

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

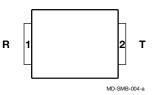
TISP4xxxJ3BJ Overvoltage Protector Series

Ion-Implanted Breakdown Region

- -Precise and Stable Voltage
- -Low Voltage Overshoot Under Surge

Designed for Transformer Center Tap (Ground Return) Overvoltage Protection

- -Enables GR-1089-CORE Compliance
- -High Holding Current Allows Protection of Data Lines with d.c. Power Feed


Can be Used to Protect Rugged Modems Designed for Exposed Applications Exceeding TIA-968-A

Device Name	V _{DRM} V	V _(BO) V
TISP4070J3BJ	58	70
TISP4080J3BJ	65	80
TISP4095J3BJ	75	95
TISP4115J3BJ	90	115
TISP4125J3BJ	100	125
TISP4145J3BJ	120	145
TISP4165J3BJ	135	165
TISP4180J3BJ	145	180
TISP4200J3BJ	155	200
TISP4219J3BJ	180	219
TISP4250J3BJ	190	250
TISP4290J3BJ	220	290
TISP4350J3BJ	275	350
TISP4395J3BJ	320	395

.....UL Recognized Component

SMB Package (Top View)

Device Symbol

Rated for International Surge Wave Shapes

Wave Shape	Standard	I _{PPSM} A
2/10	GR-1089-CORE	1000
8/20	IEC 61000-4-5	800
10/160	TIA-968-A	400
10/700	ITU-T K.20/21/45	350
10/560	TIA-968-A	250
10/1000	GR-1089-CORE	200

Description

The range of TISP4xxxJ3BJ devices are designed to limit overvoltages on telecom lines. The TISP4xxxJ3BJ is primarily designed to address GR-1089-CORE compliance on data transmission lines with d.c. power feeding. When overvoltage protection is applied to transformer coupled lines from the transformer center tap to ground, the total ground return current can be 200 A, 10/1000 and 1000 A, 2/10. The high 150 mA holding current is set above common d.c. feed system levels to allow the TISP4xxxJ3BJ to reset following a disturbance.

These devices allow signal voltages, without clipping, up to the maximum off-state voltage value, V_{DRM}, see Figure 1. Voltages above V_{DRM} are limited and will not exceed the breakover voltage, V_(BO), level. If sufficient current flows due to the overvoltage, the device switches into a low voltage on-state condition, which diverts the current from the overvoltage through the device. When the diverted current falls below the holding current, I_H, level the devices switches off and restores normal system operation.

How to Order

Device	evice Package Carrier		Order As	Marking Code	Std. Qty.	
TISP4xxxJ3BJ	SMB (DO-214AA)	Embossed Tape Reeled	TISP4xxxJ3BJR-S	4xxxJ3	3000	

Insert xxx value corresponding to device name.

*RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

JULY 2003 - REVISED NOVEMBER 2013

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

TISP4xxxJ3BJ Overvoltage Protector Series

BOURNS®

Absolute Maximum Ratings, T_A = 25 °C (Unless Otherwise Noted)

Rating	Symbol	Value	Unit
'4070J3B '4080J3B '4095J3B '4095J3B '4115J3B '4115J3B '4145J3B '4145J3B '4165J3B '4180J3B '4200J3B '4219J3B '4250J3B '4250J3B '4350J3B '4350J3B '4350J3B	J J J J V _{DRM} J J J	±58 ±65 ±75 ±90 ±100 ±120 ±135 ±145 ±155 ±180 ±190 ±220 ±275 ±320	V
Non-repetitive peak impulse current (see Notes 1 and 2) 2/10 µs (GR-1089-CORE, 2/10 µs voltage wave shape) 8/20 µs (IEC 61000-4-5, combination wave generator, 1.2/50 µsvoltage wave shape) 10/160 µs (TIA-968-A, 10/160 µs voltage wave shape) 4/250 µs (ITU-T K.20/21, 10/700 µs voltage waveshape, simultaneous) 5/310 µs (ITU-T K.20/21, 10/700 µs voltage wave shape, single) 5/320 µs (TIA-968-A, 9/720 µs voltage waveshape, single) 10/560 µs (TIA-968-A, 10/560 µs voltage wave shape) 10/1000 µs (GR-1089-CORE, 10/1000 µs voltage wave shape)	I _{PPSM}	±1000 ±800 ±400 ±370 ±350 ±350 ±250 ±200	Α
Non-repetitive peak on-state current (see Notes 1 and 2) 20 ms, 50 Hz (full sine wave) Initial rate of rise of on-state current. Linear current ramp. Maximum ramp value < 50 A	I _{TSM}	50 800	A A/µs
Junction temperature	T _J	-40 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

- NOTES: 1. Initially the device must be in thermal equilibrium with $T_J = 25$ °C.
 - 2. These non-repetitive rated currents are peak values of either polarity. The surge may be repeated after the device returns to its initial conditions.

Electrical Characteristics, T_A = 25 °C (Unless Otherwise Noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit
1	Repetitive peak	$V_D = V_{DRM}$ $T_A = 25$	C		±5	μA
IDRM	off-state current	$T_A = 85$	C		±10	μΛ
		ʻ4070J3	3J		±70	
		·4080J3	3J		±80	
		4095J3	3J		±95	
V _(BO) AC Breakover voltage	4115J3	3J		±115		
	4125J3	3J		±125		
	4145J3	3J		±145		
	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$ (4165J3	3J		±165	v l	
	4180J3	3J		±180	· '	
		4200J3	3J		±200	
		4219J3	3J		±219	
	4250J3	3J		±250		
	4290J3	3J		±290		
		4350J3	3J		±350	
		·4395J3	3J		±395	

Electrical Characteristics, $T_A = 25$ °C (Unless Otherwise Noted)

Parameter		Test Conditions		Min	Тур	Max	Unit
			'4070J3BJ			±77	
			'4080J3BJ			±88	
		'4095J3BJ			±104		
			'4115J3BJ			±125	
			'4125J3BJ			±135	
		dv/dt ≤ ±1000 V/μs, Linear voltage ramp,	'4145J3BJ			±156	
V _(BO)	Ramp breakover voltage	Maximum ramp value = ±500 V	'4165J3BJ			±177	V
(50)		$di/dt = \pm 20 \text{ A/}\mu\text{s}$, Linear current ramp,	'4180J3BJ			±192	
		Maximum ramp value = ±10 A	ʻ4200J3BJ ʻ4219J3BJ			±212 ±231	
			421933BJ 4250J3BJ			±263	
			4290J3BJ			±303	
			4350J3BJ			±364	
			'4395J3BJ			±409	
			'4070J3BJ thru '4115J3BJ			±900	
I _(BO)	Breakover current	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$	'4125J3BJ thru '4219J3BJ			±800	mA
()			'4250J3BJ thru '4395J3BJ			±600	
I _H	Holding current	$I_T = \pm 5 \text{ A}$, di/dt = $\pm 30 \text{ mA/ms}$		±150		±600	mA
dv/dt	Critical rate of rise of	Linear voltage ramp		±5			kV/µs
uv/ut	off-state voltage	Maximum ramp value < 0.85V _{DRM}		1 ±3			Κν/μδ
I _D	Off-state current	$V_D = \pm 50 \text{ V}$	T _A = 85 °C			±10	μΑ
			'4070J3BJ thru '4115J3BJ		195	235	
		$f = 1 \text{ MHz}, V_d = 1 \text{ V rms}, V_D = 0$	'4125J3BJ thru '4219J3BJ		120	145	
			'4250J3BJ thru '4395J3BJ		105	125	
			'4070J3BJ thru '4115J3BJ		180	215	
		$f = 1 \text{ MHz}$, $V_d = 1 \text{ V rms}$, $V_D = -1 \text{ V}$	'4125J3BJ thru '4219J3BJ		110	132	
			'4250J3BJ thru '4395J3BJ		95	115	
Co	Off-state capacitance		'4070J3BJ thru '4115J3BJ		165	200	pF
00	OII-State Capacitance	$f = 1 \text{ MHz}$, $V_d = 1 \text{ V rms}$, $V_D = -2 \text{ V}$	'4125J3BJ thru '4219J3BJ		100	120	Pi
			'4250J3BJ thru '4395J3BJ		90	105	
			'4070J3BJ thru '4115J3BJ		85	100	
		$f = 1 \text{ MHz}, V_d = 1 \text{ V rms}, V_D = -50 \text{ V}$	'4125J3BJ thru '4219J3BJ		50	60	
			'4250J3BJ thru '4395J3BJ		42	50	
		f = 1 MHz, V _d = 1 V rms, V _D = -100 V	'4125J3BJ thru '4219J3BJ		40	50	
	(see Note 3)	'4250J3BJ thru '4395J3BJ		35	40		

NOTE: 3. To avoid possible clipping, the TISP4125J3BJ is tested with $V_D = -98 \text{ V}$.

Thermal Characteristics

Parameter		Test Conditions	Min	Тур	Max	Unit
$R_{\theta JA}$	Junction to ambient thermal resistance	EIA/JESD51-3 PCB, $I_T = I_{TSM(1000)}$ (see Note 4)			90	°C/W

NOTE: 4. EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.

Parameter Measurement Information

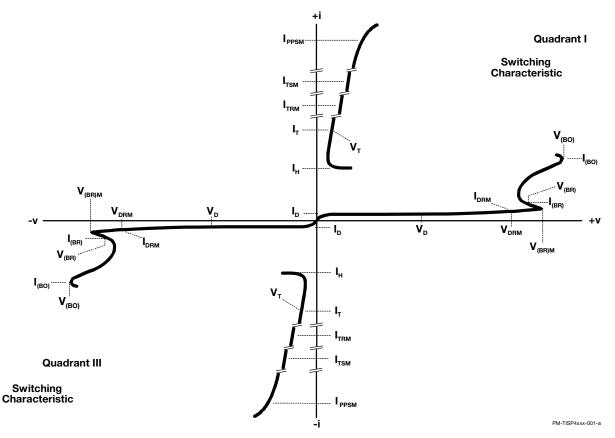


Figure 1. Voltage-Current Characteristic for T and R Terminals All Measurements are Referenced to the R Terminal

Typical Characteristics

OFF-STATE CURRENT JUNCTION TEMPERATURE TC4JAG 100 $V_D = \pm 50 \text{ V}$ 10 ||_D| - Off-State Current - μΑ 0.001 50 -25 100 0 75 125 150 T₁ - Junction Temperature - °C

Figure 2.

NORMALIZED HOLDING CURRENT

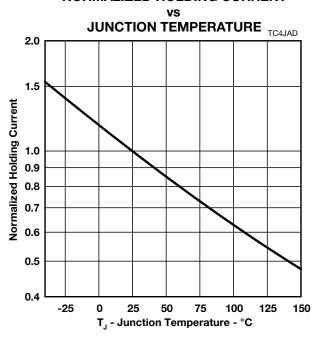


Figure 4.

NORMALIZED BREAKOVER VOLTAGE

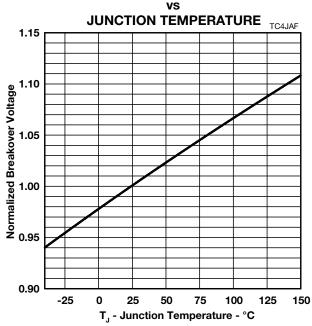


Figure 3.

NORMALIZED CAPACITANCE

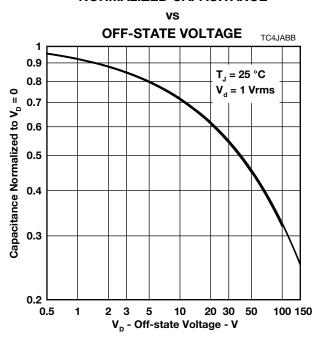
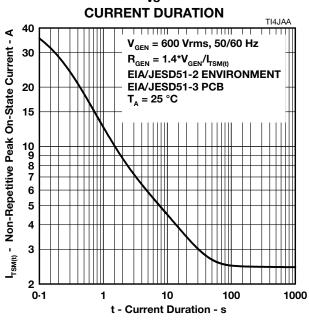
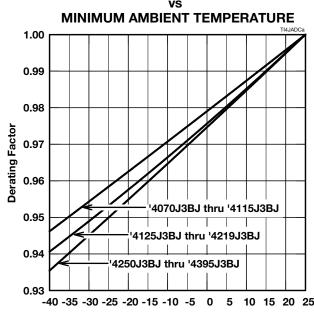



Figure 5.


Rating and Thermal Characteristics

NON-REPETITIVE PEAK ON-STATE CURRENT

Figure 6.

$\mathbf{V}_{\mathsf{DRM}}$ derating factor

 $T_{A(MIN)}$ - Minimum Ambient Temperature - °C Figure 7.

Applications Information

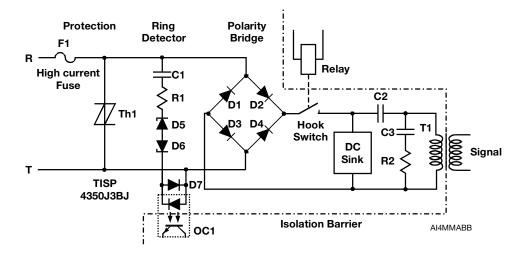


Figure 8. Typical Application Circuit

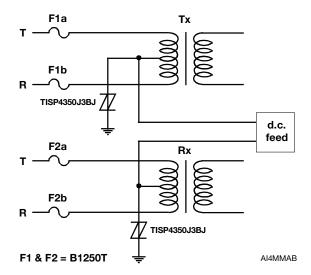


Figure 9. Typical Application Circuit

[&]quot;TISP" is a registered trademark of Bourns Ltd., a Bourns Company, in the United States and other countries, except that "TISP" is a registered trademark of Bourns, Inc. in China. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries.

JULY 2003 - REVISED NOVEMBER 2013