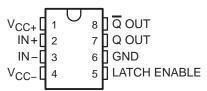
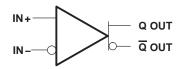
- Ultra-Fast Operation . . . 10 ns (typ)
- Low Positive Supply Current 12.7 mA (Typ)
- Operates From a Single 5-V Supply or From a Split ±5-V Supply
- Complementary Outputs
- Input Common-Mode Voltage Includes Negative Rail
- Low Offset Voltage
- No Minimum Slew Rate Requirement
- Output Latch Capability
- Functional Replacement to the LT1116

description

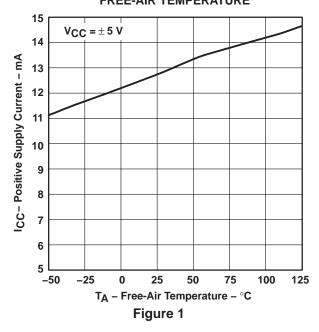
The TL3116 is an ultra-fast comparator designed to interface directly to TTL logic while operating from either a single 5-V power supply or dual ±5-V supplies. The input common-mode voltage extends to the negative rail for ground sensing applications. It features extremely tight offset voltage and high gain for precision applications. It has complementary outputs that can be latched using the LATCH ENABLE terminal. Figure 1 shows the positive supply current of the comparator. The TL3116 only requires 12.7 mA (typical) to achieve a propagation delay of 10 ns.


The TL3116 is a pin-for-pin functional replacement for the LT1116 comparator, offering high-speed operation but consuming much less power.

AVAILABLE OPTIONS

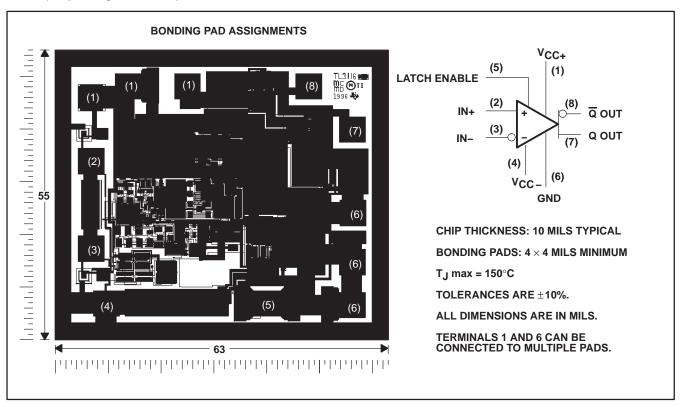

	PACKAGED	DEVICES	0.115		
TA	SMALL OUTLINE† (D)	TSSOP (PW)	CHIP FORM [‡] (Y)		
0°C to 70°C	TL3116CD	TL3116CPWLE	TL3116Y		
-40°C to 85°C	TL3116ID	TL3116IPWLE	_		

[†]The PW packages are available left-ended taped and reeled only.


D AND PW PACKAGE (TOP VIEW)

symbol (each comparator)

POSITIVE SUPPLY CURRENT vs FREE-AIR TEMPERATURE


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[‡] Chip forms are tested at $T_A = 25$ °C only.

TL3116Y chip information

This chip, when properly assembled, displays characteristics similar to the TL3116C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

COMPONENT COUNT						
Bipolars	53					
MOSFETs	49					
Resistors	46					
Capacitors	14					

TL3116, TL3116Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS

SLCS132C - MARCH 1997 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I	
Input voltage, V _I (LATCH ENABLE)	
Output current, I _O	± 20 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stq}	– 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN-.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING		
D	725 mW	5.8 mW/°C	464 mW		
PW	525 mW	4.2 mW/°C	336 mW		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TL3116, TL3116Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS

SLCS132C - MARCH 1997 - REVISED MAY 1997

electrical characteristics at specified operating free-air temperature, V_{DD} = ± 5 V, V_{LE} = 0 (unless otherwise noted)

