello World!</h1>

This page is served from a C8051F124 and uses the CMX Micronet TCP/IP stack.

</body>
</html>

Figure 5. Example Command Prompt
for Converting an HTML file to ‘C’

Source and Header Files

prompt> cd\
prompt> cd Projects
prompt> cd HelloWorld
prompt> cd HTML
prompt> html2c index.html

AN133

8 Rev. 1.1

Appendix A—Setting Up the Embedded Web Server Demo

Materials Needed
• C8051F12x Development Kit
• AB2 Ethernet Daughter Card
• Crossover Cable (or standard Ethernet cable

and access to a network).
• A PC with a free serial port. (first time only)

Preparing the Hardware
1. Connect the AB2 Ethernet Card to the

C8051F12x Target Board’s 96-pin connector.

2. Connect the RJ-45 connector on the AB2
Ethernet card to a PC or laptop using the cross-
over cable or connect both the PC and the AB2
board to the same Ethernet network using stan-
dard Ethernet cables. A crossover cable allows
a direct connection between the PC and the
embedded system.

3. Connect the power supply to the C8051F12x
Target Board.

Downloading Object Code to
FLASH
1. Connect the EC2 Serial Adapter to the

C8051F12x using the 10-pin ribbon cable.

2. Connect the EC2 Serial Adapter to the COM1
port on the PC. If COM1 is not available, then
any free COM port may be used.

3. Download the ‘uWEB_124_1.hex’ or the
‘HELLOWORLD_124_1.hex’ object files to
FLASH using the Silicon Labs IDE or the com-
mand line FLASH programming utility avail-
able from the Silicon Labs website.

4. Disconnect the EC2 Serial Adapter from the
C8051F12x Target Board and cycle power after
the download is complete.

Programming the IP and MAC
Addresses
The first time the device is run after a FLASH
download, it will automatically go into “change IP
and MAC address mode”. It will also enter this
mode if the SW2 (P3.2) button is held down while
the reset button is pressed and released.

When the device enters this mode, the green LED
will start blinking. At this point the device can be
controlled by a UART terminal communicating at
9600 Baud 8-N-1. When prompted, enter the IP
address chosen for the embedded system. Please
see Appendix B for guidelines on choosing an IP
address. Also when prompted, enter the MAC
address (IA) found on the AB2 Ethernet Card. This
address will start with 00-0B-3C-xx-yy-zz. This
procedure should be repeated once after every
FLASH download.

Accessing the Web Server
1. If your embedded system is connected directly

to a network, then go to Step #2. If you are
using a crossover cable, then your PC must
have a static IP address in order to recognize
the embedded system. On Windows PCs, you
may access the Internet Protocol properties by
right-clicking on My Network Places and
selecting Properties. Right-click on Local Area
Connection and select Properties again. Select
Internet Protocol (TCP/IP) and click Properties
yet another time. Specify a static IP address for
the PC, as shown in Appendix B, and leave all
other inputs at their default values. When the
operating system prompts you to add a Subnet
mask, click OK and accept the default mask it
provides.

2. Open an instance of your favorite browser and
type the IP address of the embedded system

http://www.cygnal.com/

AN133

Rev. 1.1 9

into the address bar and press the ‘Enter’ key.
For example,

http://10.10.10.163/

where 10.10.10.163 is the IP
address of the embedded system.

Note: Depending on the network, it may take
30 seconds or more for the network to detect
the server. This delay can be minimized by
using a crossover cable.

AN133

10 Rev. 1.1

Appendix B—Determining an IP Address for the Embedded

Web Server
The following text outlines a few guidelines to fol-
low when choosing an IP address for the embedded
system.

1. Obtain information about the PC you are trying
to connect to. The key pieces of information
you need are the IP address and the Subnet
mask. If you are using a crossover cable, you
may choose any IP address for your PC as long
as the Subnet mask allows it to recognize the
embedded system.

2. The IP address chosen for the embedded sys-
tem must match the PC’s IP address in all bit
locations where the Subnet mask is a ‘1’ in
order for the PC to recognize the embedded
system. Otherwise, the PC will send it’s request
outside the local network.

IP Address Selection Example
The example in Figure 6 shows the IP address and
Subnet mask of the PC we want to connect to the
embedded web server. Since the first 24 bits of the
Subnet mask are ‘1’, the first 24 bits of the embed-
ded web server’s IP address must match the first 24
bits of the PC’s IP address. The valid range of IP
addresses for the embedded web server is from
10.10.10.0 to 10.10.10.254 with the exception of
10.10.10.80 since this address is already taken by
the PC. 10.10.10.255 is reserved because it is the
Broadcast Address for this network. An IP address
is considered a broadcast address if all bits which
are ‘0’ in the Subnet mask are ‘1’ in the IP address.

PC IP Address

PC Subnet Mask

Embedded Web Server IP Address

0000 1010 0000 1010 0000 1010 0101 0000

10 10 10 80

1111 1111 1111 1111 1111 1111 0000 0000

255 255 255 0

(decimal)

(binary)

(decimal)

(binary)

0000 1010 0000 1010 0000 1010 1010 0011

10 10 10 163 (decimal)

(binary)

Figure 6. IP Address Selection Example

AN133

Rev. 1.1 11

Appendix C—Example ‘main.c’ Source File for the
‘Hello World’ Project
//---
// main.c
//---
//
// AUTH: FB
// DATE: 4 OCT 02
//
// Target: C8051F12x
// Tool chain: KEIL C51
//
// Description:
// This is an example of how to set up and use the CMX Micronet HTTP
// Web Server.
//

//---
// Includes
//---
#include <stdio.h> // for printf
#include “micronet.h” // for all CMX provided routines
#include “sfrdefs.h” // for all 8-bit and 16-bit sfr
 // definitions not found in the standard
 // 8051 implementations.

// include the header file for each HTML content file below
#include “HTML\index.h” // header file for ‘index.html’

//---
// 16-bit SFR Definitions for ‘F12x
//---

sfr16 DP = 0x82; // data pointer
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 RCAP3 = 0xca; // Timer3 capture/reload
sfr16 RCAP4 = 0xca; // Timer4 capture/reload
sfr16 TMR2 = 0xcc; // Timer2
sfr16 TMR3 = 0xcc; // Timer3
sfr16 TMR4 = 0xcc; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd2; // DAC1 data
sfr16 PCA0CP5 = 0xe1; // PCA0 Module 5 capture
sfr16 PCA0CP2 = 0xe9; // PCA0 Module 2 capture
sfr16 PCA0CP3 = 0xeb; // PCA0 Module 3 capture
sfr16 PCA0CP4 = 0xed; // PCA0 Module 4 capture
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 capture
sfr16 PCA0CP1 = 0xfd; // PCA0 Module 1 capture

//---
// Global CONSTANTS
//---
#define INTCLK 24500000 // Internal oscillator frequency in Hz

AN133

12 Rev. 1.1

#define SYSCLK 49000000 // Output of PLL derived from (INTCLK*2)
#define BAUDRATE 9600 // Baud rate of UART in bps

sbit SW2 = P3^7; // SW2=’0’ means switch pressed
sbit LED = P1^6; // LED=’1’ means ON

//---
// Global VARIABLES
//---
unsigned char code first_time = 0xFF; // may be written once after
 // each download because it is
 // initialized to 0xFF
char xdata* data ptr_first_time = &first_time;

unsigned char code ip_address[4] _at_ 0x0000; // located in Scratchpad area
char xdata* data ptr_ip_address = &ip_address;

unsigned char code mac_address[6] _at_ 0x0004; // located in Scratchpad area
char xdata* data ptr_mac_address = &mac_address;

//---
// Function PROTOTYPES
//---
void main (void);
void SYSCLK_Init (void);
void PORT_Init (void);
void UART1_Init (void);
void EMIF_Init (void);
void ipconfig (void);

//---
// MAIN Routine
//---
void main (void)
{

 WDTCN = 0xde; // Disable watchdog timer
 WDTCN = 0xad;

 // initialize the C8051F12x
 PORT_Init ();
 SYSCLK_Init ();
 UART1_Init ();

 EMIF_Init ();

 // initialize the IP and MAC addresses and disable UART1
 ipconfig();

 // Set SFR page to LEGACY_PAGE
 SFRPAGE = LEGACY_PAGE;

 // initialize the CMX Micronet variables
 mn_init();

 // Add files to the Virtual File System. Make sure you have allocated
 // enough slots in the Virtual File system for the number of files

AN133

Rev. 1.1 13

 // you add. More slots can be allocated in ‘mnconfig.h’
 mn_vf_set_entry((byte *)”index.html”, INDEX_SIZE, index_html,VF_PTYPE_FLASH);

 // start the HTTP Server
 mn_server();

 while(1); // This point in code should never
 // be reached unless an error occurs

}

//---
// Initialization Routines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal oscillator
// at 24.5 MHz multiplied by two using the PLL.
//
void SYSCLK_Init (void)
{
 int i; // software timer

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 OSCICN = 0x83; // set internal oscillator to run
 // at its maximum frequency

 CLKSEL = 0x00; // Select the internal osc. as
 // the SYSCLK source

 //Turn on the PLL and increase the system clock by a factor of M/N = 2
 SFRPAGE = CONFIG_PAGE;

 PLL0CN = 0x00; // Set internal osc. as PLL source
 SFRPAGE = LEGACY_PAGE;
 FLSCL = 0x10; // Set FLASH read time for 50MHz clk
 // or less
 SFRPAGE = CONFIG_PAGE;
 PLL0CN |= 0x01; // Enable Power to PLL
 PLL0DIV = 0x01; // Set Pre-divide value to N (N = 1)
 PLL0FLT = 0x01; // Set the PLL filter register for
 // a reference clock from 19 - 30 MHz
 // and an output clock from 45 - 80 MHz
 PLL0MUL = 0x02; // Multiply SYSCLK by M (M = 2)

 for (i=0; i < 256; i++) ; // Wait at least 5us
 PLL0CN |= 0x02; // Enable the PLL
 while(!(PLL0CN & 0x10)); // Wait until PLL frequency is locked
 CLKSEL = 0x02; // Select PLL as SYSCLK source

