December 2012

FST3245 — 8-Bit Bus Switch

Features

- 4 Ω Switch Connection between Two Ports
- Minimal Propagation Delay through the Switch
- Low I_{CC}
- Zero Bounce in Flow-through Mode
- Control Inputs Compatible with TTL Level

Description

The FST3245 switch provides eight-bits of high-speed CMOS TTL-compatible bus switching in a standard '245 pin-out. The low on resistance allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device is organized as an eight-bit switch. When /OE is LOW, the switch is ON and port A is connected to port B. When /OE is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FST3245MTCX	-40 to +85°C	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4 mm Wide	Tape and Reel

Logic Diagram

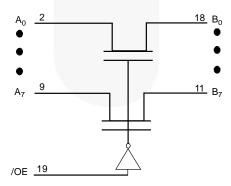


Figure 1. Logic Diagram

Pin Configuration

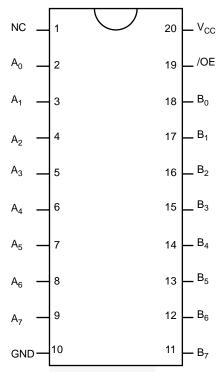


Figure 2. Pin Configuration

Pin Descriptions

Pin #	Pin Names	Description
1	NC	No Connnect
19	/OE	Bus Switch Enable
2,3,4,5,6,7,8,9	$A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7$	Bus A
10	GND	Ground
11,12,13,14,15,16,17,18	B ₇ ,B ₆ ,B ₅ ,B ₄ ,B ₃ ,B ₂ ,B ₁ ,B ₀	Bus B
20	V _{CC}	Supply Voltage

Truth Table

Input /OE	Function	
LOW	Connect	
HIGH	Disconnect	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	7.0	V
Vs	DC Switch Voltage	-0.5	7.0	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	7.0	V
I _{IK}	DC Input Diode Current, V _{IN} < 0 V		-50	mA
I _{OUT}	DC Output Sink Current		128	mA
I _{CC} / I _{GND}	DC V _{CC} / GND Current		±100	mA
T _{STG}	Storage Temperature Range	-65	+150	°C

Note:

 The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Power Supply Operating		4.0	5.5	V
V _{IN}	Input Voltage	Input Voltage		5.5	V
V _{OUT}	Output Voltage		0	5.5	V
	Input Disc and Fall Time	Switch Control Input ⁽²⁾	0	5	20/1/
t_r , t_f	Input Rise and Fall Time Switch I/O		0	DC	ns/V
T _A	Γ _A Operating Temperature, Free Air		-40	+85	°C

Note:

2. Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Typical values are at $V_{CC} = 5.0 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

Cumbal	Doromotor	Conditions	V 00	T _A =-40 to +85°C			l luite
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
V _{IK}	Clamp Diode Voltage	I _{IN} = -18 mA	4.5			-1.2	V
V _{IH}	High-Level Input Voltage		4.0 to 5.5	2.0			V
V _{IL}	Low-Level Input Voltage		4.0 to 5.5			0.8	V
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 \text{ V}$	5.5			±1.0	μA
I _{OZ}	Off-state Leakage Current	$0 \le A, B \le V_{CC}$	5.5			±1.0	μΑ
		$V_{IN} = 0 \text{ V}, I_{IN} = 64 \text{ mA}$	4.5		4	7	
R _{ON}	Switch On Resistance ⁽³⁾	V _{IN} = 0 V, I _{IN} = 30 mA	4.5		4	7	Ω
Kon	Switch Off Resistance	$V_{IN} = 2.4 \text{ V}, I_{IN} = 15 \text{ mA}$	4.5		8	15	\$ \$2
		V _{IN} = 2.4 V, I _{IN} = 15 mA	4.0		11	20	
I _{cc}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$	5.5	\(\text{\$\cdot\text{\$\cd		3	μA
Δl _{CC}	Increase in I _{CC} per Input	One Input at 3.4 V, Other Inputs at V _{CC} or GND	5.5			2.5	mA

Note:

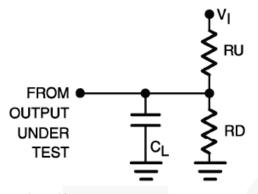
3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

AC Electrical Characteristics

 T_A = -40 to +85°C, C_L = 50 pF, and R_U = R_D = 500 Ω .

Symbol	Parameter	Conditions	$V_{CC} = 4.5$	5 – 5.5 V	V _{cc} =	4.0 V	Units	Figure
Symbol	Parameter	Conditions	Min.	Max.	Min.	Max.	Units	rigure
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus ⁽⁴⁾	V _{IN} = Open		0.25		0.25	ns	Figure 3 Figure 4
t _{PZH} ,t _{PZL}	Output Enable Time	$V_{IN} = 7 \text{ V for } t_{PZL}$ $V_{IN} = \text{Open for } t_{PZH}$	1.5	5.9		6.4	ns	Figure 3 Figure 4
t _{PHZ} , t _{PLZ}	Output Disable Time	$V_{IN} = 7 \text{ V for } t_{PLZ}$ $V_{IN} = \text{Open for}$ t_{PHZ}	1.5	6.0		5.7	ns	Figure 3 Figure 4

Note:


4. This parameter is guaranteed by design, but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical on resistance of the switch and the 50 pF load capacitance when driven by an ideal voltage source (zero output impedance).

Capacitance

 $T_A = +25$ °C, f = 1 MHz. Capacitance is characterized, but not tested.

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} = 5.0 V	3	pF
C _{I/O}	Input/Output Capacitance	V _{CC} , /OE = 5.0 V	5	pF

AC Loadings and Waveforms

Notes: Input driven by 50 Ω source terminated in 50 Ω . C_L includes load and stray capacitance. Input PRR = 1.0 MHz, t_w = 500 ns.

Figure 3. AC Test Circuit

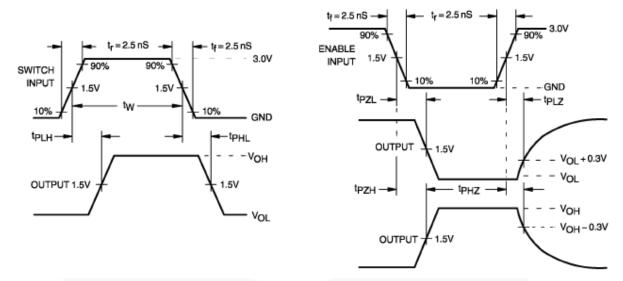
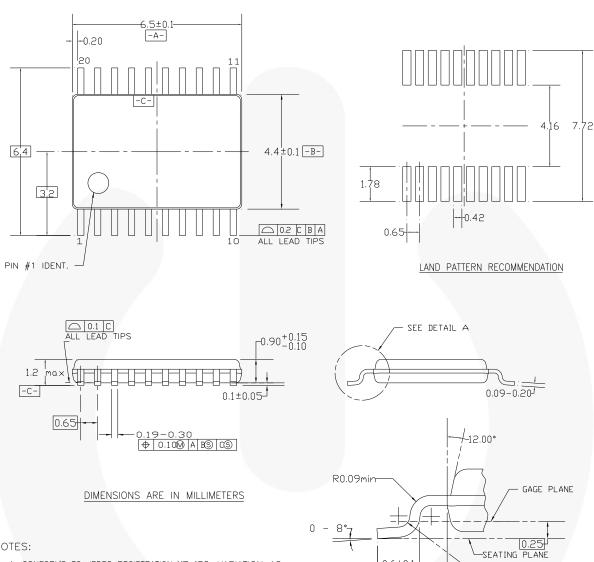



Figure 4. AC Waveforms

Physical Dimensions

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION M□-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTC20REVD1

Figure 5. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4 mm Wide

-0.6±0.1

-R0.09min

DETAIL A

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ FRFET® Global Power Resources AX-CAPTM* GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ Core PLUS™ Gmax™ Core POWER™ GTO™ CROSSVOLT™ IntelliMAX** CTL™ ISOPLANAR™ Current Transfer Logic™

DEUXPEED® Making Small Speakers Sound Louder Dual Cool™ and Better™

EcoSPARK® MegaBuck™ EfficientMax** MICROCOUPLER™ ESBC™ MicroFET™ MicroPak™ MicroPak2™ Fairchild® MillerDrive™ Fairchild Semiconductor® MotionMa×™

FACT Quiet Series™ FACT® mVVSaver™ Opto HiT™ FAST® OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™ **FPSTM**

PowerTrench® PowerXS™

Programmable Active Droop™

QFĔT QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise** SmartMax™

SMART START™ Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET** Sync-Lock™ SYSTEM GENERAL® The Power Franchise®

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO** TinyPower™ TinyPVVM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC Ultra FRFET™ UniFET™ **VCXTM** VisualMax™ VoltagePlus™ XSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THERBIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 163

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FST3245MTCX FST3245QSC_Q