242445752	TEST SOUDITIONS!		TL3116C	;	TL3116I			LINUT
PARAMETER	TEST CONDITIONS!	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
lanut effect veltere	T _A = 25°C		0.5	3		0.5	3	mV
input offset voltage	T _A = full range			3.5			3.5	mv
Temperature coefficient of input offset voltage			-2.5			-2.8		μV/°C
	T _A = 25°C		0.1	0.2		0.1	0.2	
Input offset current	T _A = full range			0.3			0.35	μΑ
January I. Community	T _A = 25°C		0.7	1.1		0.7	1.1	
input bias current	T _A = full range			1.2			1.5	μΑ
Common-mode input	V _{DD} = ±5 V	-5		2.5	-5		2.5	.,
voltage range	V _{DD} = 5 V	0		2.5	0		2.5	V
Common-mode rejection ratio	-5 ≤ V _{IC} ≤ 2.5 V	75	100		75	100		dB
Supply-voltage rejection	Positive supply: $4.6 \text{ V} \le +\text{V}_{DD} \le 5.4 \text{ V}$, $T_A = 25^{\circ}\text{C}$	60	80		60	80		
ratio	Negative supply: $-7 \text{ V} \le -\text{V}_{DD} \le -2 \text{ V}$, $T_A = 25^{\circ}\text{C}$	80	100		80	100		dB
Laveland autout valtage	$I_{(Sink)} = 4 \text{ mA},$ V+ $\leq 4.6 \text{ V},$ $T_A = 25^{\circ}\text{C}$		400	600		400	600	\/
Low-level output voltage	$\begin{split} I_{\mbox{(sink)}} &= 10 \mbox{ mA}, & \mbox{V+} \leq 4.6 \mbox{ V}, \\ T_{\mbox{A}} &= 25^{\circ} \mbox{C} \end{split}$		750			750		mV
High lavel output vales	$V+ \leq 4.6 \text{ V}, \\ T_A = 25^{\circ}\text{C}$ $I_O = 1 \text{ mA},$	3.6	3.9		3.6	3.9		V
nign-ievei output voitage	$V+ \leq 4.6 \ V, \\ T_{\mbox{\scriptsize A}} = 25 \mbox{\rm °C} \label{eq:total_obj}$	3.4	3.8		3.4	3.8		V
Positive supply current	T full recens		12.7	14.7		12.7	15	A
Negative supply current	TA = ruii range	-2.6			-3			mA
Low-level input voltage (LATCH ENABLE)				0.8			0.8	V
High-level input voltage (LATCH ENABLE)		2			2			V
Low-level input current	V _{LE} = 0		0	1		0	1	μΑ
(LATCH ENABLE)	V _{LE} = 2 V		24	39		24	45	μΑ
	of input offset voltage Input offset current Input bias current Common-mode input voltage range Common-mode rejection ratio Supply-voltage rejection ratio Low-level output voltage Positive supply current Negative supply current Low-level input voltage (LATCH ENABLE) Low-level input current	$ \begin{array}{c} \text{Input offset voltage} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Temperature coefficient of input offset voltage} \\ \hline \text{Input offset current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Input offset current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Input bias current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Common-mode input voltage range} & \begin{array}{c} V_{DD} = \pm 5 \text{ V} \\ V_{DD} = 5 \text{ V} \end{array} \\ \hline \text{Common-mode rejection ratio} & \begin{array}{c} -5 \leq \text{V}_{ C} \leq 2.5 \text{ V} \\ \hline \text{Positive supply: } 4.6 \text{ V} \leq +\text{V}_{DD} \leq 5.4 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{Negative supply: } -7 \text{ V} \leq -\text{V}_{DD} \leq -2 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{I(sink)} = 4 \text{ mA}, & \text{V+} \leq 4.6 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{I(sink)} = 10 \text{ mA}, & \text{V+} \leq 4.6 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \text{I(sink)} = 10 \text{ mA}, & \text{V+} \leq 4.6 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \text{Positive supply current} \\ \hline \text{Negative supply current} \\ \hline \text{Negative supply current} \\ \hline \text{Low-level input voltage} \\ \hline \text{I(ATCH ENABLE)} \\ \hline \\ \hline \text{Low-level input current} \\ \hline \end{array} \\ \hline \begin{array}{c} V_{LE} = 0 \\ \hline \end{array} \\ \hline \end{array}$	$ \begin{array}{c} \text{Input offset voltage} \\ \text{Ta} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \\ \\ \text{Input offset current} \\ \\ \text{Input offset current} \\ \\ \text{Input offset current} \\ \\ \text{Input bias current} \\ \\ \text{Input bias current} \\ \\ \text{Input bias current} \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \\ \\ \text{Common-mode input voltage range} \\ \\ \text{Common-mode rejection ratio} \\ \\ \text{Common-mode rejection ratio} \\ \\ \text{Supply-voltage rejection ratio} \\ \\ \text{Supply-voltage rejection ratio} \\ \\ \text{Do Supply-voltage supply: } -7 \text{ V} \leq -\text{V}_{DD} \leq 5.4 \text{ V}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{Negative supply: } -7 \text{ V} \leq -\text{V}_{DD} \leq -2 \text{ V}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{I(sink)} = 10 \text{ mA}, \qquad \text{V+} \leq 4.6 \text{ V}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \qquad \text{IO} = 1 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, \\ \text{Ta} = 100 \text{ mA}, \\ \text$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

[†] Full range for the TL3116C is $T_A = 0^{\circ}$ C to 70° C. Full range for the TL3116I is $T_A = -40^{\circ}$ C to 85° C. ‡ All typical values are measures with $T_A = 25^{\circ}$ C.

switching characteristics, $V_{DD} = \pm 5 \text{ V}$, $V_{LE} = 0$

DADAMETED		7507.001	TL3116C			TL3116I				
	PARAMETER	TEST CON	IDITIONS	MIN TYP MAX MIN TYP		MAX	UNIT			
t _{pd1} Propagation delay time [‡]	$\Delta V_{\parallel} = 100 \text{ mV},$	T _A = 25°C		9.9	12		9.9	12		
	$V_{OD} = 5 \text{ mV}$	T _A = full range		9.9	14		9.9	15		
	Propagation delay time+	$\Delta V_I = 100 \text{ mV},$ $V_{OD} = 20 \text{ mV}$	T _A = 25°C		8.2	10.3		8.2	10.3	ns
			T _A = full range		8.2	12.7		8.2	13.7	
t _{sk(p)}	Pulse skew ($ t_{pd+} - t_{pd-} $)	$\Delta V_I = 100 \text{ mV},$ $T_A = 25^{\circ}\text{C}$	$V_{OD} = 5 \text{ mV},$		0.5			0.5		ns
t _{su}	Setup time, LATCH ENABLE				3.4			3.4		ns

[†] Full range for the TL3116C is 0°C to 70°C. Full range for the TL3116I is –40°C to 85°C.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
		vs Input voltage	2
ICC	Positive supply current	vs Frequency	3
		vs Free-air temperature	4
ICC	Negative supply current	vs Free-air temperature	5
		vs Overdrive voltage	6
	Propagation delay time	vs Supply voltage	7
t _{pd}		vs Input impedance	8
ļ ·		vs Load capacitance	9
		vs Free-air temperature	10
VIС	Common-mode input voltage	vs Free-air temperature	11
VIT	Input threshold voltage (LATCH ENABLE)	vs Free-air temperature	12
,,	0	vs Output source current	13
Vo	Output voltage	vs Output sink current	14
lį	Input current (LATCH ENABLE)	vs Input voltage	15

[‡] t_{pd1} cannot be measured in automatic handling equipment with low values of overdrive. The TL3116 is 100% tested with a 1-V step and 500-mV overdrive at T_A = 25°C only. Correlation tests have shown that t_{pd1} limits given can be ensured with this test, if additional dc tests are performed to ensure that all internal bias conditions are correct. For low overdrive conditions, V_{OS} is added to the overdrive.

20

18

16

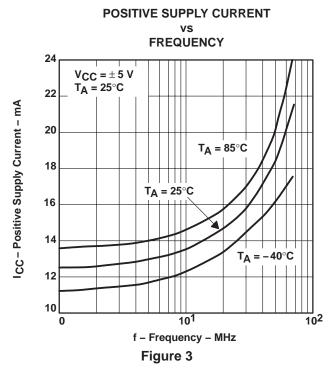
14

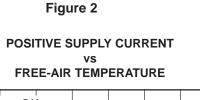
12

10

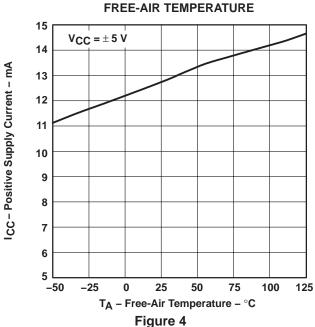
8

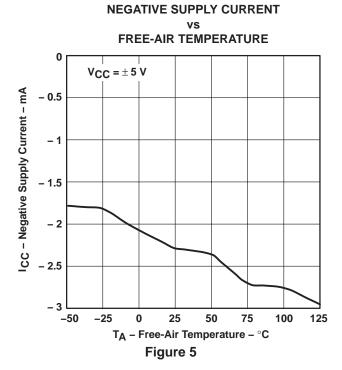
2


0


ICC - Positive Supply Current - mA

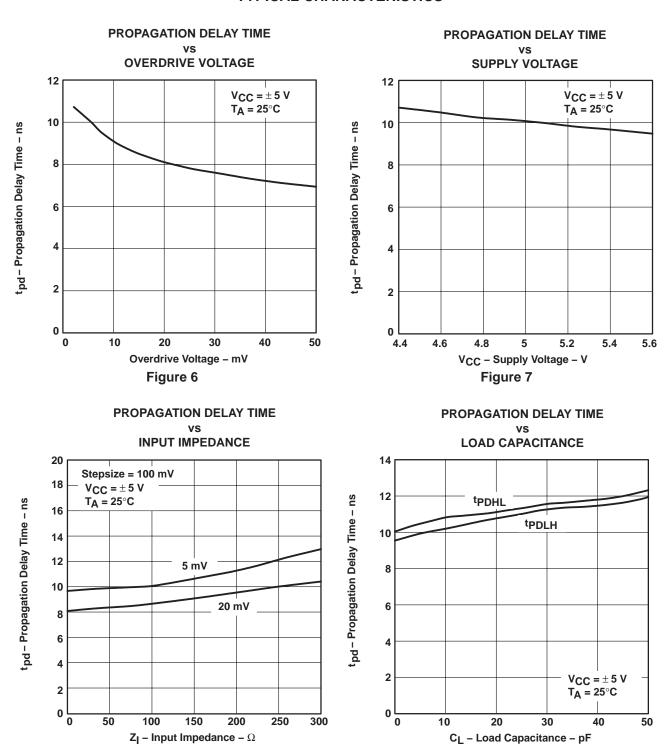
TYPICAL CHARACTERISTICS


8


POSITIVE SUPPLY CURRENT INPUT VOLTAGE $V_{CC} = \pm 5 V$ T_A = 25°C T_A = 85°C T_A = 25°C $T_A = -40^{\circ}C$

V_I - Input Voltage - V

TYPICAL CHARACTERISTICS



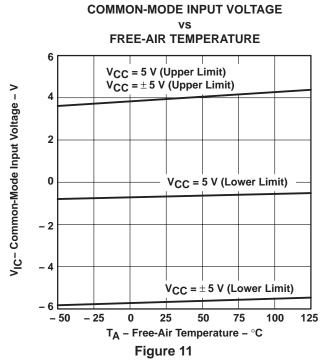
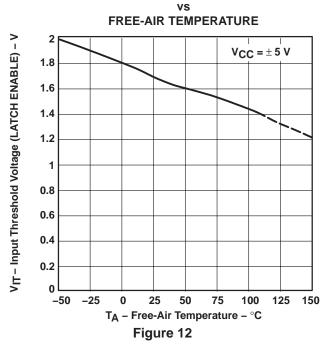
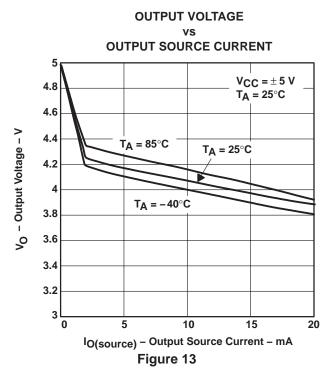
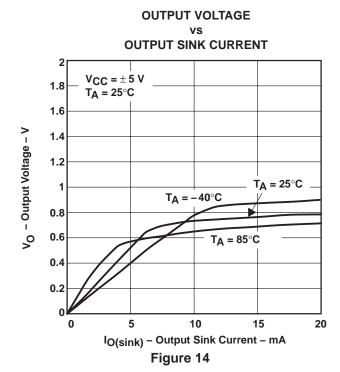


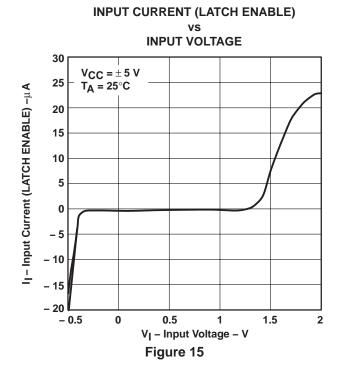
Figure 9

Figure 8


TYPICAL CHARACTERISTICS


PROPAGATION DELAY TIME FREE-AIR TEMPERATURE 25 $V_{CC} = \pm 5 V$ tpd - Propagation Delay Time - ns 20 15 Rising Edge 10 **Falling Edge** 5 75 100 125 - 50 - 25 50 T_A - Free-Air Temperature - °C


INPUT THRESHOLD VOLTAGE (LATCH ENABLE)


Figure 10

TYPICAL CHARACTERISTICS

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	(5)		(6)
TL3116CD	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	3116C
TL3116CDR	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	0 to 70	3116C
TL3116CPWR	Obsolete	Production	TSSOP (PW) 8	-	-	Call TI	Call TI	0 to 70	T3116
TL3116ID	Obsolete	Production	SOIC (D) 8	-	-	Call TI	Call TI	-40 to 85	31161
TL3116IDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	31161
TL3116IDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	31161
TL3116IPWR	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	Z3116
TL3116IPWR.A	Active	Production	TSSOP (PW) 8	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	Z3116

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

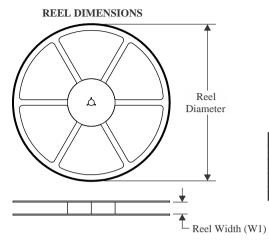
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

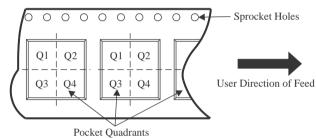
PACKAGE OPTION ADDENDUM


www.ti.com 23-May-2025

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

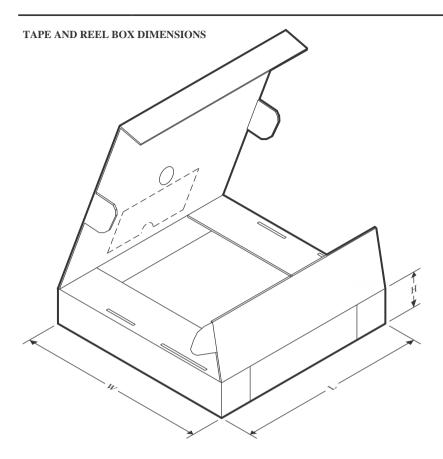
www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity A0

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

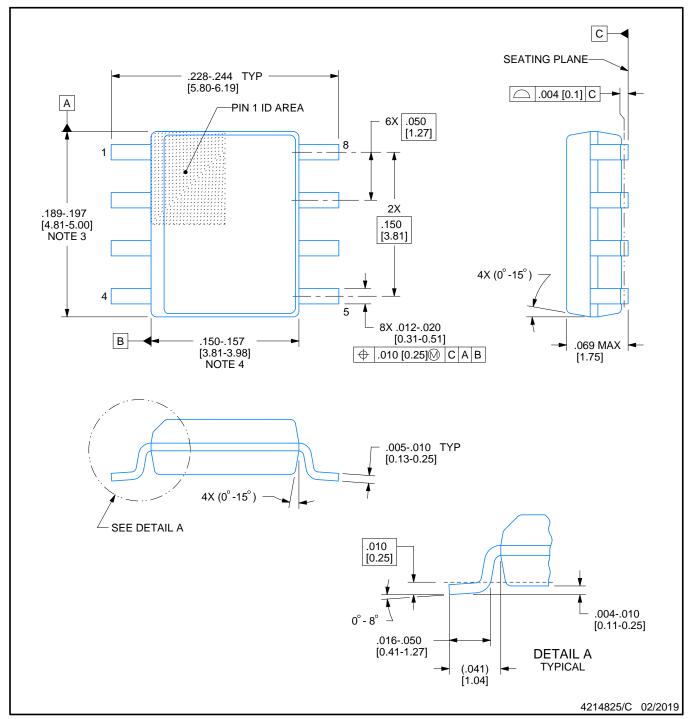


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TL3116IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TL3116IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

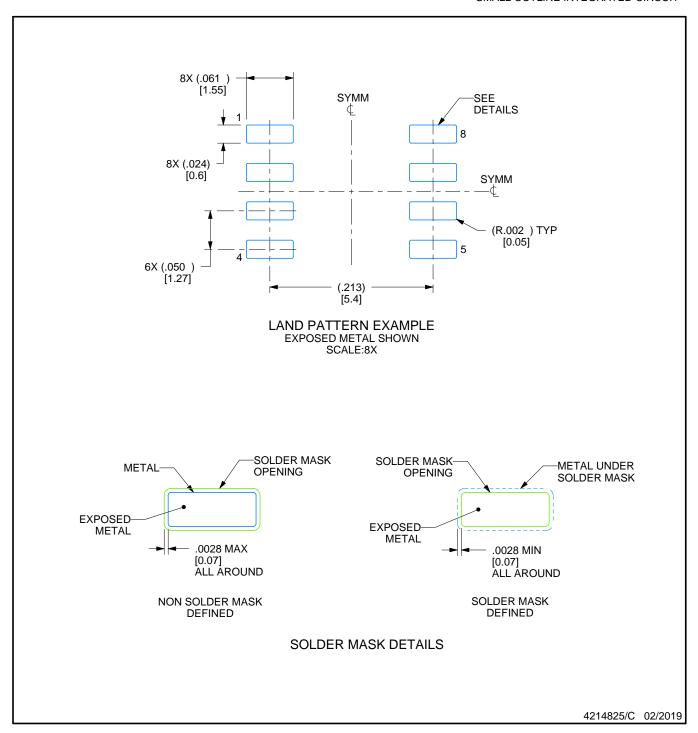
www.ti.com 24-Jul-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Drawing Pins SPQ Length (mm) Width (mm		Width (mm)	Height (mm)	
TL3116IDR	SOIC	D	8	2500	350.0	350.0	43.0
TL3116IPWR	TSSOP	PW	8	2000	353.0	353.0	32.0

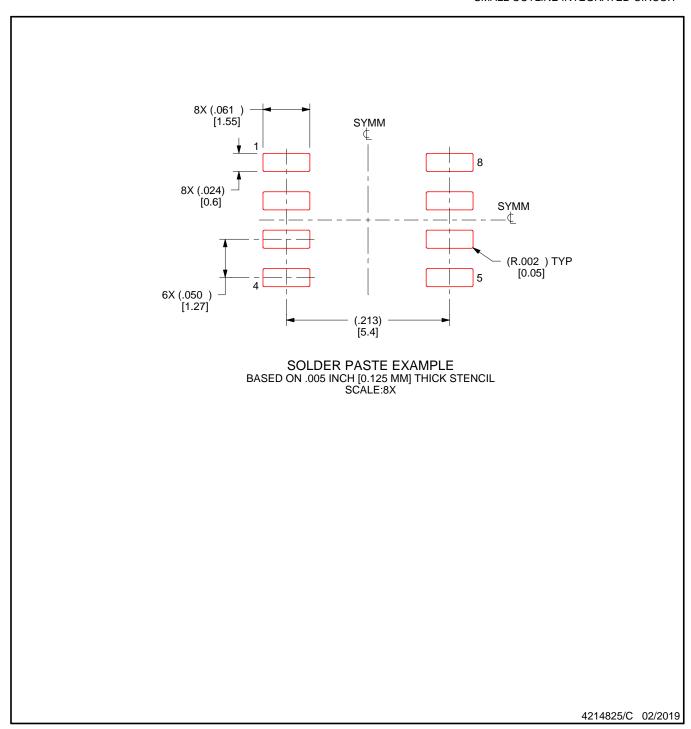
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

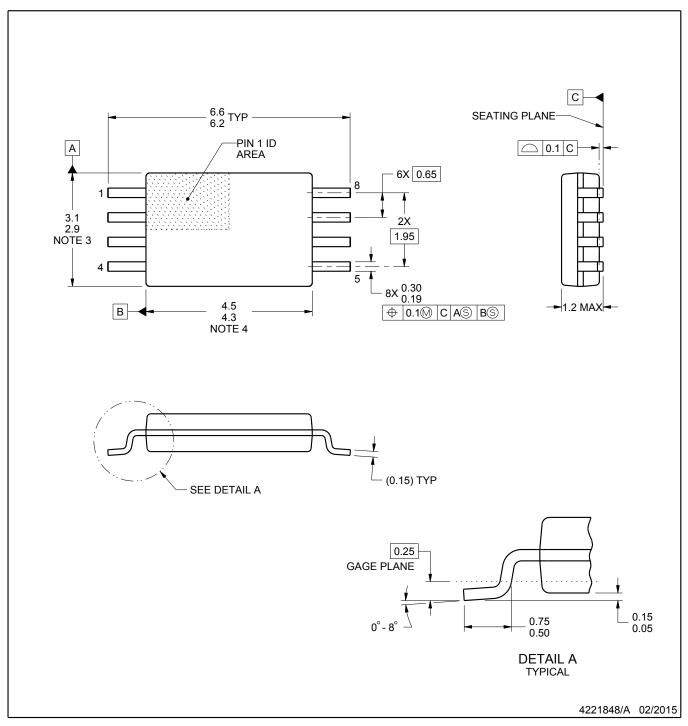
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

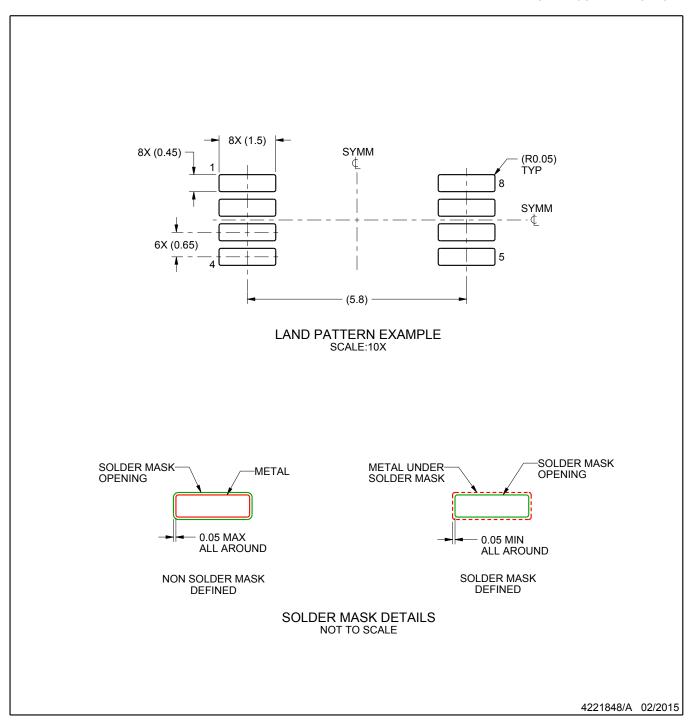
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE PACKAGE

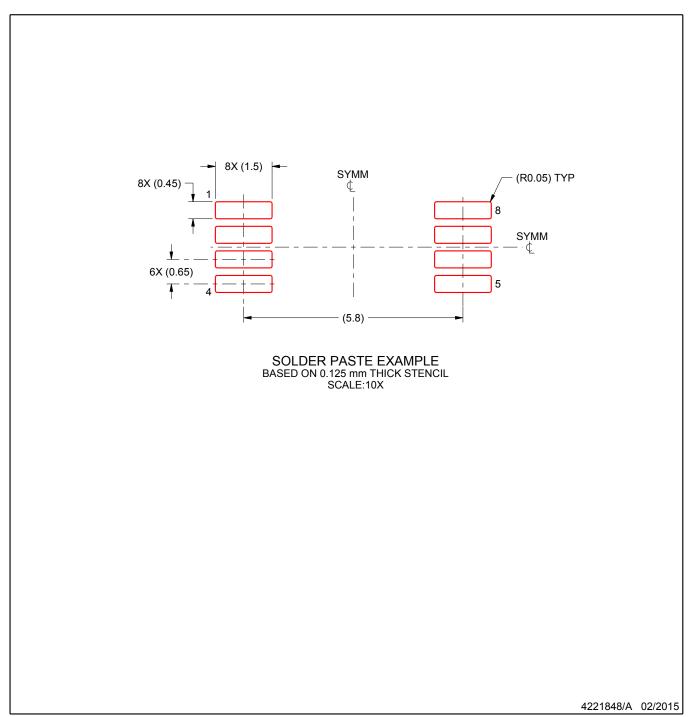
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated