&~

SILICON LABODORATORIES

AN133

EMBEDDED ETHERNET REFERENCE DESIGN

Relevant Devices

This application note applies to the following devices:

C8051F120, C8051F121, C8051F122, C8051F123,
C8051F124, C8051F125, C8051F126, and
C8051F127.

Introduction

This reference design demonstrates how to set up
an Embedded Ethernet web server on a C8051F12x
device. It provides instructions on how to set up
and use the AB2 Ethernet Daughter Cards and
example web servers that use the CMX Micronet™
protocol stack. It also provides example low-level
Ethernet transmit and receive routines.

Note: We encourage you to read all documentation
before starting a new project.

This reference design includes:

* A schematic and bill of materials for the AB2
Ethernet board.

» Example Ethernet transmit and receive routines
that communicate with a CS8900A Ethernet
Controller.

* A simple example of configuring and using the
CMX Micronet™ HTTP Web Server.

» Instructions on how to create a simple
“Hello World” web server.

» Downloadable object files in HEX format for
the “Hello World” server and “uWeb”, an
interactive temperature measurement demo
server.

Building an Ethernet
Interface

The Ethernet interface to the C8051F12x consists
of an Ethernet Adapter, an RJ-45 connector, and
magnetics. The AB2 Ethernet cards available from
the Silicon Labs website use a Cirrus Logic
CS8900A Ethernet adapter and a Trans-Power RJ-
45 connector with integrated magnetics and LEDs.
The AB2 board schematic can be found in
Appendix E. For more information about interfac-
ing to a CS8900A, please visit the Cirrus Logic
website at www.cirruslogic.com.

Step by Step Guide to
Setting Up the CMX

Micronet™ HTTP Web
Server (Version 2.17j)

1. The first step in using the CMX Micronet™
protocol stack is to install it in a known direc-
tory. In the following text, we refer to this
directory as the ‘Micronet’ directory.

Creating a New Project

2. To create a new project, copy all files from the
‘Micronet\netlib’ directory to a new directory.
We refer to the folder as the ‘HelloWorld’
directory. Copy the files in Table 1 into the
‘HelloWorld’ directory.

Table 1. Files to Copy to the ‘HelloWorld’
Directory

1. All files in ‘Micronet\netlib’

2. ‘callback.c’ found in the ‘Micro-
net\kS1app’ folder

Rev. 1.1 12/03

Copyright © 2003 by Silicon Laboratories

AN133-DS11

http://www.cirruslogic.com/

AN133

Table 1. Files to Copy to the ‘HelloWorld’
Directory

3. ‘STARTUP.A51’ found in
ANOO1SW.zZip

4. ‘sfrdefs.h’ found in ANOO1SW.zip
5. ‘main.c’ found in ANOO1SW.zip

3. Next create a subdirectory called ‘HTML’ in
the ‘HelloWorld’ folder. Copy the files listed in
Table 2 to the ‘HTML’ folder. This folder con-
tains all HTML files, graphics, Java applets,
and a copy of ‘mn_defs.h’. It is also handy, but
not required, to place a copy of ‘html2c.exe’ in
this folder.

Table 2. Files to Copy to the ‘HTML’ Folder
1. ‘index.h’ found in ANOO1SW.zip
. ‘index.c’ found in ANOO1SW.zip
. ‘index.html’ found in ANOO1SW.zip

2
3
4. ‘mn_defs.h’ found in the project folder
5

. ‘html2c.exe’ found in the ‘Micro-
net\Tools’ folder (optional)

4. Start a new project in the Silicon Labs IDE.
Add all *.C’ files in the project directory to the
project except for ‘RTL8019.c’, ‘physmc65’
and ‘ipseth16.c’. Also add the files in Table 3
to the project.

Table 3. Files to Add to a New Project

All .C’ files in the project directory
‘STARTUP.A57’

‘mn_env.h’

1.
2.
3. ‘mnconfig.h’
4.
5.

‘micronet.h’

The ‘STARTUP.AS51’ file is necessary for this
project because the CMX protocol stack uses

re-entrant functions and the LARGE memory
model. The ‘mnconfig.h’, ‘mn _env.h’, and
‘micronet.h’ header files are added to the
project for convenience.

5. Add a new group to the project. Add all *.C’
files in the ‘HTML’ directory to this group.
Separating project files into several groups is
recommended because it makes searching for a
specific file much easier.

6. Next select the LARGE memory model from
the Compiler tab of the ‘Tool Chain Integra-
tion’ window in the Project menu. Be sure to
save the project settings using the Save Project
command.

Configuring the CMX Micronet™
Protocol Stack

This section outlines the changes required for the
CMX Micronet™ HTTP Web Server to run on a
C8051F12x device. The following steps involve
modifying constants or small blocks of code in
select files.

Modifying ‘STARTUP.A51’

7. Depending on your version of ‘STAR-
TUP.A51°, you may need to add the following
include statement to the beginning of the file:

Sinclude (C8051F120.H)

8. This step initializes the re-entrant stack pointer.
This is accomplished by setting XBPSTACK to
‘1’ and XBPSTACKTOP to ‘1FFFH+1’. XBP-
STACKTORP is set to the highest memory loca-
tion in XRAM plus one. For 8KB of XRAM on
‘F12x devices, this equates to 0x2000.

2 Rev. 1.1

SILICON LABORATORIES

AN133

Modifying ‘micronet.h’

9. Figure 1 contains bolded definitions that
should be added at the beginning of
‘micronet.h’ to specify the base address of
the CS8900A in external memory and that
the Ethernet controller is being used in
polled mode.

Modifying ‘mn_env.h’

10. In ‘mn_env.h’ header file, change the
DYNAMIC MEM AVAILABLE con-
stant to ‘0’.

Modifying ‘mn_port.c

11. In ‘mn_port.c’, modify the Timer O reload
value to overflow every 10 ms. For exam-
ple, if SYSCLK is 49 MHz and Timer O is
clocked by SYSCLK/12, then the reload
value should be -(SYSCLK/12/100) =
-40833d = 0x607F.

Modifying ‘mnconfig.h’

12. The ‘mnconfig.h’ header file allows the
user to select the protocols used, size of
buffers, and other options. Disabling
unneccessary options will save memory
and code space. Table 4 shows the options
enabled for the ‘HelloWorld” web server.

All other protocols and options are
assumed to be inactive or at their default

state.

Table 4. Constant Settings in ‘mnconfig.h’

Constant Value

TCP 1
ETHERNET 1
SLIP 0
PING 1
NUM_SOCKETS 2
RECV_BUFF_SIZE 1024
POLLED_ETHERNET 1
ARP 1
ARP_TIMEOUT 0
ARP_AUTO_UPDATE 1
ARP_CACHE_SIZE 2
DHCP 0
HTTP 1
SERVER_SIDE_INCLUDES 0
INCLUDE_HEAD 0
FTP 0
NEED_MEM_POOL 0

Figure 1. Definitions to Add to ‘micronet.h’

#ifndef MICRONET_H_INC
#define MICRONET H INC 1

#define POL8051

#include "mn defs.h"
#include "mn env.h"

#define iPS_ETH8 100 _RDWR ((volatile unsigned char xdata*)0xC000)

®
@ Rev. 1.1

SILICON LABORATORIES

AN133

Table 4. Constant Settings in ‘mnconfig.h’

Constant

VIRTUAL_FILE 1

Designing an Application
Around the CMX Micronet™
HTTP Server

All projects that use the CMX stack require the the
user to provide the main() routine, callback rou-
tines, device and protocol stack initialization rou-
tines, and HTML content.

Typical Project Structure

A typical web-enabled project structure is shown in
Figure 2. In most cases, the user will only be writ-
ing the initialization and callback routines in
‘main.c’ and ‘callback.c’. All HTML content is
added to the project in the form of a file array gen-
erated by the ‘html2c.exe’ utility. The linker com-
bines all project files to generate an object file that
is downloaded to FLASH.

Initialization Routines

Because of device dependencies, the order of per-
forming initializations is important for the system
to function properly. The first set of initializations
should include peripherals. In the software exam-
ple, these would include the following function
calls:

SYSCLK_Init (); // Initialize PLL
EMIF Init (); // Initialize External
// Memory Interface

PORT Init (); // Initialize Port I/0
UART1_Init (); // Initialize UART1
// to 9600 baud

The second initialization includes programming the
device IP and MAC addresses, or copying these
addresses from FLASH if the device has already
been programmed. This is done by the following
function call:

ipconfig();

Since CMX Micronet™ uses Timer 0, the ipcon-
fig() routine sets the Timer Mode (TMOD) and
Clock Control (CKCON) registers to their reset
value.

Figure 2. A Typical Web-Enabled Project Structure

main.c

#include webpage.h

HTML Content

examples void main(X
.html (web pages),
Jpg, .gif (images), }

.class (Java),

void device_init(){

html2c OMF-51
Linker Object File
] C8051F12x Target
Hfiles Cfiles CMX source and Board + AB2 Ethernet
ex. ex. configuration files Card
(webpage.h) (webpage.c)
4 Rev. 1.1

SILICON LABORATORIES

AN133

The fourth set of initializations includes the CMX
Micronet™ variables. This is accomplished with
the following function call:

// initialize all
// protocol stack
// variables

mn_init();

Please note that the CMX stack variables must be
initialized before any other CMX-provided func-
tions are called.

Adding Files to the Virtual File
System

The Virtual File System associates a file name with
a file array generated by the ‘html2c¢’ utility. Files
added to the Virtual File System can be requested
from a web browser.

The ‘htmi2c’ Utility

To converting HTML content to file array, use the
‘html2c.exe’ utility provided with the CMX pack-
age. The ‘html2c.exe’ utility outputs a ‘.c’ file and
a “.h’ file with the same name as the HTML content
file. These source and header files declare and ini-
tialize a ‘char’ array in FLASH. The file arrays can
represent binary or ASCII files.

Adding File Arrays to the Project

Once the source and header files for the file arrays
have been created, incorporate them into the
project by adding the ‘.c’ file to the Project Build
List and #include-ing the ‘.h’ file at the top of
‘main.c’.

When the file arrays have been added to the
project, the final step is to create an entry in the file
system for each file array by calling the
mn_vf set_entry() function as shown in Figure 3.
In this example, ‘index.html’, ‘imagel.gif’, and
‘image2.gif” can be downloaded from a web
browser by typing the proper URL into the address
bar.

Starting the HTTP Server

The last function call in ‘main.c’ should start the
HTTP server as follows:

mn_server () ;

Once the HTTP server is started, it takes control of
program execution. Code that needs to be executed
after the server has started must reside in a CGI
script, in one of the special blank functions defined
in ‘callback.c’, or in an interrupt service routine.

Figure 3. Adding files to the Virtual File System

#include “index.h”
#include “imagel.h”
#include “image2.h”

void main ()

{

// sample virtual file entries

mn vf set entry((byte *)"index.html",
mn vf set entry((byte *)"imagel.gif",
mn vf set entry((byte *)"image2.gif",

// index.c is in the project build list
// imagel.c is in the project build list
// image2.c is in the project build list

INDEX SIZE, index html, VF_PTYPE FLASH);
IMAGEl SIZE, imagel gif, VF_PTYPE FLASH);
IMAGE2 SIZE, image2 gif, VF_PTYPE FLASH);

SILICON LABORATORIES

Rev. 1.1 5

AN133

A “Hello World” Application

This example project demonstrates developing a
basic web-enabled application. The OMF-51 object
file for this example is included as part of the refer-
ence design package. It is recommended that you
run this project from the provided object file first to
get a feeling for what lies ahead. We recommend
following the steps in Appendix A to set up the
“uWeb” server or the “Hello World” server from
their object files before continuing.

Starting the “Hello World”
Application From Scratch

Create a new Silicon Labs IDE project and make
the necessary changes to CMX Micronet™ out-
lined in the previous sections. The “Hello World”
project includes ‘main.c’, the CMX source files,
STARTUP.A51, and a C source file named
‘index.c’, which contains the file array for the pri-
mary web page.

Description of ‘main.c’ for the
“Hello World” Project

The ‘main.c’ source file contains all user written
code in the ‘Hello World’ project. The #include
statements at the top of the file and their signifi-
cance to the project are listed in Table 5 .

Table 5. Header File Descriptions

Header
File

Purpose

The three global variables listed in Table 6 are all
located in FLASH. Each of the variables has an
xdata pointer associated with it to allow writing to
FLASH memory.

Table 6. Global Variables in ‘main.c’

first time

ip_address[4]

mac_address[6]

The <first_time> variable can be written one time
after every FLASH download because it is initial-
ized to OxFF. It is used as a flag to indicate that the
IP and MAC addresses for the device have already
been assigned and are stored in the Scratchpad area
of FLASH.

The <ip address> and <mac_ address> variables
are stored in the Scratchpad area of FLASH. This
Scratchpad area allows the device to erase and
rewrite the variables as many times as desired with-
out interfering with program code. The two
Scratchpad area variables generate memory over-
lap warnings by the linker because the Scratchpad
shares the first 256 bytes of the 64KB CODE
address space with program code. OPlease see the
C8051F12x datasheet for more information about
the Scratchpad area.

The purpose of the main() routine is to initialize the
system, to add file arrays to the Virtual File Sys-
tem, and to start the HTTP Web Server. Once
started, the HTTP Web Server takes control of the

stdio.h Used for UART communi- processor. The while(1) loop at the end of ‘main.c’
cation should not be reached unless there is an error start-
: : : ing the server and may be replaced with error han-
micronet.h Defln.es all CMX-provided dling code. Please refer to the CMX Micronet
functions. documentation for error codes returned from the
sfrdefs.h | Defines the Silicon Labs- mn_server() function.
specific SFRs not already .
defined by the CMX stack Creating HTML Content
index.h Defines the size of the HTML content consists of HTML documents,
‘index_html’ file array images, Java applets, or any binary file suitable for
6 Rev. 1.1 @

SILICON LABORATORIES

AN133

downloading from an embedded web server. Since
the ‘Hello World’ server only has one HTML page,
the only tool needed to create it is a text editor.

Figure 4 shows the contents of ‘index.html’. After
it has been created in a text editor and saved in the
‘HTML’ subdirectory, it needs to be converted to a
file array using the ‘html2c.exe’ utility. Open a
command window and type in the commands listed
in Figure 5. These commands assume the project
directory is located at ‘C:\Projects\HelloWorld” and
that a copy of ‘html2c.exe’ is in the HTML folder..

Figure 5. Example Command Prompt
for Converting an HTML file to ‘C’
Source and Header Files

prompt> cd\

prompt> cd Projects
prompt> cd HelloWorld
prompt> cd HTML

prompt> html2c index.html

The commands in Figure 5 will create ‘index.c’
and ‘index.h’. The ‘index.c’ source file should be
added to the Project Build List and the ‘index.h’
header file should be #include-ed at the top of
‘main.c’. You should now be able to build the
project and test the embedded web server.

Figure 4. The Contents of ‘index.html’

<html>
<head><title>Hello World</title><head>

<hl>Hello World!</hl>

</body>
</html>

<body bgcolor="green" text="white" link="yellow" vlink="red" alink="blue">

This page is served from a C8051F124 and uses the CMX Micronet TCP/IP stack.

®
@ Rev. 1.1

SILICON LABORATORIES

AN133

Appendix A—Setting Up the Embedded Web Server Demo

Materials Needed

* C8051F12x Development Kit

» AB2 Ethernet Daughter Card

* Crossover Cable (or standard Ethernet cable
and access to a network).

» A PC with a free serial port. (first time only)

Preparing the Hardware

1. Connect the AB2 Ethernet Card to the
C8051F12x Target Board’s 96-pin connector.

2. Connect the RJ-45 connector on the AB2
Ethernet card to a PC or laptop using the cross-
over cable or connect both the PC and the AB2
board to the same Ethernet network using stan-
dard Ethernet cables. A crossover cable allows
a direct connection between the PC and the
embedded system.

3. Connect the power supply to the C8051F12x
Target Board.

Downloading Object Code to
FLASH

1. Connect the EC2 Serial Adapter to the
C8051F12x using the 10-pin ribbon cable.

2. Connect the EC2 Serial Adapter to the COM1
port on the PC. If COMI is not available, then
any free COM port may be used.

3. Download the ‘uWEB 124 1.hex’ or the
‘HELLOWORLD 124 1.hex’ object files to
FLASH using the Silicon Labs IDE or the com-
mand line FLASH programming utility avail-
able from the Silicon Labs website.

4. Disconnect the EC2 Serial Adapter from the
C8051F12x Target Board and cycle power after
the download is complete.

Programming the IP and MAC
Addresses

The first time the device is run after a FLASH
download, it will automatically go into “change IP
and MAC address mode”. It will also enter this
mode if the SW2 (P3.2) button is held down while
the reset button is pressed and released.

When the device enters this mode, the green LED
will start blinking. At this point the device can be
controlled by a UART terminal communicating at
9600 Baud 8-N-1. When prompted, enter the IP
address chosen for the embedded system. Please
see Appendix B for guidelines on choosing an IP
address. Also when prompted, enter the MAC
address (IA) found on the AB2 Ethernet Card. This
address will start with 00-0B-3C-xx-yy-zz. This
procedure should be repeated once after every
FLASH download.

Accessing the Web Server

1. If your embedded system is connected directly
to a network, then go to Step #2. If you are
using a crossover cable, then your PC must
have a static IP address in order to recognize
the embedded system. On Windows PCs, you
may access the Internet Protocol properties by
right-clicking on My Network Places and
selecting Properties. Right-click on Local Area
Connection and select Properties again. Select
Internet Protocol (TCP/IP) and click Properties
yet another time. Specify a static IP address for
the PC, as shown in Appendix B, and leave all
other inputs at their default values. When the
operating system prompts you to add a Subnet
mask, click OK and accept the default mask it
provides.

2. Open an instance of your favorite browser and
type the IP address of the embedded system

8 Rev. 1.1

SILICON LABORATORIES

http://www.cygnal.com/

AN133

into the address bar and press the ‘Enter’ key.
For example,

http://10.10.10.163/

where 10.10.10.163 is the IP
address of the embedded system.

Note: Depending on the network, it may take
30 seconds or more for the network to detect
the server. This delay can be minimized by
using a crossover cable.

®
“![;;i===rffji’ Rev. 1.1 9

SILICON LABORATORIES

AN133

Appendix B—Determining an IP Address for the Embedded

Web Server

The following text outlines a few guidelines to fol-
low when choosing an IP address for the embedded
system.

1. Obtain information about the PC you are trying
to connect to. The key pieces of information
you need are the IP address and the Subnet
mask. If you are using a crossover cable, you
may choose any IP address for your PC as long
as the Subnet mask allows it to recognize the
embedded system.

2. The IP address chosen for the embedded sys-
tem must match the PC’s IP address in all bit
locations where the Subnet mask is a ‘1’ in
order for the PC to recognize the embedded
system. Otherwise, the PC will send it’s request
outside the local network.

IP Address Selection Example

The example in Figure 6 shows the IP address and
Subnet mask of the PC we want to connect to the
embedded web server. Since the first 24 bits of the
Subnet mask are ‘1°, the first 24 bits of the embed-
ded web server’s IP address must match the first 24
bits of the PC’s IP address. The valid range of IP
addresses for the embedded web server is from
10.10.10.0 to 10.10.10.254 with the exception of
10.10.10.80 since this address is already taken by
the PC. 10.10.10.255 is reserved because it is the
Broadcast Address for this network. An IP address
is considered a broadcast address if all bits which
are ‘0’ in the Subnet mask are ‘1’ in the IP address.

Figure 6. IP Address Selection Example

PC IP Address

10 10 10 80 (decimal)
0000 1010 | 0000 1010 | 0000 1010 | 0101 0000 (binary)
PC Subnet Mask
255 255 255 0 (decimal)
[t 111r | 11111111 | 1111 1111 | 0000 0000 (binary)
Embedded Web Server IP Address
10 10 10 163 (decimal)
0000 1010 | 0000 1010 | 0000 1010 | 10100011 (binary)
10 Rev. 1.1

SILICON LABORATORIES

AN133

Appendix C—Example ‘main.c’ Source File for the
‘Hello World’ Project

// AUTH: FB
// DATE: 4 OCT 02

// Target: C8051F12x
// Tool chain: KEIL C51

// Description:
// This is an example of how to set up and use the CMX Micronet HTTP
// Web Server.

#include <stdio.h> // for printf
#include “micronet.h” // for all CMX provided routines
#include “sfrdefs.h” // for all 8-bit and 16-bit sfr
// definitions not found in the standard
// 8051 implementations.

// include the header file for each HTML content file below

#include “HTML\index.h” // header file for ‘index.html’

[
// 16-bit SFR Definitions for ‘Fl2x
e
sfrl6 DP = 0x82; // data pointer

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrl6 RCAP3 = 0Oxca; // Timer3 capture/reload

sfrl6 RCAP4 = Oxca; // Timer4 capture/reload

sfrl6 TMR2 = Oxcc; // Timer?2

sfrl6 TMR3 = Oxcc; // Timer3

sfrle TMR4 = Oxcc; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd2; // DAC1 data

sfrl6 PCAOCP5 = 0Oxel; // PCAO Module 5 capture

sfrl6 PCAOCP2 = 0xe9; // PCAO Module 2 capture

sfrl6 PCAOCP3 = Oxeb; // PCAO Module 3 capture

sfrl6 PCAOCP4 = Oxed; // PCAO Module 4 capture

sfrl6 PCAQ = 0xf9; // PCAO counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 capture

sfrl6 PCAOCP1 = 0Oxfd; // PCAO Module 1 capture

[
// Global CONSTANTS

[
#define INTCLK 24500000 // Internal oscillator frequency in Hz

Rev. 1.1

SILICON LABORATORIES

11

AN133

#define SYSCLK 49000000 // Output of PLL derived from (INTCLK*2)
#define BAUDRATE 9600 // Baud rate of UART in bps

sbit SW2 = P3"7; // SW2='0’ means switch pressed

sbit LED = P176; // LED=’"1’ means ON

/)
// Global VARIABLES

J e
unsigned char code first time = OxFF; // may be written once after

// each download because it is
// initialized to OxFF

char xdata* data ptr first time = &first time;

unsigned char code ip address[4] _at 0x0000; // located in Scratchpad area
char xdata* data ptr ip address = &ip address;

unsigned char code mac_address[6] _at 0x0004; // located in Scratchpad area
char xdata* data ptr mac address = &mac address;
e
// Function PROTOTYPES
e s it

void main (void);

void SYSCLK_Init (void) ;
void PORT Init (void);
void UART1 Init (void);
void EMIF Init (void);
void ipconfig (void);

void main (void)

{

WDTCN = Oxde; // Disable watchdog timer
WDTCN Oxad;

// initialize the C8051F12x
PORT Init ();

SYSCLK_Init ()

UART1 Tnit ();

EMIF Init ();

// initialize the IP and MAC addresses and disable UARTI1
ipconfig();

// Set SFR page to LEGACY PAGE
SFRPAGE = LEGACY PAGE;

// initialize the CMX Micronet variables
mn_init();

// Add files to the Virtual File System. Make sure you have allocated
// enough slots in the Virtual File system for the number of files

12 Rev. 1.1

SILICON LABORATORIES

AN133

// you add. More slots can be allocated in ‘mnconfig.h’
mn vf set entry((byte *)”index.html”, INDEX SIZE, index html,VF PTYPE FLASH);

// start the HTTP Server
mn_server();

while (1) ; // This point in code should never
// be reached unless an error occurs

// This routine initializes the system clock to use the internal oscillator
// at 24.5 MHz multiplied by two using the PLL.

void SYSCLK Init (void)
{

int 1i; // software timer

char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

SFRPAGE = CONFIG PAGE; // set SFR page

OSCICN = 0x83; // set internal oscillator to run

// at its maximum frequency

CLKSEL = 0x00; // Select the internal osc. as
// the SYSCLK source

//Turn on the PLL and increase the system clock by a factor of M/N = 2
SFRPAGE = CONFIG_PAGE;

PLLOCN = 0x00; // Set internal osc. as PLL source
SFRPAGE = LEGACY_PAGE;
FLSCL = 0x10; // Set FLASH read time for 50MHz clk

// or less
SFRPAGE = CONFIG_PAGE;

PLLOCN |= 0x01; // Enable Power to PLL
PLLODIV = 0x01; // Set Pre-divide value to N (N = 1)
PLLOFLT = 0x01; // Set the PLL filter register for
// a reference clock from 19 - 30 MHz
// and an output clock from 45 - 80 MHz
PLLOMUL = 0x02; // Multiply SYSCLK by M (M = 2)
for (i=0; i < 256; i++) ; // Wait at least bus
PLLOCN |= 0x02; // Enable the PLL
while (! (PLLOCN & 0x10)); // Wait until PLL frequency is locked
CLKSEL = 0x02; // Select PLL as SYSCLK source
SFRPAGE = SFRPAGE SAVE; // Restore SFR page

Rev. 1.1 13

SILICON LABORATORIES

AN133

J e R R
// PORT_Init
e e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page
SFRPAGE = CONFIG PAGE; // set SFR page
XBRO = 0x00;
XBR1 = 0x00;
XBR2 = 0x44; // Enable crossbar, weak pull-ups,

// and UART1

0x01; // Set TX1 pin to push-pull

POMDOUT |
|= 0x40; // Set P1l.6(LED) to push-pull

P1IMDOUT

// all pins used by the external memory interface are in push-pull mode

PAMDOUT = OxFF;

P5MDOUT = OxFF;

P6MDOUT = OxFF;

P7MDOUT = OXxFF;

P4 = 0xCO; // /WR, /RD, are high, RESET is low

P5 = 0x00;

P6 = 0x00; // P5, P6 contain the address lines

P7 = OXFF; // P7 contains the data lines

SFRPAGE = SFRPAGE SAVE; // Restore SFR page
}
[
// EMIF Init
[m e e
//

// Configure the External Memory Interface for Split-Mode to support both
// on-chip and off-chip access.

void EMIF Init (void) {
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

SFRPAGE = LEGACY PAGE;

EMIOCF = 0xF7; // Split-Mode, non-multiplexed
// on P4 - P7

EMIOTC = 0xB7; // This value may be modified
// according to SYSCLK to meet the
// timing requirements for the CS8900A
// For example, EMIOTC should be >= 0xB7
// for a 100 MHz SYSCLK.

SFRPAGE = SFRPAGE SAVE; // Restore SFR page

14 Rev. 1.1

SILICON LABORATORIES

AN133

[m e -
// UART1 Init
[mm e
//
// Configure the UART1 using Timerl, for <baudrate> and 8-N-1.
//
void UART1 Init (void)
{
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page
SFRPAGE = UARTI_PAGE;

SCON1

0x10; // SCON1l: mode 0, 8-bit UART, enable RX
SFRPAGE = TIMEROl_PAGE;

TMOD &= ~0xFO0;
TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

if (SYSCLK/BAUDRATE/2/256 < 1) {

TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x10; // TIM = 1; SCAl:0 = xx
} else if (SYSCLK/BAUDRATE/2/256 < 4) {
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x13; // Clear all Tl related bits
CKCON |= 0x01; // T1IM = 0; SCAl:0 = 01
} else if (SYSCLK/BAUDRATE/2/256 < 12) {
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13; // T1M = 0; SCAl:0 = 00
} else {
TH1 = - (SYSCLK/BAUDRATE/2/48);
CKCON &= ~0x13; // Clear all Tl related bits
CKCON |= 0x02; // T1M = 0; SCAl:0 = 10
}
TL1 = THI1; // initialize Timerl
TR1 = 1; // start Timerl

SFRPAGE = UART1 PAGE;

TI1 = 1; // Indicate TX1 ready
SFRPAGE = SFRPAGE SAVE; // Restore SFR page
}
=
// ipconfig
et et
//
// Configure the IP address of the device through the serial port.
//

void ipconfig()
{
char input str([20];
unsigned char data temp char([6];

char c;

long 1i;

bit ok flag;

bit EA SAVE; // Preserve Current Interrupt Status
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR Page

Rev. 1.1 15

SILICON LABORATORIES

AN133

// prompt for the IP and MAC addresses if this is the first time the program
// is run after a FLASH download or if the SW2(P1.6) button is pressed
if (first time || !SW2) {

SFRPAGE = UART1 PAGE;

RI1 = 0O;
while (1) {

printf (“Press any key to continue\n”);

for (i = 0; 1 < SYSCLK/100; i++) {
if (RI1) break;

if (RI1) break;
LED = ~LED;

}

RI1 = 0O;

ok flag = 0;
do {
SFRPAGE = UARTI_PAGE;
printf (“"\n\nEnter the IP address (eg. 10.10.10.163) >");
gets (input str, sizeof (input str));
sscanf (input str, “%bu.%bu.%bu.%bu”, &temp char[0], &temp char[1],
&temp char[2], &temp char([3]);

// check if IP address is entered correctly and write in FLASH

printf ("\n\nIs %bu.%bu.%bu.%bu correct?”, temp char[0], temp char[l],
temp char([2], temp char[3]);

c = getchar();

if (c == Yy || == ‘Y") {

SFRPAGE = LEGACY PAGE;

// erase scratchpad area and write the ip address to FLASH

EA SAVE = EA; // preserve current interrupt state
EA = 0; // disable interrupts

FLSCL |= 0x01; // enable FLASH write/erase

PSCTL = 0x07; // MOVX erases scratchpad FLASH
*ptr ip address = 0; // initiate erase

PSCTL = 0x05; // MOVX writes scratchpad FLASH

ptr ip address[0] = temp char ; // write the first byte

ptr ip address[l] = ;

ptr ip address[2] = temp char ; // write the third byte

[0]

temp char([1]; // write the second byte
[2]
[3]

0
1
2
3

ptr ip address[3] = temp char ; // write the fourth byte
PSCTL = 0x00; // MOVX writes target XRAM
FLSCL &= ~0x01; // disable FLASH write/erase
EA = EA SAVE; // restore interrupts

ok flag = 1;

SFRPAGE = UART1 PAGE;

16 Rev. 1.1

SILICON LABORATORIES

AN133

printf ("\nIP address successfully programmed.\n”);

}
} while(!ok flag);

ok flag = 0;
do {

SFRPAGE = UART1 PAGE;

printf (“"\n\nEnter the MAC address (IA) (eg. 00-0B-3C-xx-yy-zz) >");

gets (input str, sizeof (input str));

sscanf (input str, “$bX-%bX-%bX-%bX-%bX-%bX”, &temp char([0], &temp char([1l],
&temp char([2], &temp char([3],
&temp char[4], &temp char[5]);

// check if IP address is entered correctly and write in FLASH

printf ("M\n\nIs %bX-%bX-3bX-¥bX-%bX-%bX correct?”, temp char[0], temp char[l],
temp char([2], temp char([3],
temp char[4], temp char[5]);

c = getchar();

if(c == 'y’ || ¢ == 'Y"){

SFRPAGE = LEGACY_PAGE;

// write the MAC address to FLASH

EA SAVE = EA; // preserve current interrupt state
EA = 0; // disable interrupts

FLSCL |= 0x01; // enable FLASH write/erase

PSCTL = 0x05; // MOVX writes scratchpad FLASH

ptr mac address[0
ptr mac address(1l
ptr mac address|[2
ptr mac address[3
ptr mac address[4
ptr mac address([5

’

] = temp char([0]; // write the first byte
] = temp char([1l]; // write the second byte
] = temp char([2]; // write the third byte
] = temp char[3]; // write the fourth byte
] = temp char[4]; // write the fifth byte
] = temp char[5]; // write the sixth byte

PSCTL = 0x01; // MOVX writes FLASH byte

*ptr first time = 0x00; // clear the first time flag
// Note: this flag is not in
// the scratchpad area.

PSCTL = 0x00; // MOVX writes target XRAM
FLSCL &= ~0x01; // disable FLASH write/erase
EA = EA SAVE; // restore interrupts

ok flag = 1;

SFRPAGE = UART1 PAGE;
printf ("\nMAC address successfully programmed.\n”) ;

}
} while(!ok flag);

// Disable Timerl
SFRPAGE = TIMEROl_PAGE;

Rev. 1.1 17

SILICON LABORATORIES

AN133

TR1 = 0; //
TMOD = 0x00; //
//
CKCON = 0x00; //
//

// Disable UART1
SFRPAGE = UART1 PAGE;
SCON1 = 0x00; //

SFRPAGE = LEGACY PAGE;

// Copy the IP and MAC address from the scratchpad
// located in RAM.

EA SAVE = EA; //
EA =0 //
PSCTL 0x04; //

I~

Stop Timerl

Restore the TMOD register to
its reset value

Restore the CKCON register to
its reset value

Disable UART1

area to the CMX variables

preserve current interrupt state
disable interrupts
enable reads from the scratchpad

// read the IP and MAC address from FLASH into their appropriate arrays in memory

ip src _addr[0] = ip address[0];

ip src addr[l] = ip address([1];

ip src addr([2] = ip address[2];

ip src addr[3] = ip address[3];

eth src hw addr[0] = mac address[0];

eth src hw addr[l] = mac address[1];

eth src hw addr[2] = mac_address[2];

eth src hw addr[3] = mac address[3];

eth src hw addr[4] = mac address[4];

eth src hw addr[5] = mac address[5];

PSCTL = 0x00; //
EA = EA SAVE; /7
SFRPAGE = SFRPAGE SAVE; //

disable reads from the scratchpad
restore interrupts

Restore SFR page

18

Rev. 1.1

SILICON LABORATORIES

AN133

Appendix D—Example Ethernet Transmit and Receive
Routines

// AUTH: FB
// DATE: 7 OCT 02

// Target: C8051F12x
// Tool chain: KEIL C51

//

// Description: This is an example of how to send and receive packets using the
// CS8900A Ethernet Controller in 8-bit polled mode.

//

// This program periodically sends Ethernet Packets and captures
// all incoming packets. The incoming packets are displayed on

// a UART terminal at a baud rate of 115200.

//

//

// To connect the device directly to a PC, a crossover Ethernet

// cable is needed. If using a hub or a switch, then a normal

// Ethernet cable may be used.

//

[mm e e -
// Includes

/e
#include <c8051f120.h> // SFR declarations

#include <stdio.h> // printf ()
et
// 16-bit SFR Definitions for ‘F12x

/e
sfrl6 DP = 0x82; // data pointer

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6 RCAP3 = Oxca; // Timer3 capture/reload

sfrl6 RCAP4 = Oxca; // Timer4 capture/reload

sfrle TMR2 = Oxcc; // Timer?2

sfrl6e TMR3 = Oxcc; // Timer3

sfrle TMR4 = Oxcc; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd2; // DAC1l data

sfrl6 PCAOCP5 = Oxel; // PCAO Module 5 capture

sfrl6 PCAOCP2 = 0xe9; // PCAO Module 2 capture

sfrl6 PCAOCP3 = Oxeb; // PCAO Module 3 capture

sfrl6 PCAOCP4 = Oxed; // PCAO Module 4 capture

sfrl6 PCAO = 0xf9; // PCAO counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 capture

sfrl6 PCAOCP1 = Oxfd; // PCAO Module 1 capture

[m e -

Rev. 1.1 19

SILICON LABORATORIES

AN133

// Data Stuctures and Type Definitions

/e e
typedef union MACADDR { // The 48-bit Ethernet MAC address
unsigned int Int[3];
unsigned char Char[6];
} MACADDR;
typedef union ULONG { // Byte Addressable Unsigned Long
unsigned long Long;
unsigned int Int[2];
unsigned char Char[4];
} ULONG;
typedef union UINT { // Byte Addressable Unsigned Int
unsigned int Int;
unsigned char Char[2];
} UINT;
/e e
// Global CONSTANTS and VARIABLES
[m e e
#define SYSCLK 49000000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
sbit ETH RESET = P4"5; // CS8900A reset pin
#define TRANSMIT CMDH 0x00 // Transmit Command (High and Low
#define TRANSMIT CMDL 0xCO // bytes)
sbit LED = P176; // LED=’"1’ means ON
sbit SW2 = P3"7; // SW2='0' means switch pressed
MACADDR MYMAC; // The 48-bit MAC address for
// the Ethernet Controller
MACADDR BROADCAST; // A broadcast destination address

// for sending packets
#define BASE ADDRESS 0xC000

// CS8900A Internal PacketPage Register Addresses

#define IPPREG PRODUCT ID 0x0000
#define IPPREG BASE ADDRESS 0x0020
#define IPPREG LineCTL 0x0112
#define IPPREG RxCTL 0x0104
#define IPPREG RxCFG 0x0102
#define IPPREG_BquFG 0x010A
#define IPPREG BufEvent 0x012C
#define IPPREG TxEvent 0x0128
#define IPPREG RxEvent 0x0124
#define IPPREG IA 0x0158
#define IPPREG BusST 0x0138
#define IPPREG TestCTL 0x0118
#define IPPREG_LineST 0x0134
#define IPPREG_SelfST 0x0136

// CS8900A PacketPage Register Bit Definitions
#define TxBidErr 0x0080
#define RxOK 0x0100
#define Rdy4TxNow 0x0100

20 Rev. 1.1

SILICON LABORATORIES

AN133

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TxUnderrun
TxOK

INITD
SerTxON
SerRxON
PromiscuousA
RxOKA
MulticastA
IndividualA
BroadcastA
CRCerrorA
RuntA
ExtradataA

volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile
volatile

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

void main (void);
SYSCLK_Init
PORT Init
UART1 Init

EMIF Init

void
void
void
void

void
void

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

0x0200
0x0100
0x0080
0x0080
0x0040
0x0080
0x0100
0x0200
0x0400
0x0800
0x1000
0x2000
0x4000

xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata
xdata

(void) ;
(void) ;
(void) ;
(void) ;

CS8900A Reset (void);
CS8900A Init (void);

DATAQOL

DATAOH

DATAIL

DATAIH

TxCMDL

TxCMDH

TxLENGTHL

TxLENGTHH

ISQL

ISQH

PACKETPAGE POINTERL
PACKETPAGE POINTERH
PACKETPAGE DATAOL
PACKETPAGE DATAOH
PACKETPAGE DATALL
PACKETPAGE DATAlH

unsigned long PACKETPAGE ReadID();
unsigned int PACKETPAGE Read (unsigned int register address);

void PACKETPAGE Write (unsigned int register address, unsigned int output data);

void CS8900A RxPoll (void);

void Receive Frame (void);

void Send Frame(char* buffer, int length,

void main (void)

at

BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS
BASE ADDRESS

MACADDR* address) ;

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009
0x000A
0x000B
0x000C
0x000D
0x000E
0x000F

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

’

’

’

’

I

’

’

’

’

’

’

’

’

’

’

’

SILICON LABORATORIES

Rev. 1.1

21

AN133

char buffer[28] = {
0x00, 0x01, 0x08,
0x45, 0x67, 0x89,
0OxAD, 0x81, 0x85,
}i

unsigned long id;
char buffer2[5] = ™
long k;

WDTCN
WDTCN

Oxde;
Oxad;

SYSCLK Init ();
PORT Init ();
UART1 Tnit ();
EMIF Init ();

CS8900A Reset();

CS8900A Init();

0x00,
0x10,
0x0B,

0x06,
0x04,
0x0A,

0x04,
0x0A,
0x0Aa,

//

//

/7

//

//

// Initialize the Global MAC addresses

MYMAC.Int[0] = 0x0123; //
MYMAC.Int[1] = 0x4567; //
MYMAC.Int[2] = 0x8910; //
BROADCAST.Int[0] = Oxffff;
BROADCAST.Int[1l] = Oxffff;
BROADCAST.Int[2] = Oxffff;
id = PACKETPAGE ReadID(); //

while (1) {

0x00,
0x0A,
0x0Aa,

0x02,
0xA3,
0x9E

0x01,
0x00,

0x23,
0x80,

holds the device ID

counter

Disable watchdog timer

Reset the CS8900A

Initialize for Rx and Tx

This address should be
set to the MAC address
on the AB2 Ethernet Card

Read the device ID

// check event registers for incoming packets

for(k = 0; k < 50000;

k++)

// send an IEEE 802.3 Frame

Send Frame (buffer,

} // end main

sizeof (buffer),

{ CS8900A RxPoll(); }

&BROADCAST) ;

22

Rev. 1.1

SILICON LABORATORIES

AN133

//

// This routine initializes the system clock to use the internal oscillator
// at 24.5 MHz multiplied by two using

//

void SYSCLK Init (void)

{

int 1i;

char SFRPAGE SAVE = SFRPAGE;

SFRPAGE

OSCICN

CLKSEL =

//Turn o
SFRPAGE

PLLOCN
SFRPAGE
FLSCL

SEFRPAGE
PLLOCN |
PLLODIV
PLLOFLT

PLLOMUL

for (i=0
PLLOCN

while (! (PLLOCN & 0x10));

CLKSEL

SEFRPAGE

// Configur
//

n

0

0

CONFIG PAGE;

x83;

x00;

//

/7

//

/7
/7

//
//

the PLL.

software timer
Save Current SFR page
set SFR page

set internal oscillator to run
at its maximum frequency

Select the internal osc. as
the SYSCLK source

the PLL and increase the system clock by a factor of M/N = 2

CONFIG_PAGE;

= 0x00;

LEGACY PAGE;

= 0x10;

r

CONFIG_PAGE;
0x01;
0x01;
0x01;

0x02;

i < 256; 1i++)

|= 0x02;

e

0x02;

SFRPAGE SAVE;

’

//

//
//

/7
//
//
//
//
/7

//
//
//
//

/7

Set internal osc. as PLL source

Set FLASH read time for 50MHz clk
or less

Enable Power to PLL

Set Pre-divide wvalue to N (N = 1)
Set the PLL filter register for

a reference clock from 19 - 30 MHz
and an output clock from 45 - 80 MHz
Multiply SYSCLK by M (M = 2)

Wait at least 5us

Enable the PLL

Wait until PLL frequency is locked
Select PLL as SYSCLK source

Restore SFR page

the Crossbar and GPIO ports

void PORT Init (void)

{

char SFRPAGE SAVE = SFRPAGE;

SFRPAGE
XBRO

XBR1
XBR2

POMDOUT

CONFIG_PAGE;
0x00;

0x00;
0x44;

0x01;

/7

//

/7
/7

//

Save Current SFR page

set SFR page

Enable crossbar, weak pull-ups,
and UARTI1

Set TX1 pin to push-pull

SILICON LABORATORIES

Rev. 1.1

23

AN133

P1MDOUT |= 0x40;

// Set P1l.6(LED)

to push-pull

// all pins used by the external memory interface are in push-pull mode

P4AMDOUT =
P5MDOUT
P6MDOUT
P7MDOUT =
P4 = 0xCO;
P5 = 0x00;
P6 = 0x00;
P7 = OxFF;

OxFF;
OXFF;
OxXFF;
OxXFF;

SFRPAGE = SFRPAGE SAVE;

/7

//

/WR, /RD, are high, RESET is low

P5, P6 contain the address lines
// P7 contains the data lines

// Restore SFR page

// Configure the External Memory Interface for both on and off-chip access.

void EMIF Init (void) {

char SFRPAGE SAVE = SFRPAGE;

SFRPAGE = LEGACY PAGE;

EMIOCF

0xF7;

EMIOTC = 0xB7;

SFRPAGE = SFRPAGE SAVE;

1/

// Configure the UART1 using Timerl,

//
void UART1 Init (void)
{

char SFRPAGE SAVE = SFRPAGE;

SFRPAGE = UART1 PAGE;

// Save Current SFR page

//
//

/7
//
//
//
//

Split-mode,
on P4 - P7

non-multiplexed

// This constant may be modified

according to SYSCLK to meet the
timing requirements for the CS8900A

For example,

EMIOTC should be >= 0xB7

for a 100 MHz SYSCLK.
Restore SFR page

for <baudrate> and 8-N-1.

// Save Current SFR page

SCON1 = 0x10; // SCONl: mode 0, 8-bit UART, enable RX
SFRPAGE = TIMEROl_PAGE;
TMOD &= ~0xFO0;
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
if (SYSCLK/BAUDRATE/2/256 < 1)

TH1 = - (SYSCLK/BAUDRATE/2) ;

®
24 Rev. 1.1

SILICON LABORATORIES

AN133

CKCON |= 0x10; // TIM = 1; SCAl:0 = xx
} else if (SYSCLK/BAUDRATE/2/256 < 4) {
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x13; // Clear all Tl related bits
CKCON |= 0x01; // T1IM = 0; SCAl:0 = 01
} else if (SYSCLK/BAUDRATE/2/256 < 12) {
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13; // T1M = 0; SCAl:0 = 00
} else {
TH1 = - (SYSCLK/BAUDRATE/2/48) ;
CKCON &= ~0x13; // Clear all Tl related bits
CKCON |= 0x02; // TIM = 0; SCAl:0 = 10
}
TL1 = THI; // initialize Timerl
TR1 = 1; // start Timerl
SFRPAGE = UARTI_PAGE;
TI1 = 1; // Indicate TX1 ready
SFRPAGE = SFRPAGE SAVE; // Restore SFR page

// This procedure resets the CS8900A using its reset pin

!/
void CS8900A Reset (void)

{

char SFRPAGE SAVE = SFRPAGE; //
SFRPAGE = TMR3_ PAGE;

TMR3CN = 0x00; //
TMR3CF &= ~0x18; //

TMR3 = - (SYSCLK / 2500000) ; //
// reset pin (active high) is on P4.
ETH RESET = 1; //
TR3 = 1; //
while (! TF3) ; //
ETH RESET = 0; /7

// wait at least 20ms for device to

TMR3CN = 0x00; //
TMR3 = - (SYSCLK / 12 / 50); //
TR3 = 1; //
while (! TF3); //

(P4.5).

Save Current SFR page

Disable Timer3
Count System Clocks/12
Load Timer3 with 400ns

5

Assert the Reset signal

Start Timer3

wait for the Timer3 overflow flag.
Take the CS8900A out of reset

be ready

Disable Timer3, use system clock/12
Load Timer3 with 20ms

Start Timer3

wait for the Timer3 overflow flag.

// check to see if the device is ready

while (

SFRPAGE = SFRPAGE SAVE; /7

! (PACKETPAGE Read (IPPREG SelfST)

& INITD));

Restore SFR page

SILICON LABORATORIES

Rev. 1.1 25

//
// This function configures the CS8900A for transmitting and receiving. It
// also assigns the CS8900A the MAC address it should respond to.
//
void CS8900A Init (void)
{
// set which frames will be accepted by the CS8900A
// the RxOKA bit must be set for the device to operate properly
PACKETPAGE Write (IPPREG RxCTL, RxOKA + PromiscuousAh);

// assign the Ethernet MAC address

PACKETPAGE_Write(IPPREG_IA, MYMAC.Int[0]);
PACKETPAGE Write (IPPREG IA + 2, MYMAC.Int[1]);
PACKETPAGE Write (IPPREG IA + 4, MYMAC.Int[2]);

// enable transmit and receive
PACKETPAGE_Write(IPPREG_LineCTL,SerTXON | SerRxON) ;

// This function returns the contents of a PacketPage Register

// Note: Read high byte first and Write low byte first when communicating with
!/ the CS8900A.

unsigned int PACKETPAGE Read (unsigned int IPPREG_address)
{

UINT register address;
UINT retval;

register address.Int = IPPREG address;

// specify register address and set autoincrement off
PACKETPAGE POINTERL = register address.Char[1l];
PACKETPAGE POINTERH = (register address.Char[0] & Ox7F);
// read lower 1l6-bits most significant byte first
retval.Char[0] = PACKETPAGE DATAOH;

retval.Char[1l] = PACKETPAGE DATAOL;

// return the data register contents
return retval.Int;

// PACKETPAGE Write

26 Rev. 1.1

SILICON LABORATORIES

AN133

//

// This function writes a 16-bit value to a PacketPage Register.

//

// Note: Read high byte first and write low byte first when communicating with
// the CS8900A

//

void PACKETPAGE Write (unsigned int IPPREG address, unsigned int output data)

{

UINT register address;
UINT dat;

register address.Int = IPPREG address;
dat.Int = output data;

// specify register address and set autoincrement off
PACKETPAGE POINTERL = register address.Char[1l];
PACKETPAGE POINTERH (register address.Char([0] & Ox7F);

//write the data to the data ports
PACKETPAGE DATAOL = dat.Char[1];
PACKETPAGE_DATAOH dat.Char[0];

// This function returns the contents of the Product Identification Code
// register. This is a 32-bit register at location 0 in the PacketPage memory.

// This register identifies the device as a CS8900A and does not change.

unsigned long PACKETPAGE ReadID ()
{

ULONG retval;

retval.Int[O]
retval.Int[1]

PACKETPAGE_Read(OXOOOO);
PACKETPAGE Read (0x0002) ;

return retval.long;

// This function polls the CS8900A for the Receive OK event.

void CS8900A RxPoll (void)
{

unsigned int event;
event = PACKETPAGE Read (IPPREG RxEvent);
if (event & RxOK) {

Receive Frame () ;
return;

Rev. 1.1 27

SILICON LABORATORIES

//
//
//
//
!/
!/
VvO

{

This function Receives a frame from the CS8900A Data Ports and displays it

on a Hyperterminal window.
id Receive Frame (void)
UINT status;
UINT length;
UINT dat;
int i;

status.Char[0] = DATAOH;
status.Char[1] DATAOL;

length.Char[0] = DATAOH;
length.Char[1] DATAOL;

SFRPAGE = UART1 PAGE;

printf (“\n\n New Packet: %d bytes”, length.Int);
printf (“\n Destination: “);

for (1 = 0; 1 < 3; i++) {

dat.Char[0] = DATAOL;
dat.Char[1] DATAOH;

printf (“%04X”, dat.Int);

length.Int -= 2;

printf (“\n Source: “y
for (1 = 0; 1 < 3; i++) {

dat.Char[0]
dat.Char[1]

DATAOL;
DATAOH;

printf (“%04X”, dat.Int);

length.Int -= 2;

printf (“\n Data: “);

while(((int) length.Int) > 0){

28

Rev. 1.1

SILICON LABORATORIES

AN133

dat.Char[0]
dat.Char[1]

DATAOL;
DATAOH;

printf (“%04X”, dat.Int);

length.Int -= 2;

// Send Frame

/==

!/

// This function sends an IEEE 802.3 frame to the CS8900A. Upon entry, there

// should be valid data in array <buffer>.
//

// 48-bit 48-bit l6-bit 0-1500 bytes

[e m e
// | Preamble | SFD | Dest | Source | Length of | Data Field | Pad | FCS
// | Addr Addr | data field | | (CRC) |
f
// supplied by \ supplied by the host (TxLength) | supplied by
// CS8900A \ | CS8900A

void Send Frame (char* buffer, int length, MACADDR* dest address ptr)

{
UINT len;
int status;
int i;

// issue a transmit command
TxCMDL TRANSMIT7CMDL;
TxCMDH TRANSMIT CMDH;

// bid for buffer space

// data field length + dest field (6) + source field (6) + length field (2)

len.Int = length + 14;
TxLENGTHL = len.Char[1l];
TxLENGTHH = len.Char[0];

// error check

if (PACKETPAGE Read (IPPREG BusST) & TxBidErr) while (1);

// wait for CS8900A Tx ready

do {
status = PACKETPAGE Read (IPPREG BusST)
} while (! (status & Rdy4TxNow)) ;

// write the destination address field
for (i = 0; 1 < 6; i+=2){
DATAQOL = dest address ptr->Char[i];
DATAQOH = dest address ptr->Char[i+l];

’

SILICON LABORATORIES

Rev. 1.1

29

AN133

// write the source address field
for (i = 0; i < 6; i+=2){

DATAOL = MYMAC.Char([i];
DATAOQOH MYMAC.Char[i+1];

// write the data length field
len.Int = length;

DATAOL = len.Char[0];

DATAOH len.Char[1];

// write the data field

// The CS8900A automatically transmits after the last byte is written

i=0;

while (i < length) {
DATAOL = buffer[i];
i++;

if (1 < length) {
DATAOH = buffer([i];
i++;

30

Rev. 1.1

SILICON LABORATORIES

AN133

Appendix E—AB2 Ethernet Daughter Card Schematic

V02

o]

TR_s102 TR GHD

Lo Joo Joo Joo Jes Joo Jow Jom
Tiowr Te Towr Tour Toe Tow T oo

']

ThD

o1 200Mnz

@

Vald addresses from COO0 and higher

CS8900A

TUNKLED

AANLED

] -
L
CGND
= ~

RIS

P
| oo

L]

=
3
)
-

=

%

©3

R3
100
g

+2)
a

TR RESE GhD

z
i

Do ot Populate -
GH Note:

The RJ-724 Chassis is connected to CGND.

CYGNAL INTEGRATED PRODUCTS, INC.

Title: CS8900A Ethernet Daughterboard for the C8051F020

Engineer; Farris Bar

Part Number. FO20DTR-ETH1 |REV: €

Date: 3/06/2002 10:21:18a _ Sheet: 11

®

31

Rev. 1.1

SILICON LABORATORIES

AN133

Appendix F—Bill of Materials for AB2 Ethernet Daughter Card

Qty | Part Manufacturer | Description
Number
1 RJ724 L1 Trans-Power | RJ-45 Connector with integrated magnetics and
LEDs.
Contact: Trans-Power
(Www.trans-power.com)
or Tyco Electronics
(www.tycoelectronics.com)
1-800-468-2023
P/N 1-1605752-1
1 PCN10A- Hirose Electric | 96-Pin DIN connector MALE
96P-2.54DS Plug Right Angle, 3Row, Standard
OR
650473-5 AMP/TYCO
Electronics
1 CS8900A Cirrus Logic 100 Pin TQFP
1 Testpoint
2 Rubber Feet
| Qty | Value | Package | Notes
Capacitors
8 0.1 uF 0805 X7R 50/100V
1 10 uF 3216 Tant TE Series 6.3V
Panasonic PCS1106CT-ND or eq.
1 560 pF 0805 C0G/Ceramic NPO 50V
Resistors
2 8.2 OHM 0805 MTFLM 5% 1/10W
1 100 OHM 0805 MTFLM 1% 1/10W
1 4.99K +/- 1% OHM | 0805 MTFLM 1% 1/10W

Crystal

[

20.0 MHz

| HC-49/V A 20PF Parallel

32

Rev. 1.1

SILICON LABORATORIES

AN133

Notes:

Relevant Devices
This application note applies to the following devices:

C8051F120, C8051F121, C8051F122, C8051F123, C8051F124, C8051F 125, C8051F126, and C8051F127.

®
@ Rev. 1.1

SILICON LABORATORIES

33

AN133

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

34 Rev. 1.1

SILICON LABORATORIES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Silicon Laboratories:
AB2

http://www.mouser.com/silabs
http://www.mouser.com/access/?pn=AB2

	Relevant Devices
	Introduction
	Building an Ethernet Interface
	Step by Step Guide to Setting Up the CMX Micronet™ HTTP Web Server (Version 2.17j)
	Creating a New Project
	Configuring the CMX Micronet™ Protocol Stack
	Modifying ‘STARTUP.A51’
	Modifying ‘micronet.h’
	Modifying ‘mn_env.h’
	Modifying ‘mn_port.c
	Modifying ‘mnconfig.h’

	Designing an Application Around the CMX Micronet™ HTTP Server
	Typical Project Structure
	Initialization Routines
	The ‘html2c’ Utility
	Adding File Arrays to the Project

	Starting the HTTP Server

	A “Hello World” Application
	Starting the “Hello World” Application From Scratch
	Description of ‘main.c’ for the “Hello World” Project
	Creating HTML Content

	Appendix A-Setting Up the Embedded Web Server Demo
	Materials Needed
	Preparing the Hardware
	Downloading Object Code to FLASH
	Programming the IP and MAC Addresses
	Accessing the Web Server

	Appendix B-Determining an IP Address for the Embedded Web Server
	IP Address Selection Example

	Appendix C-Example ‘main.c’ Source File for the ‘Hello World’ Project
	Appendix D-Example Ethernet Transmit and Receive Routines
	Appendix E-AB2 Ethernet Daughter Card Schematic
	Appendix F-Bill of Materials for AB2 Ethernet Daughter Card
	Notes:

