

Technical Data
Super Flux LEDs for Automotive Lighting
AS AlInGaP

LTL911VRKSA/LTL912VRKSA	Super Red
LTL911VEKSA/LTL912VEKSA	Red
LTL911VHKSA/LTL912VHKSA	Red-Orange
LTL911VYKSA/LTL912VYKSA	Amber

Benefits

- ◆ Fewer LEDs required due to AlInGaP technology
- ◆ Lower lighting system cost
- ◆ Higher luminous efficiency than incandescent

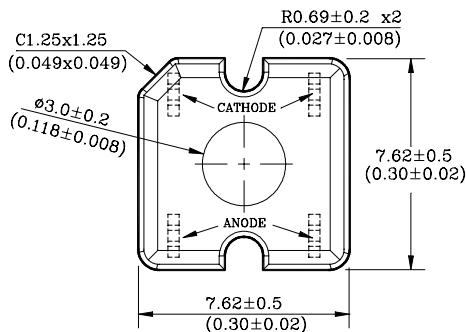
Feature

- ◆ High current operation / High flux output
- ◆ Low thermal resistance / Low profile
- ◆ Wide viewing angle
- ◆ Meet SAE/ECE/JIS automotive color requirements
- ◆ Tube package for automatic loading and insertion process

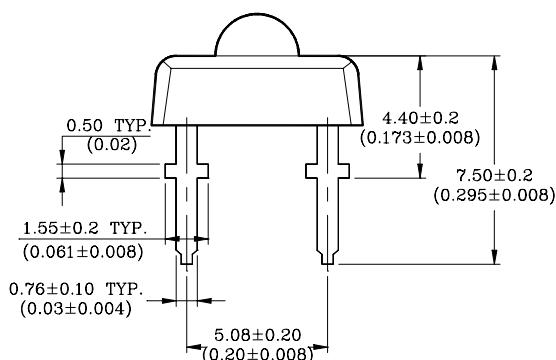
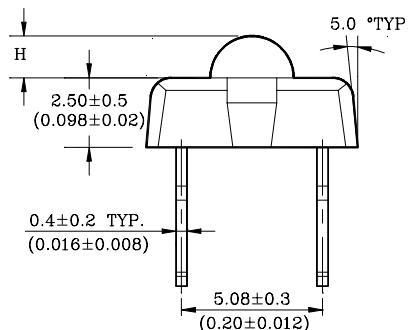
Application

- ◆ Automotive CHMSL
- ◆ Automotive Stop light / Turn light and other exterior lighting

Description


These parts are designed for high current operation and high flux output applications. In order to solve the high temperature produced by the higher current operation, the package's design features better thermal management characteristics than other LED solutions coupled with an efficient optical design.

This package design allows the lighting designer to reduce the number of LEDs required as well as the overall lighting system cost. The low profile package can be easily coupled to reflectors or lenses to efficiently distribute light and provide the desired illuminated appearance. This product family employs the world's brightest super red, red, red-orange and amber LED materials etc., which allow designers to match the color of popular lighting applications, such as automotive tail, stop, and turn signal lamps, and electronic signs. The color specifications meet SAE/ECE/JIS automotive requirements.



Devices

Part No. LTL*	Lens		Source	
	Color	Diffusion	Dice Source	Color
911VRKSA/912VRKSA	Water Clear	Non-Diffused	AS AlIGaP	Super Red
911VEKSA/912VEKSA	Water Clear	Non-Diffused	AS AlIGaP	Red
911VHKSA/912VHKSA	Water Clear	Non-Diffused	AS AlIGaP	Red-Orange
911VYKSA/912VYKSA	Water Clear	Non-Diffused	AS AlIGaP	Amber

Package Dimensions

Part No.	H
LTL911XXXXX	1.50(0.059)
LTL912XXXXX	1.90(0.075)

NOTES:

1. All dimensions are in millimeters (inches).
2. Protruded resin is 1.0mm(.04") max.
3. Lead spacing is measured where the leads emerge from the package.
4. Specifications are subject change to without notice.

Absolute Maximum Ratings at TA=25°C

Parameter	Super Red	Red	Red-Orange	Amber	Unit
Power Dissipation	190	190	190	190	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	130	130	90	90	mA
Continuous Forward Current	70	70	70	70	mA
Derating Linear From 70°C	1.17	1.17	1.17	1.17	mA/°C
Reverse Voltage (IR = 100 μA)	10	10	10	10	V
Operating Temperature Range	-40°C to + 100°C				
Storage Temperature Range	-55°C to + 100°C				
LED Junction Temperature	125°C				
Soldering Preheat Temperature	100°C for 30 Seconds				
Lead Soldering Temperature	260°C for 5 Seconds [1.5mm (.06") From Seating Plane]				

Notes:

1. Operation at currents below 10mA is not recommended.
2. Derating linear as shown in Fig. 3

Electrical / Optical Characteristics at $T_A=25^\circ C$

Parameter	Symbol	Part No. LTL*	Min.	Typ.	Max.	Unit	Test Condition
Total Flux	$\emptyset V$	LTL91xVRKSA LTL91xVEKSA LTL91xVHKSA LTL91xVYKSA	1050 1570 1570 1570	1570 2090 2090 2090		mlm	IF = 70mA Note 1
Luminous Intensity / Total Flux	$Iv / \emptyset V$	LTL911VxKSA LTL912VxKSA		0.6 1.2		mcd /mlm	
Viewing Angle	$2\theta 1/2$	LTL911VxKSA LTL912VxKSA		70 50		deg	Note 2 (Fig.5)
Peak Emission Wavelength	λP	LTL91xVRKSA LTL91xVEKSA LTL91xVHKSA LTL91xVYKSA		639 632 624 598		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	LTL91xVRKSA LTL91xVEKSA LTL91xVHKSA LTL91xVYKSA		631 624 618 595		nm	Note 3
Spectral Line Half- Width	$\Delta \lambda$	LTL91xVRKSA LTL91xVEKSA LTL91xVHKSA LTL91xVYKSA		20 20 18 16		nm	
Forward Voltage	VF		1.85	2.15	2.65	V	IF = 70mA
Reverse Voltage	VR		10	20		V	IR = 100 μA
Capacitance	C			40		pF	VF = 0 , f = 1MHz
Thermal resistance	$R \theta_{J-PIN}$			160		$^\circ C/W$	

Note: 1. $\emptyset V$ is the total luminous flux output as measured with an integrating sphere.

2. $\theta 1/2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

3. The dominant wavelength, λd is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

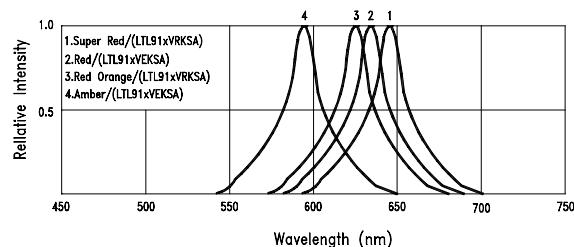


Fig.1 Reliae Intensity v.s Wavelength

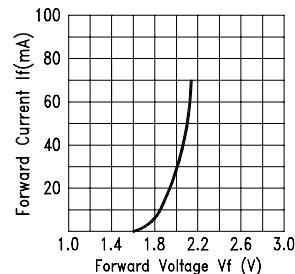


Fig.2 Forward Current v.s Forward Voltage

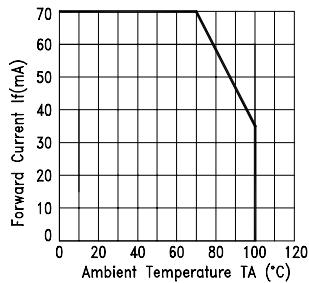


Fig.3 Forward Current v.s Ambient Temperature

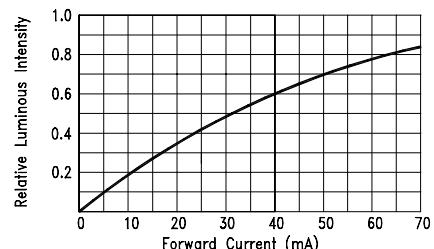


Fig.4 Relative Luminous Intensity v.s Forward Current

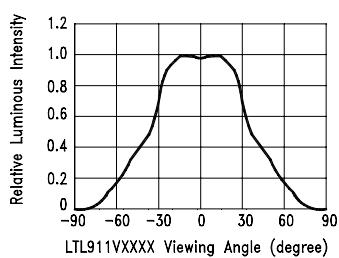


Fig.5-1 Relative Luminous Intensity v.s Off Axis Angle

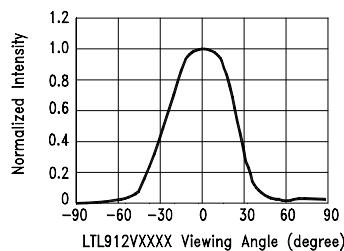


Fig.5-2 Relative Luminous Intensity v.s Off Axis Angle