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

AN133

14 Rev. 1.1

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 XBR0 = 0x00;
 XBR1 = 0x00;
 XBR2 = 0x44; // Enable crossbar, weak pull-ups,
 // and UART1

 P0MDOUT |= 0x01; // Set TX1 pin to push-pull
 P1MDOUT |= 0x40; // Set P1.6(LED) to push-pull

 // all pins used by the external memory interface are in push-pull mode
 P4MDOUT = 0xFF;
 P5MDOUT = 0xFF;
 P6MDOUT = 0xFF;
 P7MDOUT = 0xFF;
 P4 = 0xC0; // /WR, /RD, are high, RESET is low
 P5 = 0x00;
 P6 = 0x00; // P5, P6 contain the address lines
 P7 = 0xFF; // P7 contains the data lines

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

//---
// EMIF_Init
//---
//
// Configure the External Memory Interface for Split-Mode to support both
// on-chip and off-chip access.
//
void EMIF_Init (void){

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = LEGACY_PAGE;

 EMI0CF = 0xF7; // Split-Mode, non-multiplexed
 // on P4 - P7

 EMI0TC = 0xB7; // This value may be modified
 // according to SYSCLK to meet the
 // timing requirements for the CS8900A
 // For example, EMI0TC should be >= 0xB7
 // for a 100 MHz SYSCLK.
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

AN133

Rev. 1.1 15

//---
// UART1_Init
//---
//
// Configure the UART1 using Timer1, for <baudrate> and 8-N-1.
//
void UART1_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = UART1_PAGE;
 SCON1 = 0x10; // SCON1: mode 0, 8-bit UART, enable RX

 SFRPAGE = TIMER01_PAGE;
 TMOD &= ~0xF0;
 TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x13; // Clear all T1 related bits
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x13; // Clear all T1 related bits
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 }

 TL1 = TH1; // initialize Timer1
 TR1 = 1; // start Timer1

 SFRPAGE = UART1_PAGE;
 TI1 = 1; // Indicate TX1 ready

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

//---
// ipconfig
//---
//
// Configure the IP address of the device through the serial port.
//
void ipconfig()
{
 char input_str[20];
 unsigned char data temp_char[6];
 char c;
 long i;
 bit ok_flag;
 bit EA_SAVE; // Preserve Current Interrupt Status
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR Page

AN133

16 Rev. 1.1

 // prompt for the IP and MAC addresses if this is the first time the program
 // is run after a FLASH download or if the SW2(P1.6) button is pressed
 if (first_time || !SW2) {

 SFRPAGE = UART1_PAGE;

 RI1 = 0;
 while (1) {

 printf(“Press any key to continue\n”);

 for (i = 0; i < SYSCLK/100; i++) {
 if(RI1) break;
 }

 if (RI1) break;
 LED = ~LED;
 }
 RI1 = 0;

 ok_flag = 0;
 do {
 SFRPAGE = UART1_PAGE;
 printf(“\n\nEnter the IP address (eg. 10.10.10.163) >”);
 gets(input_str, sizeof(input_str));
 sscanf(input_str, “%bu.%bu.%bu.%bu”, &temp_char[0], &temp_char[1],
 &temp_char[2], &temp_char[3]);

 // check if IP address is entered correctly and write in FLASH
 printf(“\n\nIs %bu.%bu.%bu.%bu correct?”, temp_char[0], temp_char[1],
 temp_char[2], temp_char[3]);
 c = getchar();
 if (c == ‘y’ || c == ‘Y’) {

 SFRPAGE = LEGACY_PAGE;

 // erase scratchpad area and write the ip address to FLASH
 EA_SAVE = EA; // preserve current interrupt state
 EA = 0; // disable interrupts
 FLSCL |= 0x01; // enable FLASH write/erase
 PSCTL = 0x07; // MOVX erases scratchpad FLASH

 *ptr_ip_address = 0; // initiate erase

 PSCTL = 0x05; // MOVX writes scratchpad FLASH

 ptr_ip_address[0] = temp_char[0]; // write the first byte
 ptr_ip_address[1] = temp_char[1]; // write the second byte
 ptr_ip_address[2] = temp_char[2]; // write the third byte
 ptr_ip_address[3] = temp_char[3]; // write the fourth byte

 PSCTL = 0x00; // MOVX writes target XRAM
 FLSCL &= ~0x01; // disable FLASH write/erase
 EA = EA_SAVE; // restore interrupts
 ok_flag = 1;

 SFRPAGE = UART1_PAGE;

AN133

Rev. 1.1 17

 printf(“\nIP address successfully programmed.\n”);

 }
 } while(!ok_flag);

 ok_flag = 0;
 do {

 SFRPAGE = UART1_PAGE;

 printf(“\n\nEnter the MAC address (IA) (eg. 00-0B-3C-xx-yy-zz) >”);
 gets(input_str, sizeof(input_str));
 sscanf(input_str, “%bX-%bX-%bX-%bX-%bX-%bX”, &temp_char[0], &temp_char[1],
 &temp_char[2], &temp_char[3],
 &temp_char[4], &temp_char[5]);

 // check if IP address is entered correctly and write in FLASH
 printf(“\n\nIs %bX-%bX-%bX-%bX-%bX-%bX correct?”, temp_char[0], temp_char[1],
 temp_char[2], temp_char[3],
 temp_char[4], temp_char[5]);
 c = getchar();
 if(c == ‘y’ || c == ‘Y’){

 SFRPAGE = LEGACY_PAGE;

 // write the MAC address to FLASH
 EA_SAVE = EA; // preserve current interrupt state
 EA = 0; // disable interrupts
 FLSCL |= 0x01; // enable FLASH write/erase
 PSCTL = 0x05; // MOVX writes scratchpad FLASH

 ptr_mac_address[0] = temp_char[0]; // write the first byte
 ptr_mac_address[1] = temp_char[1]; // write the second byte
 ptr_mac_address[2] = temp_char[2]; // write the third byte
 ptr_mac_address[3] = temp_char[3]; // write the fourth byte
 ptr_mac_address[4] = temp_char[4]; // write the fifth byte
 ptr_mac_address[5] = temp_char[5]; // write the sixth byte

 PSCTL = 0x01; // MOVX writes FLASH byte

 *ptr_first_time = 0x00; // clear the first_time flag
 // Note: this flag is not in
 // the scratchpad area.

 PSCTL = 0x00; // MOVX writes target XRAM
 FLSCL &= ~0x01; // disable FLASH write/erase
 EA = EA_SAVE; // restore interrupts

 ok_flag = 1;

 SFRPAGE = UART1_PAGE;
 printf(“\nMAC address successfully programmed.\n”);
 }
 } while(!ok_flag);

 }

 // Disable Timer1
 SFRPAGE = TIMER01_PAGE;

AN133

18 Rev. 1.1

 TR1 = 0; // Stop Timer1
 TMOD = 0x00; // Restore the TMOD register to
 // its reset value
 CKCON = 0x00; // Restore the CKCON register to
 // its reset value

 // Disable UART1
 SFRPAGE = UART1_PAGE;
 SCON1 = 0x00; // Disable UART1

 SFRPAGE = LEGACY_PAGE;

 // Copy the IP and MAC address from the scratchpad area to the CMX variables
 // located in RAM.
 EA_SAVE = EA; // preserve current interrupt state
 EA = 0; // disable interrupts
 PSCTL = 0x04; // enable reads from the scratchpad

 // read the IP and MAC address from FLASH into their appropriate arrays in memory
 ip_src_addr[0] = ip_address[0];
 ip_src_addr[1] = ip_address[1];
 ip_src_addr[2] = ip_address[2];
 ip_src_addr[3] = ip_address[3];
 eth_src_hw_addr[0] = mac_address[0];
 eth_src_hw_addr[1] = mac_address[1];
 eth_src_hw_addr[2] = mac_address[2];
 eth_src_hw_addr[3] = mac_address[3];
 eth_src_hw_addr[4] = mac_address[4];
 eth_src_hw_addr[5] = mac_address[5];

 PSCTL = 0x00; // disable reads from the scratchpad
 EA = EA_SAVE; // restore interrupts

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

AN133

Rev. 1.1 19

Appendix D—Example Ethernet Transmit and Receive
Routines
//---
// Ethernet_Routines.c
//---
//
// AUTH: FB
// DATE: 7 OCT 02
//
// Target: C8051F12x
// Tool chain: KEIL C51
//
// Description: This is an example of how to send and receive packets using the
// CS8900A Ethernet Controller in 8-bit polled mode.
//
// This program periodically sends Ethernet Packets and captures
// all incoming packets. The incoming packets are displayed on
// a UART terminal at a baud rate of 115200.
//
//
// To connect the device directly to a PC, a crossover Ethernet
// cable is needed. If using a hub or a switch, then a normal
// Ethernet cable may be used.
//

//---
// Includes
//---
#include <c8051f120.h> // SFR declarations
#include <stdio.h> // printf()

//---
// 16-bit SFR Definitions for ‘F12x
//---

sfr16 DP = 0x82; // data pointer
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 RCAP3 = 0xca; // Timer3 capture/reload
sfr16 RCAP4 = 0xca; // Timer4 capture/reload
sfr16 TMR2 = 0xcc; // Timer2
sfr16 TMR3 = 0xcc; // Timer3
sfr16 TMR4 = 0xcc; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd2; // DAC1 data
sfr16 PCA0CP5 = 0xe1; // PCA0 Module 5 capture
sfr16 PCA0CP2 = 0xe9; // PCA0 Module 2 capture
sfr16 PCA0CP3 = 0xeb; // PCA0 Module 3 capture
sfr16 PCA0CP4 = 0xed; // PCA0 Module 4 capture
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 capture
sfr16 PCA0CP1 = 0xfd; // PCA0 Module 1 capture

//---

AN133

20 Rev. 1.1

// Data Stuctures and Type Definitions
//---
typedef union MACADDR { // The 48-bit Ethernet MAC address
 unsigned int Int[3];
 unsigned char Char[6];
} MACADDR;

typedef union ULONG { // Byte Addressable Unsigned Long
 unsigned long Long;
 unsigned int Int[2];
 unsigned char Char[4];
} ULONG;

typedef union UINT { // Byte Addressable Unsigned Int
 unsigned int Int;
 unsigned char Char[2];
} UINT;

//---
// Global CONSTANTS and VARIABLES
//---
#define SYSCLK 49000000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps

sbit ETH_RESET = P4^5; // CS8900A reset pin

#define TRANSMIT_CMDH 0x00 // Transmit Command (High and Low
#define TRANSMIT_CMDL 0xC0 // bytes)

sbit LED = P1^6; // LED=’1’ means ON
sbit SW2 = P3^7; // SW2=’0’ means switch pressed

MACADDR MYMAC; // The 48-bit MAC address for
 // the Ethernet Controller
MACADDR BROADCAST; // A broadcast destination address
 // for sending packets
#define BASE_ADDRESS 0xC000

// CS8900A Internal PacketPage Register Addresses
#define IPPREG_PRODUCT_ID 0x0000
#define IPPREG_BASE_ADDRESS 0x0020
#define IPPREG_LineCTL 0x0112
#define IPPREG_RxCTL 0x0104
#define IPPREG_RxCFG 0x0102
#define IPPREG_BufCFG 0x010A
#define IPPREG_BufEvent 0x012C
#define IPPREG_TxEvent 0x0128
#define IPPREG_RxEvent 0x0124
#define IPPREG_IA 0x0158
#define IPPREG_BusST 0x0138
#define IPPREG_TestCTL 0x0118
#define IPPREG_LineST 0x0134
#define IPPREG_SelfST 0x0136

// CS8900A PacketPage Register Bit Definitions
#define TxBidErr 0x0080
#define RxOK 0x0100
#define Rdy4TxNow 0x0100

AN133

Rev. 1.1 21

#define TxUnderrun 0x0200
#define TxOK 0x0100
#define INITD 0x0080
#define SerTxON 0x0080
#define SerRxON 0x0040
#define PromiscuousA 0x0080
#define RxOKA 0x0100
#define MulticastA 0x0200
#define IndividualA 0x0400
#define BroadcastA 0x0800
#define CRCerrorA 0x1000
#define RuntA 0x2000
#define ExtradataA 0x4000

//---
// CS8900A Direct Access Register Definitions
//---
volatile unsigned char xdata DATA0L _at_ (BASE_ADDRESS + 0x0000);
volatile unsigned char xdata DATA0H _at_ (BASE_ADDRESS + 0x0001);
volatile unsigned char xdata DATA1L _at_ (BASE_ADDRESS + 0x0002);
volatile unsigned char xdata DATA1H _at_ (BASE_ADDRESS + 0x0003);
volatile unsigned char xdata TxCMDL _at_ (BASE_ADDRESS + 0x0004);
volatile unsigned char xdata TxCMDH _at_ (BASE_ADDRESS + 0x0005);
volatile unsigned char xdata TxLENGTHL _at_ (BASE_ADDRESS + 0x0006);
volatile unsigned char xdata TxLENGTHH _at_ (BASE_ADDRESS + 0x0007);
volatile unsigned char xdata ISQL _at_ (BASE_ADDRESS + 0x0008);
volatile unsigned char xdata ISQH _at_ (BASE_ADDRESS + 0x0009);
volatile unsigned char xdata PACKETPAGE_POINTERL _at_ (BASE_ADDRESS + 0x000A);
volatile unsigned char xdata PACKETPAGE_POINTERH _at_ (BASE_ADDRESS + 0x000B);
volatile unsigned char xdata PACKETPAGE_DATA0L _at_ (BASE_ADDRESS + 0x000C);
volatile unsigned char xdata PACKETPAGE_DATA0H _at_ (BASE_ADDRESS + 0x000D);
volatile unsigned char xdata PACKETPAGE_DATA1L _at_ (BASE_ADDRESS + 0x000E);
volatile unsigned char xdata PACKETPAGE_DATA1H _at_ (BASE_ADDRESS + 0x000F);

//---
// Function PROTOTYPES
//---
void main (void);
void SYSCLK_Init (void);
void PORT_Init (void);
void UART1_Init (void);
void EMIF_Init (void);

void CS8900A_Reset(void);
void CS8900A_Init(void);

unsigned long PACKETPAGE_ReadID();
unsigned int PACKETPAGE_Read (unsigned int register_address);
void PACKETPAGE_Write(unsigned int register_address, unsigned int output_data);

void CS8900A_RxPoll(void);

void Receive_Frame(void);
void Send_Frame(char* buffer, int length, MACADDR* address);

//---
// MAIN Routine
//---
void main (void)

AN133

22 Rev. 1.1

{

 char buffer[28] = {
 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x02, 0x01, 0x23,
 0x45, 0x67, 0x89, 0x10, 0x0A, 0x0A, 0x0A, 0xA3, 0x00, 0x80,
 0xAD, 0x81, 0x85, 0x0B, 0x0A, 0x0A, 0x0A, 0x9E
 };

 unsigned long id; // holds the device ID

 char buffer2[5] = “ “;

 long k; // counter

 WDTCN = 0xde; // Disable watchdog timer
 WDTCN = 0xad;

 SYSCLK_Init ();
 PORT_Init ();
 UART1_Init ();
 EMIF_Init ();

 CS8900A_Reset(); // Reset the CS8900A

 CS8900A_Init(); // Initialize for Rx and Tx

 // Initialize the Global MAC addresses
 MYMAC.Int[0] = 0x0123; // This address should be
 MYMAC.Int[1] = 0x4567; // set to the MAC address
 MYMAC.Int[2] = 0x8910; // on the AB2 Ethernet Card

 BROADCAST.Int[0] = 0xffff;
 BROADCAST.Int[1] = 0xffff;
 BROADCAST.Int[2] = 0xffff;

 id = PACKETPAGE_ReadID(); // Read the device ID

 while(1){

 // check event registers for incoming packets
 for(k = 0; k < 50000; k++) { CS8900A_RxPoll(); }

 // send an IEEE 802.3 Frame
 Send_Frame(buffer, sizeof(buffer), &BROADCAST);

 }

 } // end main

//---
// Init Routines
//---

//---
// SYSCLK_Init
//---

AN133

Rev. 1.1 23

//
// This routine initializes the system clock to use the internal oscillator
// at 24.5 MHz multiplied by two using the PLL.
//
void SYSCLK_Init (void)
{
 int i; // software timer

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 OSCICN = 0x83; // set internal oscillator to run
 // at its maximum frequency

 CLKSEL = 0x00; // Select the internal osc. as
 // the SYSCLK source

 //Turn on the PLL and increase the system clock by a factor of M/N = 2
 SFRPAGE = CONFIG_PAGE;

 PLL0CN = 0x00; // Set internal osc. as PLL source
 SFRPAGE = LEGACY_PAGE;
 FLSCL = 0x10; // Set FLASH read time for 50MHz clk
 // or less
 SFRPAGE = CONFIG_PAGE;
 PLL0CN |= 0x01; // Enable Power to PLL
 PLL0DIV = 0x01; // Set Pre-divide value to N (N = 1)
 PLL0FLT = 0x01; // Set the PLL filter register for
 // a reference clock from 19 - 30 MHz
 // and an output clock from 45 - 80 MHz
 PLL0MUL = 0x02; // Multiply SYSCLK by M (M = 2)

 for (i=0; i < 256; i++) ; // Wait at least 5us
 PLL0CN |= 0x02; // Enable the PLL
 while(!(PLL0CN & 0x10)); // Wait until PLL frequency is locked
 CLKSEL = 0x02; // Select PLL as SYSCLK source

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 XBR0 = 0x00;
 XBR1 = 0x00;
 XBR2 = 0x44; // Enable crossbar, weak pull-ups,
 // and UART1

 P0MDOUT |= 0x01; // Set TX1 pin to push-pull

AN133

24 Rev. 1.1

 P1MDOUT |= 0x40; // Set P1.6(LED) to push-pull

 // all pins used by the external memory interface are in push-pull mode
 P4MDOUT = 0xFF;
 P5MDOUT = 0xFF;
 P6MDOUT = 0xFF;
 P7MDOUT = 0xFF;
 P4 = 0xC0; // /WR, /RD, are high, RESET is low
 P5 = 0x00;
 P6 = 0x00; // P5, P6 contain the address lines
 P7 = 0xFF; // P7 contains the data lines

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

//---
// EMIF_Init
//---
//
// Configure the External Memory Interface for both on and off-chip access.
//
void EMIF_Init (void){

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = LEGACY_PAGE;

 EMI0CF = 0xF7; // Split-mode, non-multiplexed
 // on P4 - P7

 EMI0TC = 0xB7; // This constant may be modified
 // according to SYSCLK to meet the
 // timing requirements for the CS8900A
 // For example, EMI0TC should be >= 0xB7
 // for a 100 MHz SYSCLK.
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// UART1_Init
//---
//
// Configure the UART1 using Timer1, for <baudrate> and 8-N-1.
//
void UART1_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = UART1_PAGE;
 SCON1 = 0x10; // SCON1: mode 0, 8-bit UART, enable RX

 SFRPAGE = TIMER01_PAGE;
 TMOD &= ~0xF0;
 TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);

AN133

Rev. 1.1 25

 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x13; // Clear all T1 related bits
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x13; // Clear all T1 related bits
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 }

 TL1 = TH1; // initialize Timer1
 TR1 = 1; // start Timer1

 SFRPAGE = UART1_PAGE;
 TI1 = 1; // Indicate TX1 ready

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

//---
// CS8900A_Reset
//---
//
// This procedure resets the CS8900A using its reset pin (P4.5).
//
void CS8900A_Reset(void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = TMR3_PAGE;
 TMR3CN = 0x00; // Disable Timer3
 TMR3CF &= ~0x18; // Count System Clocks/12
 TMR3 = -(SYSCLK / 2500000); // Load Timer3 with 400ns

 // reset pin (active high) is on P4.5
 ETH_RESET = 1; // Assert the Reset signal
 TR3 = 1; // Start Timer3
 while(!TF3); // wait for the Timer3 overflow flag.
 ETH_RESET = 0; // Take the CS8900A out of reset

 // wait at least 20ms for device to be ready
 TMR3CN = 0x00; // Disable Timer3, use system clock/12
 TMR3 = -(SYSCLK / 12 / 50); // Load Timer3 with 20ms
 TR3 = 1; // Start Timer3
 while(!TF3); // wait for the Timer3 overflow flag.

 // check to see if the device is ready
 while(!(PACKETPAGE_Read(IPPREG_SelfST) & INITD));

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

AN133

26 Rev. 1.1

//---
// CS8900A_Init
//---
//
// This function configures the CS8900A for transmitting and receiving. It
// also assigns the CS8900A the MAC address it should respond to.
//
void CS8900A_Init(void)
{
 // set which frames will be accepted by the CS8900A
 // the RxOKA bit must be set for the device to operate properly
 PACKETPAGE_Write(IPPREG_RxCTL, RxOKA + PromiscuousA);

 // assign the Ethernet MAC address
 PACKETPAGE_Write(IPPREG_IA, MYMAC.Int[0]);
 PACKETPAGE_Write(IPPREG_IA + 2, MYMAC.Int[1]);
 PACKETPAGE_Write(IPPREG_IA + 4, MYMAC.Int[2]);

 // enable transmit and receive
 PACKETPAGE_Write(IPPREG_LineCTL,SerTxON | SerRxON);
}

//---
// Function Definitions
//---

//---
// PACKETPAGE_Read
//---
//
// This function returns the contents of a PacketPage Register
//
// Note: Read high byte first and Write low byte first when communicating with
// the CS8900A.
//
unsigned int PACKETPAGE_Read (unsigned int IPPREG_address)
{

 UINT register_address;
 UINT retval;

 register_address.Int = IPPREG_address;

 // specify register address and set autoincrement off
 PACKETPAGE_POINTERL = register_address.Char[1];
 PACKETPAGE_POINTERH = (register_address.Char[0] & 0x7F);

 // read lower 16-bits most significant byte first
 retval.Char[0] = PACKETPAGE_DATA0H;
 retval.Char[1] = PACKETPAGE_DATA0L;

 // return the data register contents
 return retval.Int;
}

//---
// PACKETPAGE_Write

AN133

Rev. 1.1 27

//---
//
// This function writes a 16-bit value to a PacketPage Register.
//
// Note: Read high byte first and write low byte first when communicating with
// the CS8900A
//
void PACKETPAGE_Write(unsigned int IPPREG_address, unsigned int output_data)
{

 UINT register_address;
 UINT dat;

 register_address.Int = IPPREG_address;
 dat.Int = output_data;

 // specify register address and set autoincrement off
 PACKETPAGE_POINTERL = register_address.Char[1];
 PACKETPAGE_POINTERH = (register_address.Char[0] & 0x7F);

 //write the data to the data ports
 PACKETPAGE_DATA0L = dat.Char[1];
 PACKETPAGE_DATA0H = dat.Char[0];
}

//---
// PACKETPAGE_ReadID
//---
//
// This function returns the contents of the Product Identification Code
// register. This is a 32-bit register at location 0 in the PacketPage memory.
//
// This register identifies the device as a CS8900A and does not change.
//
unsigned long PACKETPAGE_ReadID ()
{

 ULONG retval;

 retval.Int[0] = PACKETPAGE_Read(0x0000);
 retval.Int[1] = PACKETPAGE_Read(0x0002);

 return retval.Long;
}
//---
// CS8900A_RxPoll
//---
//
// This function polls the CS8900A for the Receive OK event.
//
void CS8900A_RxPoll(void)
{
 unsigned int event;

 event = PACKETPAGE_Read(IPPREG_RxEvent);

 if(event & RxOK){
 Receive_Frame();
 return;

AN133

28 Rev. 1.1

 }

}

//---
// RECEIVE_FRAME
//---
//
// This function Receives a frame from the CS8900A Data Ports and displays it
// on a Hyperterminal window.
//
void Receive_Frame(void)
{

 UINT status;
 UINT length;
 UINT dat;

 int i;

 status.Char[0] = DATA0H;
 status.Char[1] = DATA0L;

 length.Char[0] = DATA0H;
 length.Char[1] = DATA0L;

 SFRPAGE = UART1_PAGE;

 printf(“\n\n New Packet: %d bytes”, length.Int);

 printf(“\n Destination: “);

 for (i = 0; i < 3; i++) {

 dat.Char[0] = DATA0L;
 dat.Char[1] = DATA0H;

 printf(“%04X”, dat.Int);

 length.Int -= 2;
 }

 printf(“\n Source: “);

 for (i = 0; i < 3; i++) {

 dat.Char[0] = DATA0L;
 dat.Char[1] = DATA0H;

 printf(“%04X”, dat.Int);

 length.Int -= 2;
 }

 printf(“\n Data: “);

 while(((int) length.Int) > 0){

AN133

Rev. 1.1 29

 dat.Char[0] = DATA0L;
 dat.Char[1] = DATA0H;

 printf(“%04X”, dat.Int);

 length.Int -= 2;

 }
}

//---
// Send_Frame
//---
//
// This function sends an IEEE 802.3 frame to the CS8900A. Upon entry, there
// should be valid data in array <buffer>.
//
// 48-bit 48-bit 16-bit 0-1500 bytes
// ---
// | Preamble | SFD | Dest | Source | Length of | Data Field | Pad | FCS |
// | | | Addr | Addr | data field | | | (CRC) |
// ---
// supplied by | supplied by the host (TxLength) | supplied by
// CS8900A | | CS8900A

void Send_Frame(char* buffer, int length, MACADDR* dest_address_ptr)
{
 UINT len;
 int status;
 int i;

 // issue a transmit command
 TxCMDL = TRANSMIT_CMDL;
 TxCMDH = TRANSMIT_CMDH;

 // bid for buffer space
 // data field length + dest field (6) + source field (6) + length field (2)
 len.Int = length + 14;
 TxLENGTHL = len.Char[1];
 TxLENGTHH = len.Char[0];

 // error check
 if (PACKETPAGE_Read(IPPREG_BusST) & TxBidErr) while (1);

 // wait for CS8900A Tx ready
 do {
 status = PACKETPAGE_Read(IPPREG_BusST);
 } while (!(status & Rdy4TxNow));

 // write the destination address field
 for (i = 0; i < 6; i+=2){
 DATA0L = dest_address_ptr->Char[i];
 DATA0H = dest_address_ptr->Char[i+1];
 }

AN133

30 Rev. 1.1

 // write the source address field
 for (i = 0; i < 6; i+=2){

 DATA0L = MYMAC.Char[i];
 DATA0H = MYMAC.Char[i+1];
 }

 // write the data length field
 len.Int = length;
 DATA0L = len.Char[0];
 DATA0H = len.Char[1];

 // write the data field
 // The CS8900A automatically transmits after the last byte is written
 i = 0;
 while (i < length){
 DATA0L = buffer[i];
 i++;

 if (i < length){
 DATA0H = buffer[i];
 i++;
 }
 }

}

AN133

Rev. 1.1 31

Appendix E—AB2 Ethernet Daughter Card Schematic

AN133

32 Rev. 1.1

Appendix F—Bill of Materials for AB2 Ethernet Daughter Card

Qty Part
Number

Manufacturer Description

1 RJ724 –L1 Trans-Power RJ-45 Connector with integrated magnetics and
LEDs.
Contact: Trans-Power
 (www.trans-power.com)

or Tyco Electronics
 (www.tycoelectronics.com)
 1-800-468-2023
P/N 1-1605752-1

1 PCN10A-
96P-2.54DS

650473-5

Hirose Electric

OR

AMP/TYCO
Electronics

96-Pin DIN connector MALE
Plug Right Angle, 3Row, Standard

1 CS8900A Cirrus Logic 100 Pin TQFP
1 Testpoint
2 Rubber Feet

Qty Value Package Notes

Capacitors
8 0.1 uF 0805 X7R 50/100V
1 10 uF 3216 Tant TE Series 6.3V

Panasonic PCS1106CT-ND or eq.
1 560 pF 0805 C0G/Ceramic NPO 50V

Resistors
2 8.2 OHM 0805 MTFLM 5% 1/10W
1 100 OHM 0805 MTFLM 1% 1/10W
1 4.99K +/- 1% OHM 0805 MTFLM 1% 1/10W

Crystal
1 20.0 MHz HC-49/VA 20PF Parallel

AN133

Rev. 1.1 33

Notes:
Relevant Devices
This application note applies to the following devices:

C8051F120, C8051F121, C8051F122, C8051F123, C8051F124, C8051F125, C8051F126, and C8051F127.

AN133

34 Rev. 1.1

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Silicon Laboratories:

 AB2

http://www.mouser.com/silabs
http://www.mouser.com/access/?pn=AB2

	Relevant Devices
	Introduction
	Building an Ethernet Interface
	Step by Step Guide to Setting Up the CMX Micronet™ HTTP Web Server (Version 2.17j)
	Creating a New Project
	Configuring the CMX Micronet™ Protocol Stack
	Modifying ‘STARTUP.A51’
	Modifying ‘micronet.h’
	Modifying ‘mn_env.h’
	Modifying ‘mn_port.c
	Modifying ‘mnconfig.h’

	Designing an Application Around the CMX Micronet™ HTTP Server
	Typical Project Structure
	Initialization Routines
	The ‘html2c’ Utility
	Adding File Arrays to the Project

	Starting the HTTP Server

	A “Hello World” Application
	Starting the “Hello World” Application From Scratch
	Description of ‘main.c’ for the “Hello World” Project
	Creating HTML Content

	Appendix A-Setting Up the Embedded Web Server Demo
	Materials Needed
	Preparing the Hardware
	Downloading Object Code to FLASH
	Programming the IP and MAC Addresses
	Accessing the Web Server

	Appendix B-Determining an IP Address for the Embedded Web Server
	IP Address Selection Example

	Appendix C-Example ‘main.c’ Source File for the ‘Hello World’ Project
	Appendix D-Example Ethernet Transmit and Receive Routines
	Appendix E-AB2 Ethernet Daughter Card Schematic
	Appendix F-Bill of Materials for AB2 Ethernet Daughter Card
	Notes:

