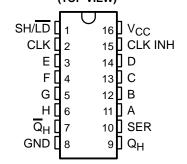
SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

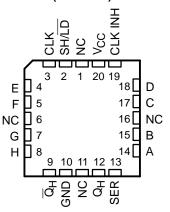
The SN54165 and SN74165 devices are obsolete and are no longer supplied.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion


TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION				
'165	26 MHz	210 mW				
'LS165A	35 MHz	90 mW				

description


The '165 and 'LS165A are 8-bit serial shift registers that shift the data in the direction of Q_A toward Q_H when clocked. Parallel-in access to each stage is made available by eight individual, direct data inputs that are enabled by a low level at the shift/load (SH/ \overline{LD}) input. These registers also feature gated clock (CLK) inputs and complementary outputs from the eighth bit. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

Clocking is accomplished through a two-input positive-NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with SH/LD high enables the other clock input. Clock inhibit (CLK INH) should be changed to the high level only while CLK is high. Parallel loading is inhibited as long as SH/LD is high. Data at the parallel inputs are loaded directly into the register while SH/LD is low, independently of the levels of CLK, CLK INH, or serial (SER) inputs.

SN54165, SN54LS165A . . . J OR W PACKAGE SN74165 . . . N PACKAGE SN74LS165A . . . D, N, OR NS PACKAGE (TOP VIEW)

SN54LS165A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

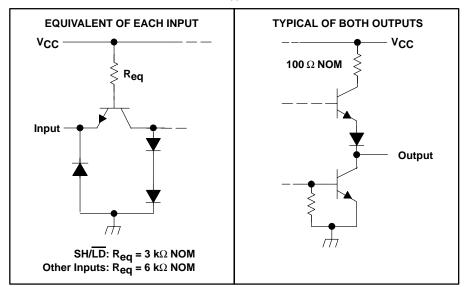
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

The SN54165 and SN74165 devices are obsolete and are no longer supplied.

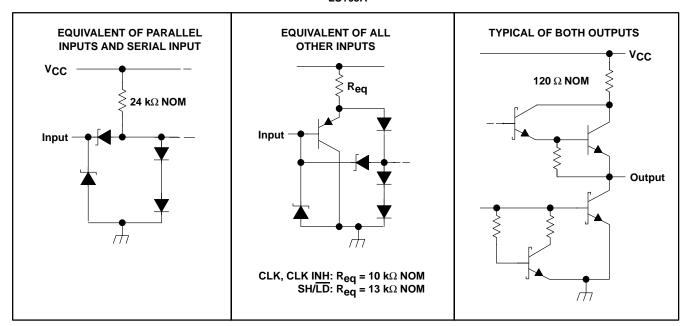
SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

ORDERING INFORMATION

TA	PAC	KAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74LS165AN	SN74LS165AN
0°C to 70°C	SOIC - D	Tube	SN74LS165AD	LS165A
0-0 10 70-0	30IC - D	Tape and reel	SN74LS165ADR	L3103A
	SOP - NS	Tape and reel	SN74LS165ANSR	74LS165A
	CDIP – J	Tube	SN54LS165AJ	SN54LS165AJ
_55°C to 125°C	CDIF - J	Tube	SNJ54LS165AJ	SNJ54LS165AJ
_33 C to 125 C	CFP – W	Tube	SNJ54LS165AW	SNJ54LS165AW
	LCCC - FK	Tube	SNJ54LS165AFK	SNJ54LS165AFK

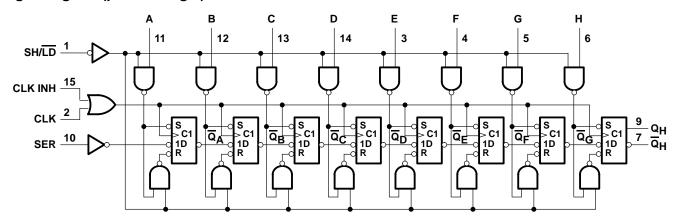

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

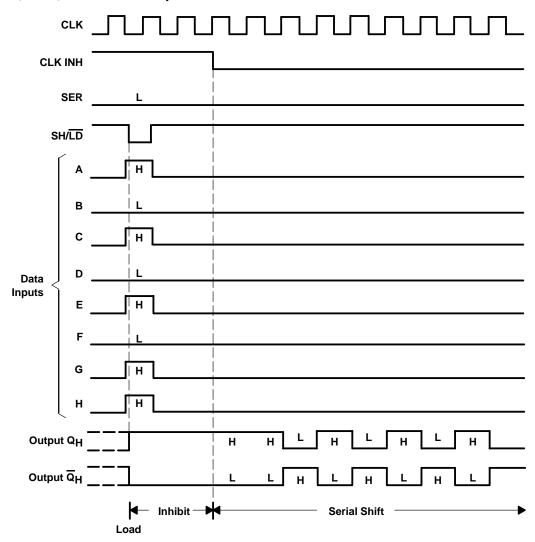

INPUTS						RNAL PUTS	OUTPUT
SH/LD	CLK INH	CLK	SER	PARALLEL AH	\overline{Q}_A	\overline{Q}_B	QH
L	Х	Χ	Χ	ah	а	b	h
Н	L	L	Χ	Х	Q _{A0}	Q_{B0}	Q _{H0}
Н	L	\uparrow	Н	Х	Н	Q_{An}	Q_{Gn}
Н	L	\uparrow	L	Х	L	Q_{An}	Q_{Gn}
Н	Н	Χ	Χ	X	Q _{A0}	Q _{B0}	Q _{H0}

schematics of inputs and outputs

'165



'LS165A


SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

logic diagram (positive logic)

Pin numbers shown are for D, J, N, NS, and W packages.

typical shift, load, and inhibit sequences

SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

The SN54165 and SN74165 devices are obsolete and are no longer supplied.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)		
Input voltage, V _I : SN54165, SN74	165	5.5 V
SN54LS165A, S	SN74LS165A	7 V
Interemitter voltage (see Note 2) .		5.5 V
Package thermal impedance θ _{JA} (s	see Note 3): D package	
	N package	67°C/W
	NS package	64°C/W
Storage temperature range, T _{sta} .		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
 - 2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the '165 to the SH/LD input in conjunction with the CLK INH input.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		Ş	SN54165		5	N74165		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
loн	High-level output current			-800			-800	μΑ
loL	Low-level output current			16			16	mA
fclock	Clock frequency	0		20	0		20	MHz
tw(clock)	Width of clock input pulse	25			25			ns
tw(load)	Width of load input pulse	15			15			ns
t _{su}	Clock-enable setup time (see Figure 1)	30			30			ns
t _{su}	Parallel input setup time (see Figure 1)	10			10			ns
t _{su}	Serial input setup time (see Figure 1)	20			20			ns
t _{su}	Shift setup time (see Figure 1)	45			45			ns
t _h	Hold time at any input	0			0			ns
T _A	Operating free-air temperature	-55		125	0		70	°C

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	242445752			t	;	SN54165	1	;	SN74165	1	
	PARAMETER		TEST CO	NDITIONS†	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	VIH High-level input voltage				2			2			V
V _{IL} Low-level input voltage						0.8			0.8	V	
VIK	V _{IK} Input clamp voltage		$V_{CC} = MIN,$	I _I = -12 mA			-1.5			-1.5	V
Vон	OH High-level output voltage		$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	$V_{IH} = 2 \text{ V},$ $I_{OH} = -800 \mu\text{A}$	2.4	3.4		2.4	3.4		V
VOL	Low-level output voltage		$V_{CC} = MIN,$ $V_{IL} = 0.8 V,$	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧
II	Input current at maximum	n input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
	High lovel input current	SH/LD	Vac - MAY	V: - 2.4 V			80			80	
l IH	High-level input current	Other inputs	$V_{CC} = MAX,$	V = 2.4 V			40			40	μΑ
1	SH/LD		\/ MAY	V: - 0.4 V			-3.2			-3.2	m A
¹IL	Low-level input current	Other inputs	VCC = IVIAX,	$V_I = 0.4 V$			-1.6			-1.6	mA
los	IOS Short-circuit output current§		$V_{CC} = MAX$		-20		-55	-18		-55	mA
ICC	Supply current		$V_{CC} = MAX$,	See Note 4		42	63		42	63	mA

NOTE 4: With the outputs open, CLK INH and CLK at 4.5 V, and a clock pulse applied to SH/LD, I_{CC} is measured first with the parallel inputs at 4.5 V, then with the parallel inputs grounded.

SN54165 and SN74165 switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				20	26		MHz
^t PLH	<u>ID</u>	Any	$C_L = 15 pF, R_L = 400 Ω$		21	31	ns
^t PHL	LD	Arry	Any $C_L = 15 \text{ pF}, R_L = 400 \Omega$ 27	27	40	115	
^t PLH	CLK	Any	$C_L = 15 \text{ pF, } R_L = 400 \Omega$		16	24	ns
^t PHL	OLK	Ally	OL = 13 pr , 11 = 400 sz		21	31	115
^t PLH	Н	0	C_L = 15 pF, R_L = 400 Ω		11	17	ns
^t PHL	11	Q _H	C _L = 13 pr, κ _L = 400 s ₂		24	36	115
^t PLH	Н	$\overline{\mathtt{Q}}_{H}$	C: - 15 pE P: - 400 O		18	27	no
^t PHL	HL QH CL = 13 pr, NL = 40		$C_L = 15 \text{ pF}, R_L = 400 \Omega$		18	27	ns

[¶] f_{max} = maximum clock frequency, t_{PLH} = propagation delay time, low-to-high-level output, t_{PHL} = propagation delay time, high-to-low-level output

[†] For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

recommended operating conditions

			SN	54LS16	5A	SN	74LS165	δA	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	H High-level input voltage					2			V
V _{IL}	Low-level input voltage				0.7			0.8	V
IOH	High-level output current				-0.4			-0.4	mA
I _{OL} Low-level output current					4			8	mA
fclock					25	0		25	MHz
	Width of clock input pulse (see Figure 2)	Clock high	15			15			ns
^t w(clock)		Clock low	25			25			
+ 4	Width of load input pulse	Clock high	25			25			ns
^t w(load)	whath of load input pulse	Clock low	17			17			115
t _{su}	Clock-enable setup time (see Figure 2)		30			30			ns
t _{su}	Parallel input setup time (see Figure 2)		10			10			ns
t _{su}	Serial input setup time (see Figure 2)		20			20			ns
t _{su}	u Shift setup time (see Figure 2)					45			ns
^t h	Hold time at any input	0			0			ns	
T _A	Operating free-air temperature		-55	_	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER		TEOT	CNDITIONS		SN	I54LS16	5A	SN	74LS16	5A	
PARAMETER		1651 0	CONDITIONS		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	$V_{CC} = MIN,$	$I_{I} = -18 \text{ mA}$					-1.5			-1.5	V
Voн	$V_{CC} = MIN,$	V _{IH} = 2 V,	$V_{IL} = MAX$,	$I_{OH} = -0.4 \text{ mA}$	2.5	3.5		2.7	3.5		V
Voi	V _{CC} = MIN,	\/ 2\/	\/ MAY	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
VOL	ACC = IMIIA'	VIH = ∠ V,	VIL = IVIAX	I _{OL} = 8 mA					0.35	0.5]
lį	$V_{CC} = MAX$,	V _I = 7 V					0.1			0.1	mA
ΙΗ	$V_{CC} = MAX$,	V _I = 2.7 V					20			20	μΑ
I₁∟	$V_{CC} = MAX$,	V _I = 0.4 V					-0.4			-0.4	mA
I _{OS} §	$V_{CC} = MAX$				-20		-100	-20		-100	mA
ICC	$V_{CC} = MAX$,	See Note 4				18	30		18	30	mA

NOTE 4. With the outputs open, CLK INH and CLK at 4.5 V, and a clock pulse applied to SH/LD, I_{CC} is measured first with the parallel inputs at 4.5 V, then with the parallel inputs grounded.

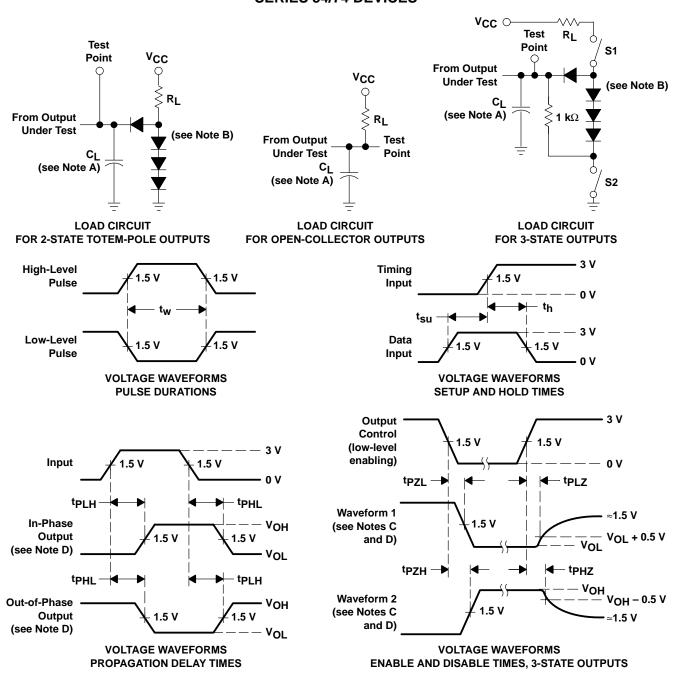
[†] For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

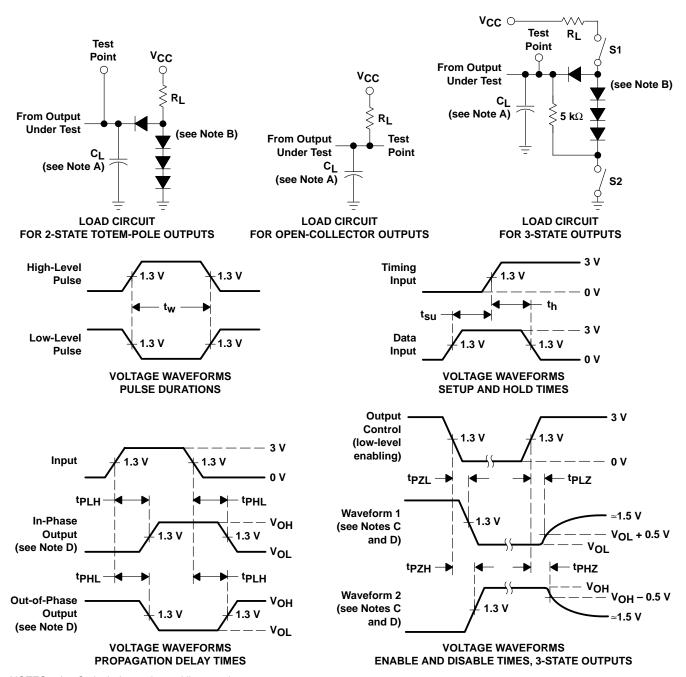

The SN54165 and SN74165 devices are obsolete and are no longer supplied.

SN54LS165A and SN74LS165A switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

PARAMETER†	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				25	35		MHz
t _{PLH}	<u>ID</u>	Any	$R_L = 2 k\Omega$, $C_L = 15 pF$		21	35	ns
t _{PHL}	LD	Arry	N_ = 2 ks2, G_ = 15 pr		26	35	115
^t PLH	CLK	Any	$R_L = 2 k\Omega$, $C_L = 15 pF$		14	25	ns
t _{PHL}	OLK	Arry	N_ = 2 ks2, G_ = 15 pr		16	25	115
^t PLH	Н	0	$R_{\parallel} = 2 \text{ k}\Omega, C_{\parallel} = 15 \text{ pF}$		13	25	ns
^t PHL	11	Q _H	N _L = 2 κ ₂₂ , G _L = 15 pr		24	30	115
^t PLH	Н	<u></u>	D. 240 C. 45 pF		19	30	
t _{PHL}	П	Q _H	$R_L = 2 k\Omega$, $C_L = 15 pF$		17	25	ns

[†] f_{max} = maximum clock frequency, t_{PLH} = propagation delay time, low-to-high-level output, t_{PHL} = propagation delay time, high-to-low-level output

PARAMETER MEASUREMENT INFORMATION SERIES 54/74 DEVICES



- NOTES: A. C_L includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \Omega$; t_r and $t_f \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \leq$ 2.5 ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION **SERIES 54LS/74LS DEVICES**

- NOTES: A. CL includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \ \Omega$, $t_r \leq 1.5 \ ns$, $t_f \leq 2.6 \ ns$.
 - The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

www.ti.com

16-Aug-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-7700601VEA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-7700601VE A SNV54LS165AJ
5962-7700601VEA.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-7700601VE A SNV54LS165AJ
5962-7700601VFA	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-7700601VF A SNV54LS165AW
5962-7700601VFA.A	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-7700601VF A SNV54LS165AW
7700601EA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	7700601EA SNJ54LS165AJ
7700601FA	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	7700601FA SNJ54LS165AW
JM38510/30608B2A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608B2A
JM38510/30608B2A.A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608B2A
JM38510/30608BEA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608BEA
JM38510/30608BEA.A	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608BEA
JM38510/30608BFA	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608BFA
JM38510/30608BFA.A	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608BFA
M38510/30608B2A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608B2A
M38510/30608BEA	Active	Production	CDIP (J) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608BEA
M38510/30608BFA	Active	Production	CFP (W) 16	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	JM38510/ 30608BFA

-55 to 125

-55 to 125

-55 to 125

16-Aug-2025

SNJ54LS165AJ

7700601EA SNJ54LS165AJ

7700601FA SNJ54LS165AW

7700601FA SNJ54LS165AW

SNJ54LS165AJ.A

SNJ54LS165AW

SNJ54LS165AW.A

www.ti.com

Package | Pins Lead finish/ MSL rating/ Orderable part number Material type Package gtv | Carrier **RoHS** Op temp (°C) Part marking Status **Ball material** Peak reflow (1) (2) (3) (6) (4) SN54LS165AJ Production CDIP (J) | 16 25 | TUBE No **SNPB** N/A for Pkg Type -55 to 125 SN54LS165AJ Active SN54LS165AJ.A CDIP (J) | 16 SN54LS165AJ Active Production 25 | TUBE No **SNPB** N/A for Pkg Type -55 to 125 SN74LS165AD Obsolete Production SOIC (D) | 16 Call TI Call TI 0 to 70 LS165A SN74LS165ADR Active Production SOIC (D) | 16 2500 | LARGE T&R Yes NIPDAU Level-1-260C-UNLIM 0 to 70 LS165A SN74LS165ADR.A Active Production SOIC (D) | 16 2500 | LARGE T&R Yes **NIPDAU** Level-1-260C-UNLIM 0 to 70 LS165A SN74LS165AN PDIP (N) | 16 25 | TUBE **NIPDAU** 0 to 70 SN74LS165AN Active Production Yes N/A for Pkg Type SN74LS165AN SN74LS165AN.A Active Production PDIP (N) | 16 25 | TUBE Yes **NIPDAU** N/A for Pkg Type 0 to 70 SN74LS165ANE4 Active Production PDIP (N) | 16 25 | TUBE Yes NIPDAU N/A for Pkg Type 0 to 70 SN74LS165AN SN74LS165ANSR Active Production SOP (NS) | 16 2000 | LARGE T&R Yes NIPDAU Level-1-260C-UNLIM 0 to 70 74LS165A SN74LS165ANSR.A Active Production SOP (NS) | 16 2000 | LARGE T&R Yes **NIPDAU** Level-1-260C-UNLIM 0 to 70 74LS165A SNJ54LS165AFK 55 | TUBE **SNPB** SNJ54LS Active Production LCCC (FK) | 20 No N/A for Pkg Type -55 to 125 165AFK SNJ54LS165AFK.A Active Production LCCC (FK) | 20 55 | TUBE No **SNPB** N/A for Pkg Type -55 to 125 SNJ54LS 165AFK SNJ54LS165AJ Active Production CDIP (J) | 16 25 | TUBE Nο **SNPB** N/A for Pkg Type -55 to 125 7700601EA

Active

Active

Active

No

No

No

SNPB

SNPB

SNPB

N/A for Pkg Type

N/A for Pkg Type

N/A for Pkg Type

25 | TUBE

25 | TUBE

25 | TUBE

Production

Production

Production

CDIP (J) | 16

CFP (W) | 16

CFP (W) | 16

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 16-Aug-2025

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

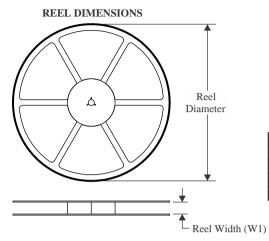
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

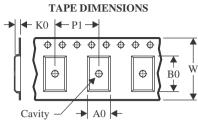
OTHER QUALIFIED VERSIONS OF SN54LS165A, SN54LS165A-SP, SN74LS165A:

Catalog: SN74LS165A, SN54LS165A

Military: SN54LS165A

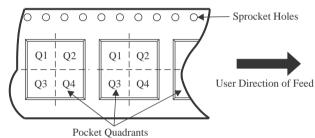
Space: SN54LS165A-SP


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

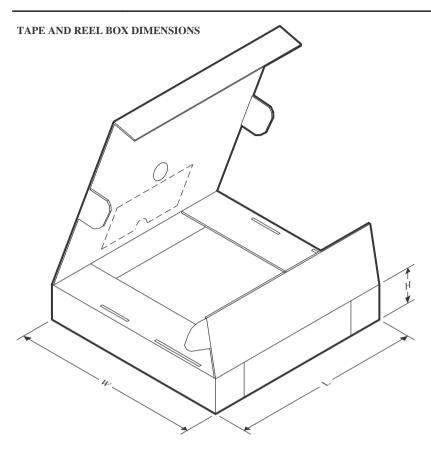
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

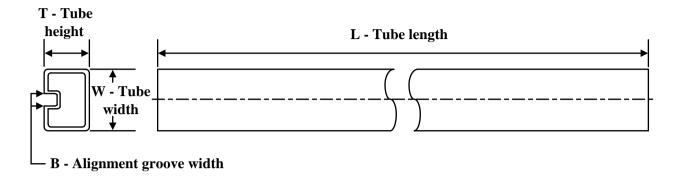


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS165ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS165ANSR	SOP	NS	16	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

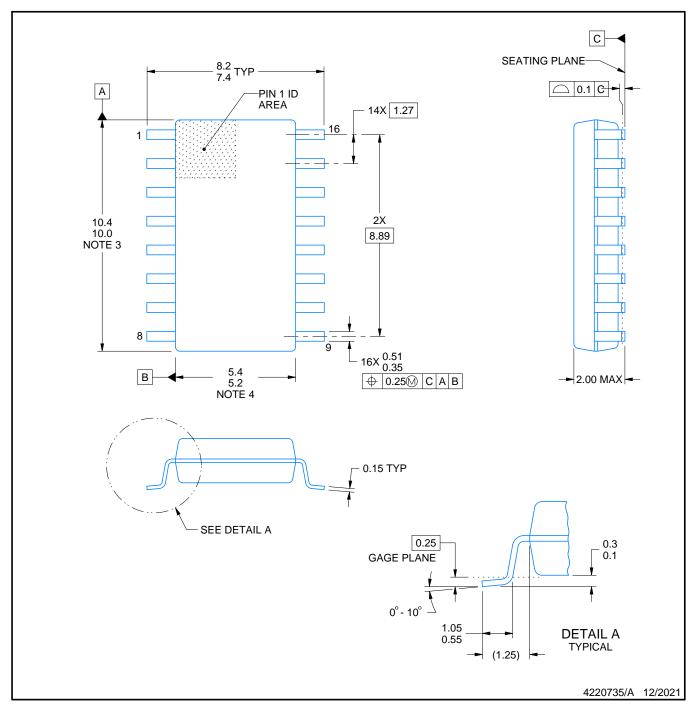
www.ti.com 24-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS165ADR	SOIC	D	16	2500	353.0	353.0	32.0
SN74LS165ANSR	SOP	NS	16	2000	353.0	353.0	32.0

www.ti.com 24-Jul-2025

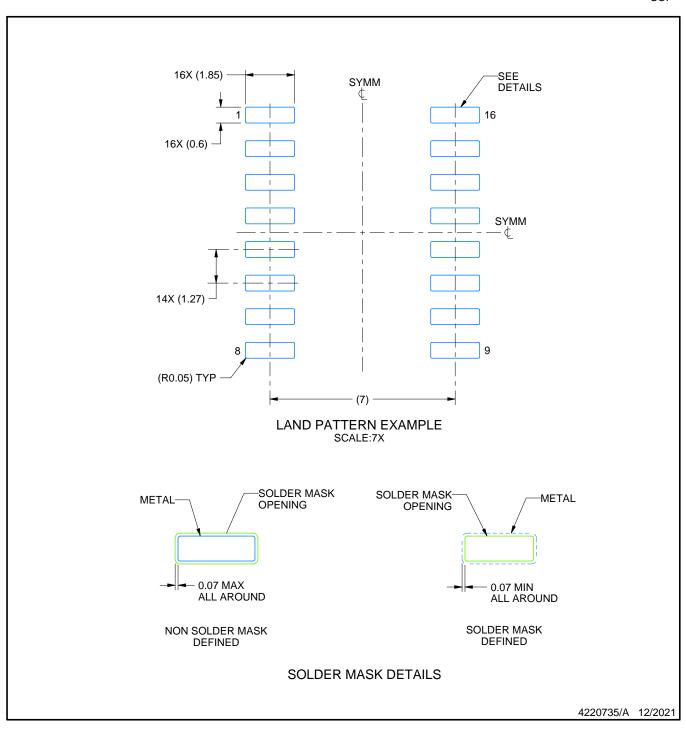
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-7700601VFA	W	CFP	16	25	506.98	26.16	6220	NA
5962-7700601VFA.A	W	CFP	16	25	506.98	26.16	6220	NA
7700601FA	W	CFP	16	25	506.98	26.16	6220	NA
JM38510/30608B2A	FK	LCCC	20	55	506.98	12.06	2030	NA
JM38510/30608B2A.A	FK	LCCC	20	55	506.98	12.06	2030	NA
JM38510/30608BFA	W	CFP	16	25	506.98	26.16	6220	NA
JM38510/30608BFA.A	W	CFP	16	25	506.98	26.16	6220	NA
M38510/30608B2A	FK	LCCC	20	55	506.98	12.06	2030	NA
M38510/30608BFA	W	CFP	16	25	506.98	26.16	6220	NA
SN74LS165AN	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS165AN	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS165AN.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS165AN.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS165ANE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS165ANE4	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54LS165AFK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54LS165AFK.A	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ54LS165AW	W	CFP	16	25	506.98	26.16	6220	NA
SNJ54LS165AW.A	W	CFP	16	25	506.98	26.16	6220	NA

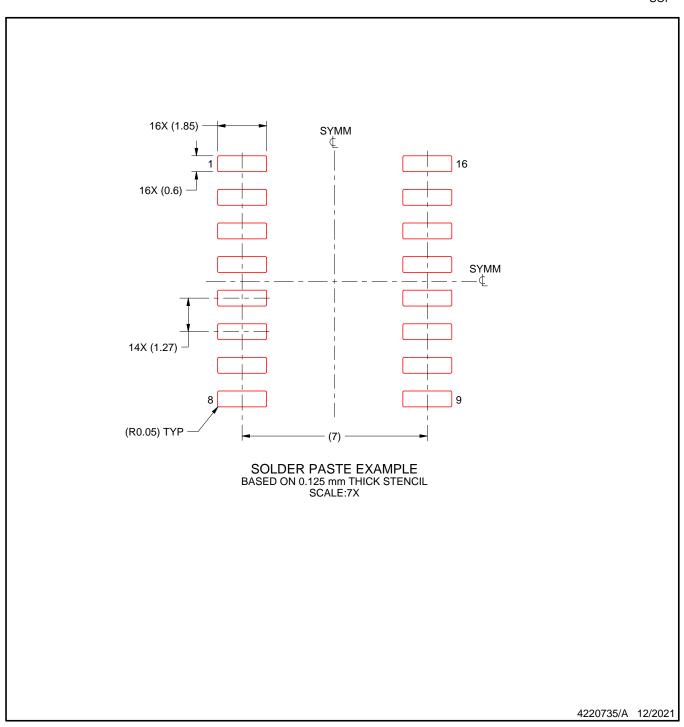
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

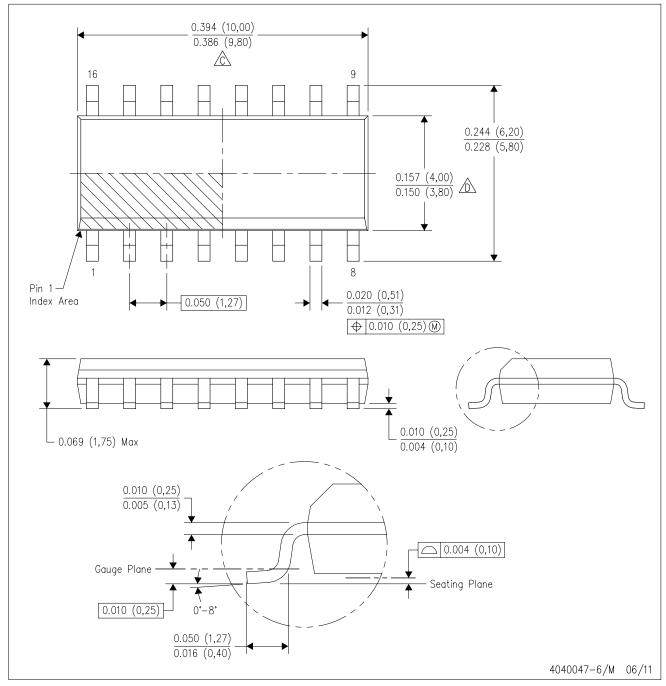
SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

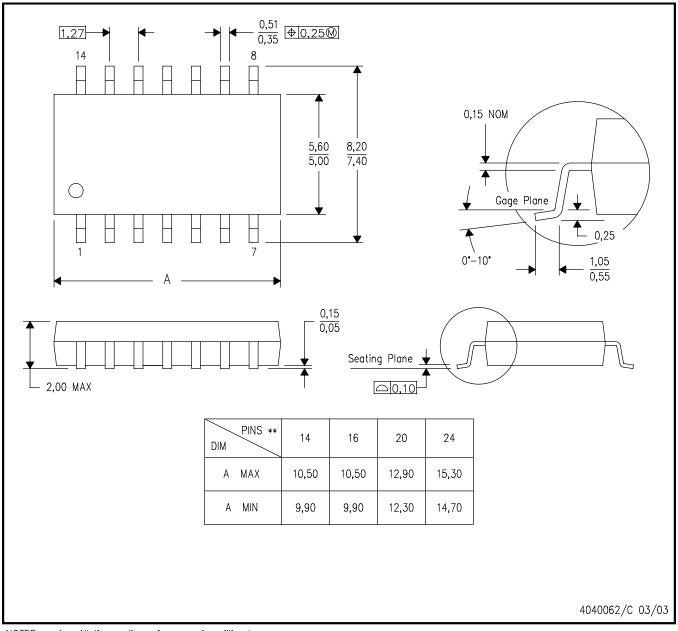

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

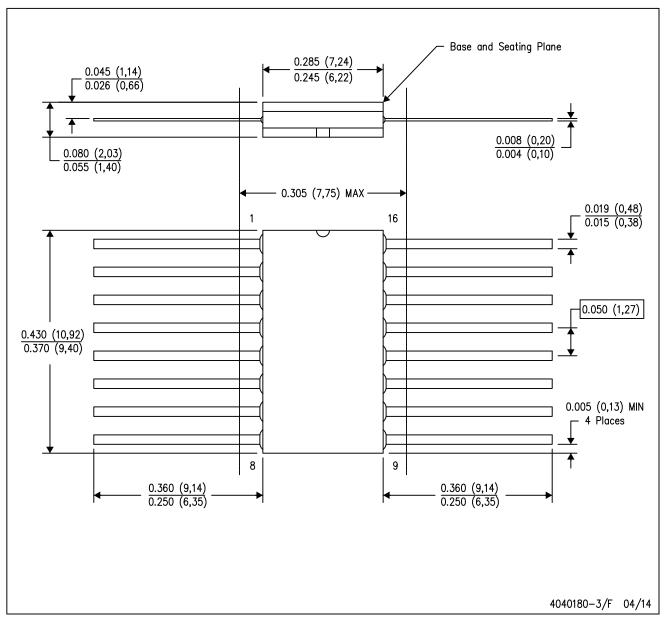


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

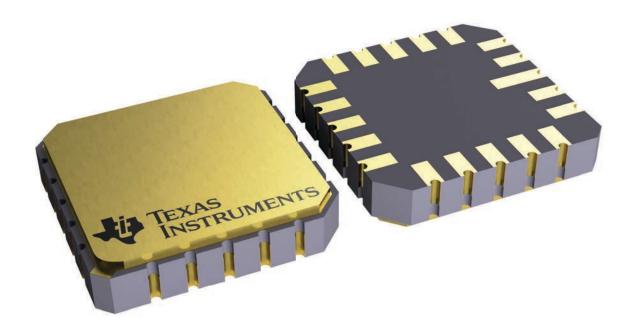
PLASTIC SMALL-OUTLINE PACKAGE



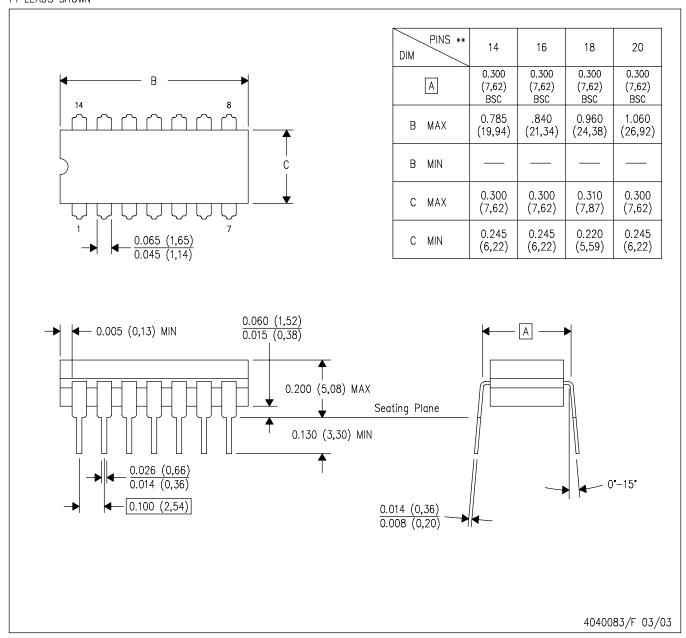
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

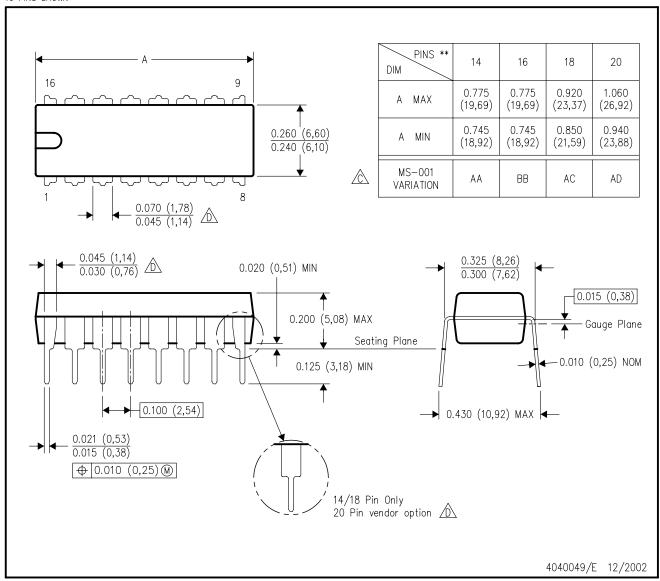
8.89 x 8.89, 1.27 mm pitch


LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated