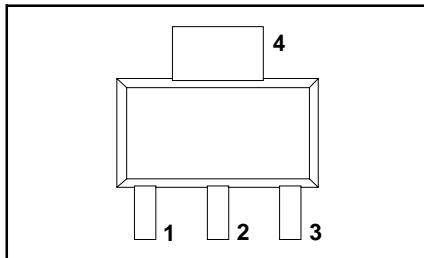


Three quadrant triacs high commutation

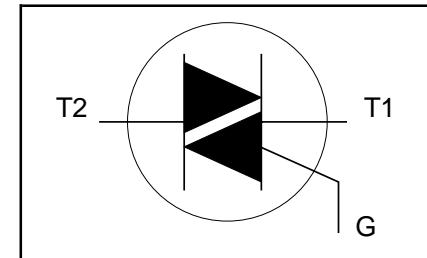
BTA204W series B and C

GENERAL DESCRIPTION

Passivated high commutation triacs in a plastic envelope suitable for surface mounting intended for use in circuits where high static and dynamic dV/dt and high di/dt can occur. These devices will commutate the full rated rms current at the maximum rated junction temperature without the aid of a snubber.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	MAX.	MAX.	UNIT
V_{DRM}	BTA204W- BTA204W-	500B 500C 500	600B 600C 600	800B 800C 800	V
$I_{T(RMS)}$	Repetitive peak off-state voltages				
I_{TSM}	RMS on-state current	1	1	1	A
	Non-repetitive peak on-state current	10	10	10	A


PINNING - SOT223

PIN	DESCRIPTION
1	main terminal 1
2	main terminal 2
3	gate
tab	main terminal 2

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DRM}	Repetitive peak off-state voltages		-	-500 500 ¹	V
$I_{T(RMS)}$	RMS on-state current	full sine wave; $T_{sp} \leq 108^\circ\text{C}$	-	-600 600 ¹	A
I_{TSM}	Non-repetitive peak on-state current	full sine wave; $T_j = 25^\circ\text{C}$ prior to surge		-800 800	
I^2t dl_T/dt	I^2t for fusing Repetitive rate of rise of on-state current after triggering	$t = 20\text{ ms}$ $t = 16.7\text{ ms}$ $t = 10\text{ ms}$ $I_{TM} = 1.5\text{ A};$ $I_G = 0.2\text{ A};$ $dl_G/dt = 0.2\text{ A}/\mu\text{s}$	- - - - -	10 11 0.5 100	A A A ² s A/ μs
I_{GM} V_{GM} P_{GM} $P_{G(AV)}$	Peak gate current Peak gate voltage Peak gate power Average gate power	over any 20 ms period	- - - -	2 5 5 0.5	A V W W
T_{stg} T_j	Storage temperature Operating junction temperature	-40		150 125	°C °C

¹ Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 6 A/ μs .

Three quadrant triacs high commutation

BTA204W series B and C

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$R_{th\ j-sp}$	Thermal resistance junction to solder point	full or half cycle	-	-	15	K/W
$R_{th\ j-a}$	Thermal resistance junction to ambient	pcb mounted; minimum footprint pcb mounted; pad area as in fig:2	-	156 70	- -	K/W K/W

STATIC CHARACTERISTICS

$T_j = 25^\circ\text{C}$ unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.		UNIT
I_{GT}	Gate trigger current ²	$V_D = 12\text{ V}$; $I_T = 0.1\text{ A}$ T2+ G+ T2+ G- T2- G-	-	-	50	35	mA
			-	-	50	35	mA
			-	-	50	35	mA
I_L	Latching current	$V_D = 12\text{ V}$; $I_{GT} = 0.1\text{ A}$ T2+ G+ T2+ G- T2- G-	-	-	30	20	mA
			-	-	45	30	mA
			-	-	30	20	mA
I_H	Holding current	$V_D = 12\text{ V}$; $I_{GT} = 0.1\text{ A}$	-	-	30	20	mA
			-	-			
			-	-			
V_T V_{GT}	On-state voltage Gate trigger voltage	$I_T = 2\text{ A}$ $V_D = 12\text{ V}$; $I_T = 0.1\text{ A}$ $V_D = 400\text{ V}$; $I_T = 0.1\text{ A}$ $T_j = 125^\circ\text{C}$	-	1.2	1.5		V
			-	0.7	1.5		V
I_D	Off-state leakage current	$V_D = V_{DRM(max)}$; $T_j = 125^\circ\text{C}$	0.25	0.4	-		V
			-	0.1	0.5		mA

DYNAMIC CHARACTERISTICS

$T_j = 25^\circ\text{C}$ unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.		TYP.	UNIT
dV_D/dt	Critical rate of rise of off-state voltage	$V_{DM} = 67\% V_{DRM(max)}$; $T_j = 125^\circ\text{C}$; exponential waveform; gate open circuit	1000	1000	-	V/ μs
dl_{com}/dt	Critical rate of change of commutating current	$V_{DM} = 400\text{ V}$; $T_j = 125^\circ\text{C}$; $I_{T(RMS)} = 1\text{ A}$; $dV_{com}/dt = 20\text{ V}/\mu\text{s}$; gate open circuit	6	3	-	A/ms
t_{gt}	Gate controlled turn-on time	$I_{TM} = 12\text{ A}$; $V_D = V_{DRM(max)}$; $I_G = 0.1\text{ A}$; $dl_G/dt = 5\text{ A}/\mu\text{s}$	-	-	2	μs

² Device does not trigger in the T2-, G+ quadrant.

Three quadrant triacs high commutation

BTA204W series B and C

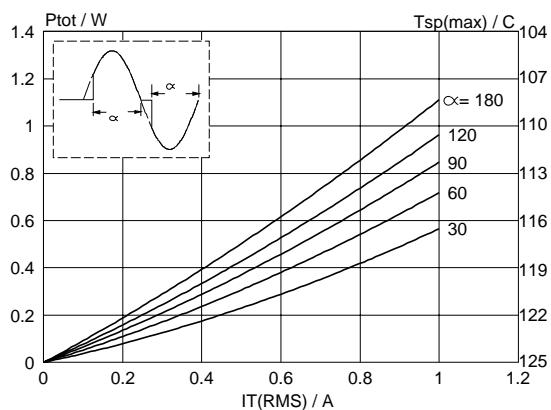


Fig.1. Maximum on-state dissipation, P_{tot} , versus rms on-state current, $IT_{(RMS)}$, where α = conduction angle.

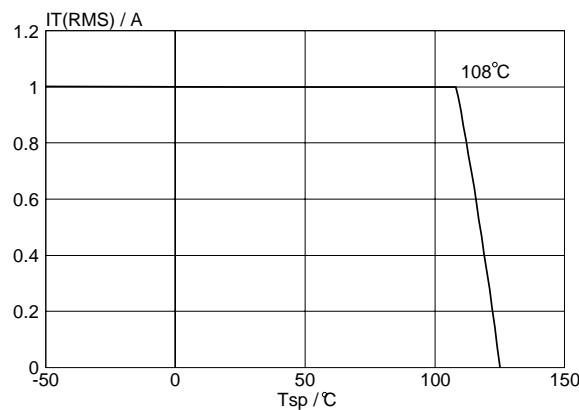


Fig.4. Maximum permissible rms current $IT_{(RMS)}$, versus solder point temperature T_{sp} .

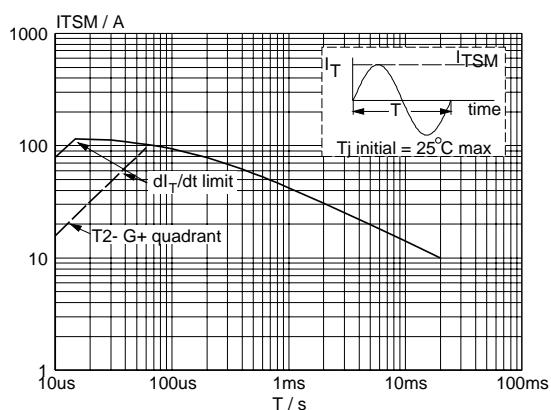


Fig.2. Maximum permissible non-repetitive peak on-state current IT_{SM} , versus pulse width t_p , for sinusoidal currents, $t_p \leq 20ms$.

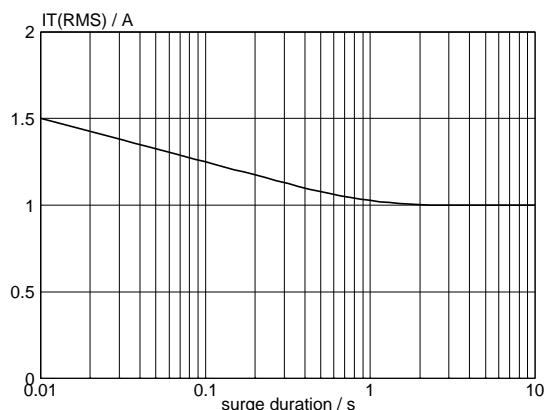


Fig.5. Maximum permissible repetitive rms on-state current $IT_{(RMS)}$, versus surge duration, for sinusoidal currents, $f = 50$ Hz; $T_{sp} \leq 108$ °C.

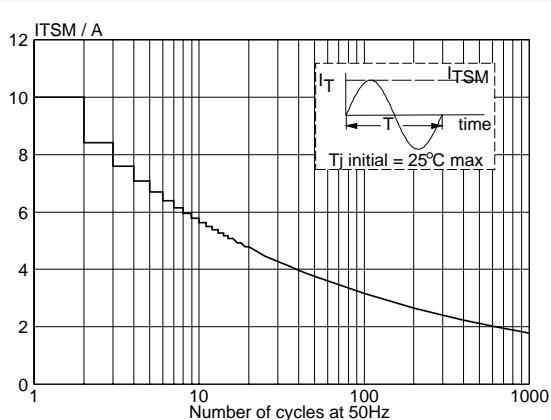


Fig.3. Maximum permissible non-repetitive peak on-state current IT_{SM} , versus number of cycles, for sinusoidal currents, $f = 50$ Hz.

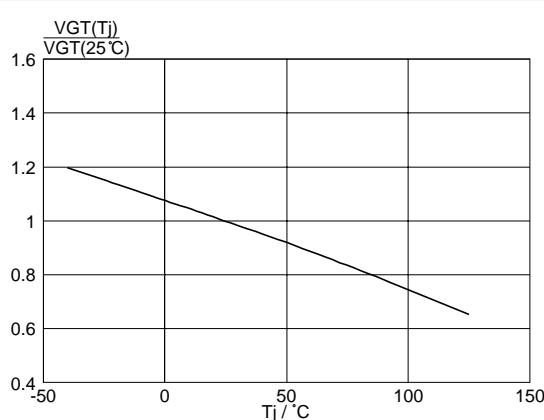


Fig.6. Normalised gate trigger voltage $V_{GT}(T_j)/V_{GT}(25^\circ C)$, versus junction temperature T_j .

Three quadrant triacs high commutation

BTA204W series B and C

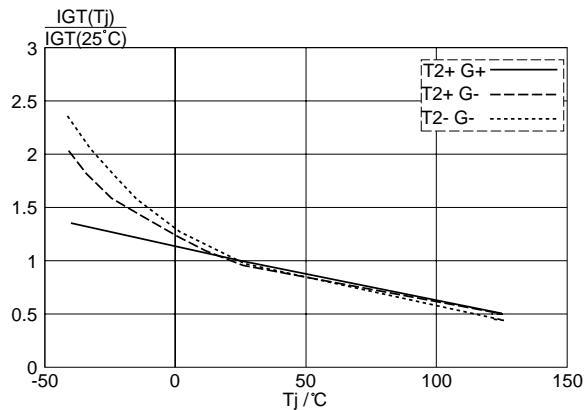


Fig.7. Normalised gate trigger current $I_{GT}(T_j)/I_{GT}(25^\circ\text{C})$, versus junction temperature T_j .

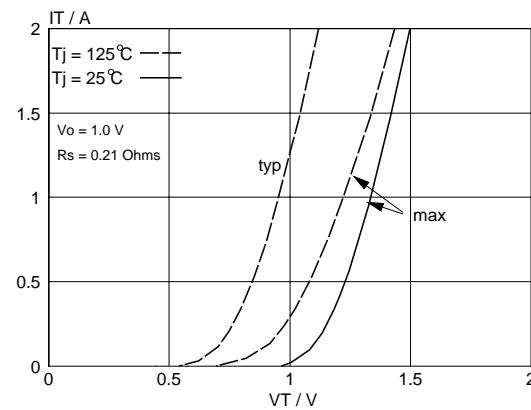


Fig.10. Typical and maximum on-state characteristic.

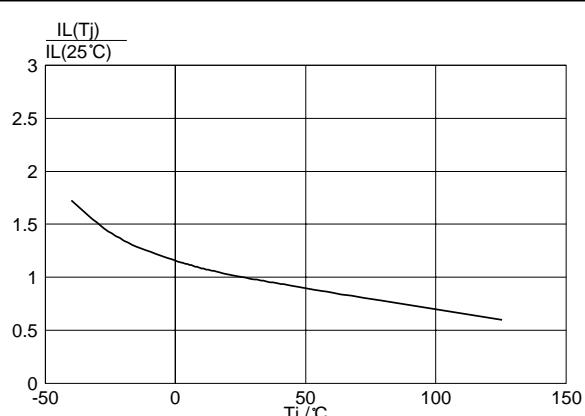


Fig.8. Normalised latching current $I_L(T_j)/I_L(25^\circ\text{C})$, versus junction temperature T_j .

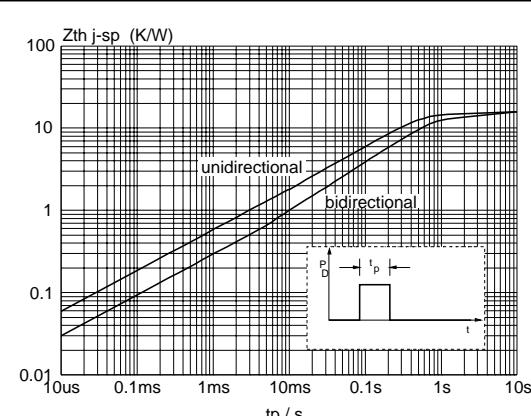


Fig.11. Transient thermal impedance $Z_{th,j-sp}$, versus pulse width t_p .

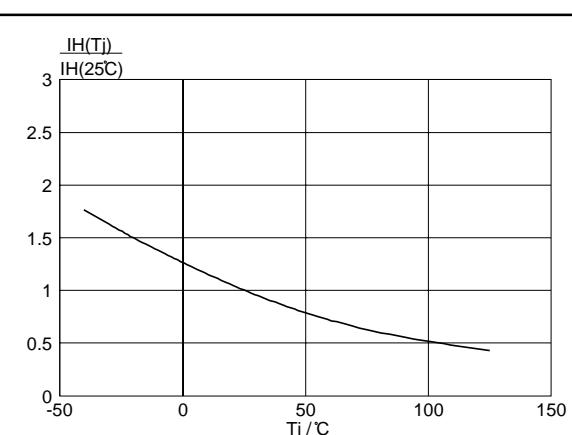
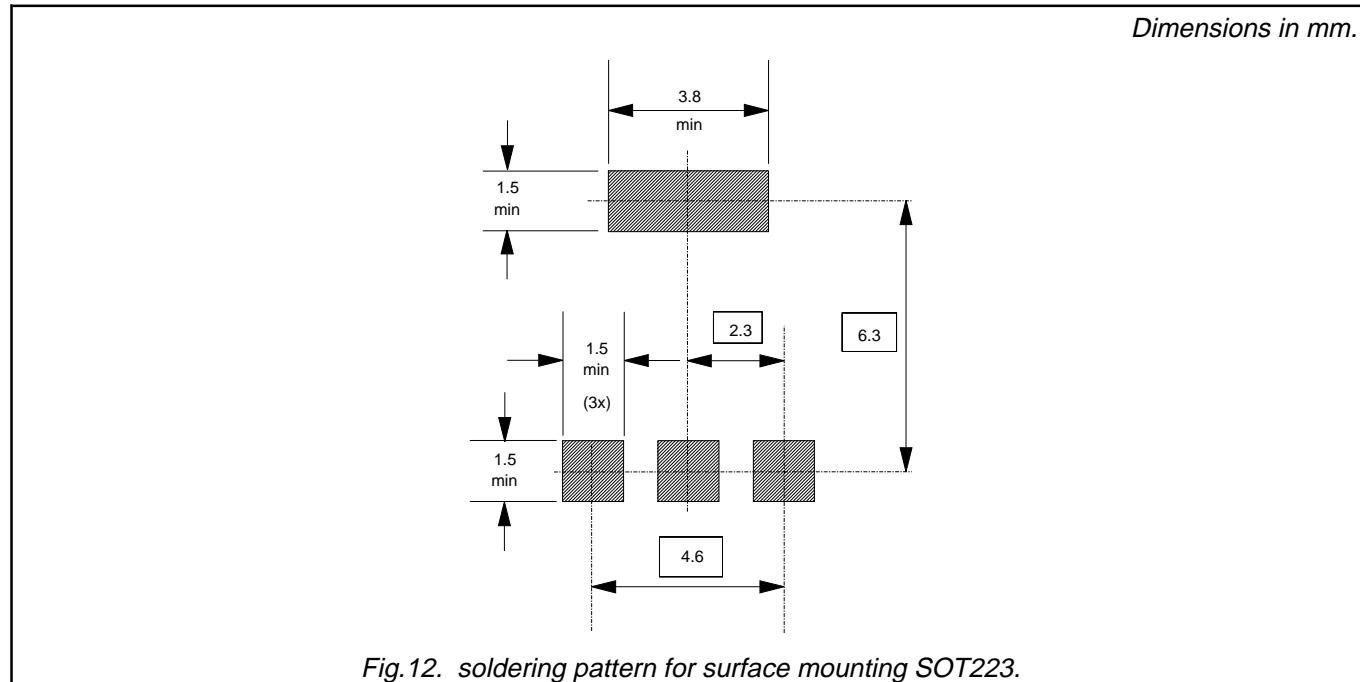



Fig.9. Normalised holding current $I_H(T_j)/I_H(25^\circ\text{C})$, versus junction temperature T_j .

Three quadrant triacs high commutation

BTA204W series B and C

MOUNTING INSTRUCTIONS

MECHANICAL DATA

Dimensions in mm

Net Mass: 0.11 g

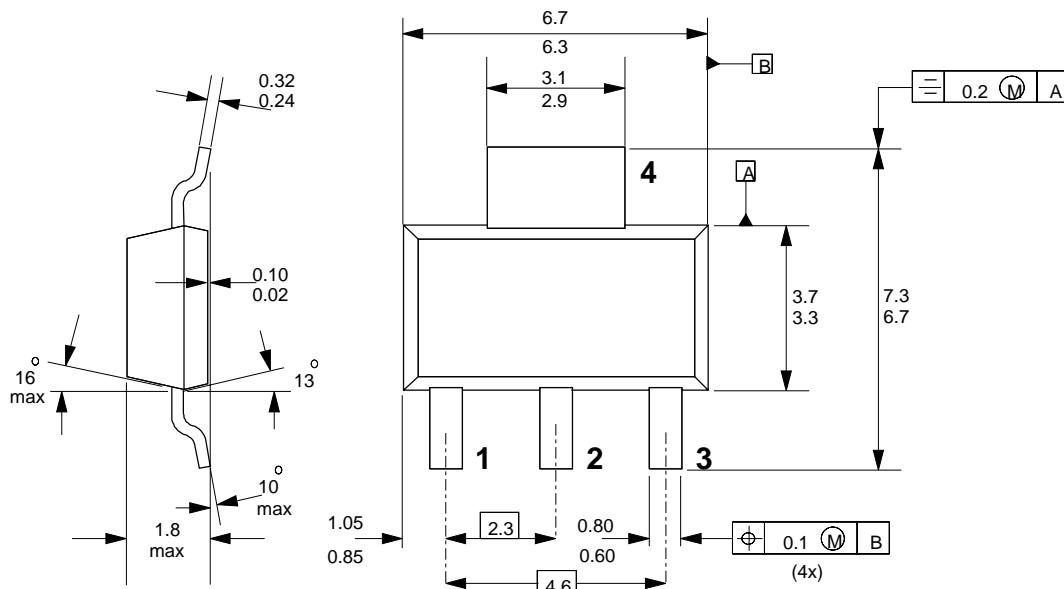


Fig.13. SOT223 surface mounting package.

Notes

1. For further information, refer to Philips publication SC18 " SMD Footprint Design and Soldering Guidelines". Order code: 9397 750 00505.
2. Epoxy meets UL94 V0 at 1/8".

**Three quadrant triacs
high commutation****BTA204W series B and C****DEFINITIONS**

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	
© Philips Electronics N.V. 1998	
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.	
The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.