CYPRESS

PERFORM

8-Bit Serial Receiver Datasheet rxs v 3.50

Copyright © 2002-2015 Cypress Semiconductor Corporation. All Rights Reserved.

PSoC® Blocks API Memory (Bytes)
Resources Digital Analog CT Analog SC Flash RAM Pins

CY8C29/27/24/22/21xxx, CY8C23x33, CYWUSB6953, CYS8CLEDO02/04/08/16, CYS8CLEDOXD, CY8CLEDOXG,
CY8CTST110, CY8CTMG110, CY8CTST120, CY8CTMG120, CYSBCTMA120, CY8C21x45, CY8C22x45,
CY8CTMA140, CY8CTST300, CYBCTMG300, CYSBCTMA300, CYSBCTMA301, CYSCTMA301D, CY8C28x45,
CY8CPLC20, CYSBCLED16P01, CY8C28xxx, CY8C21x12, CY7C64215, CY7C603XX

RxCmdBuf Enabled 1 0 0 273 3 + Buffer 1
RxCmdBuf Disabled 1 0 0 77 0 1

Features and Overview

Burst rates up to 6 Mbits/second

RS-232 data-format compliant with framing consisting of start, optional parity, and stop bits
Serial data format with even, odd, or no parity

Optional interrupt receive register full condition

Automatic framing, overrun, and parity error detection

The RX8 User Module is a RS-232 data-format compliant 8-bit serial receiver with programmable clocking
and selectable interrupt or polling control operation. The format of the received data consists of a start bit,
an optional parity bit, and a trailing stop bit. Receiver firmware is used to initialize the device, read the
received byte, and detect error conditions.

Figure 1. RX8 Block Diagram

Input 14:1 Input _ Ry Data
Fx Shift Fx Buffer
— Reqgister
Rx Au_:twe Ovemun Fx Register Full
Enable Framing Emror Error

Farity Error nt
¥ Fequest
Clook o E
Rx Control/Status Register Enable

Cypress Semiconductor Corporation * 198 Champion Court San Jose, CA 95134-1709 . 408-943-2600
Document Number: 001-13585 Rev. *M Revised March 3, 2015

= CYPRESS 8-Bit Serial Receiver

PERFORM

Functional Description

The RX8 User Module implements a serial receiver. The RX8 maps onto a single PSoC Digital
Communication block designated “RX” in the PSoC Designer Device Editor. It uses the Buffer, Shift and
Control registers of a digital communications type PSoC block.

The Control register is initialized and configured using the RX8 User Module firmware Application
Programming Interface (API) routines. Initialization of the RX8 consists of setting the parity, optionally
enabling the interrupt on the Rx Register Full condition, and then enabling the receiver.

When a start bit is detected on the RX8 input, a divide-by-eight bit clock is started and synchronized to
sample the data in the center of the received bits. On the rising edge of the next eight-bit clocks, the input
data is sampled and shifted into the Shift register. If parity is enabled, the next bit clock samples the parity
bit. The sampling of the stop bit, on the next clock, results in the received data byte transfer to the Buffer
register and the triggering of one or more of the following events:

B Rx Register Full bit in the Control register is set, and if the interrupt for the RX8 is enabled, then the
associated interrupt is triggered.

B [f the stop bit is not detected at the expected bit position in the data stream, then the Framing Error bit
in the Control register is set.

B [f the Buffer register has not been read, before the stop bit of the currently received data, then the
Overrun Error bit in the Control register is set.

B [f a parity error was detected, then the Parity Error bit is set in the Control register.

For polling detection of a completely received data byte, the Rx Register Full bit in the Control register
should be monitored. Data must be read out of the Buffer register, before the next byte is completely
received, to prevent an overrun error condition.

High-Level API

The high-level API adds additional firmware on top of the basic functions, to provide command and string
level functions instead of character level. The Device Editor allows the user to set the size of the receiver
command buffer, command terminator, parameter delimiter, and below what value the receiver should
ignore characters.

To make use of the high-level receiver functions, go to the Device Editor window, select the UART and
select the “Enable” option for the “RxCmdBuffer” parameter. Next, select a “RxBufferSize” that is large
enough to hold your largest command plus one. Select a command terminator character
“‘CommandTerminator.” This is most often set to be either a carriage return (13), or a line feed (10). If your
commands contain two or more parameters, select a parameter delimiter “Param_Delimiter.” Common
command delineators are usually a space (32) or a comma (44) character. Control characters below a
selected value may also be ignored. Most control characters are in the range between 0 and 31. Set
“IgnoreCharsBelow” to 32 to ignore these characters. Set this parameter to ‘1" if all characters are valid.
The character selected for the command terminator (CommandTerminator) is not affected by the
“IgnoreCharsBelow” option. The flow chart below shows the proper sequence for basic operation of the
command buffer functions.

The command buffer works in the UART RX interrupt service routine to collect the characters in a buffer
until the command terminator character is received. At that time, a flag is set to signal that the command
buffer is ready to be read. The receive buffer may be accessed directly by reading the array
INSTANCE_NAME_aRxBuffer or by using either szGetParam() or szGetRestOfParams() functions. If
more characters are received than the buffer_size -1, the subsequent characters will be ignored.

The command buffer will collect characters until the buffer is full or a command terminator is detected. Any
characters received after either of these two conditions will be ignored, until the CmdReset command is

Document Number: 001-13585 Rev. *M Page 2 of 24

8-Bit Serial Receiver

executed. Once the CmdReset command is executed, the RX ISR firmware will begin to collect characters

once again.

Figure 2. Command Buffer Flow

crmdReset()
IntCnt{ENABLE_R¥_INT)

-4
Y

bCmdChecki) =0

Yes

¥

getParam() =MNul

End of Command

cmdReset()

Timing

Process Parameter

Each received bit is sampled on the rising edge of a generated divide-by-eight bit clock that is
synchronized with the center of the start bit.

If enabled, the RX8 interrupt occurs once per received byte. Enabling and disabling the interrupt is

controlled through the API.

Document Number: 001-13585 Rev. *M

Page 3 of 24

= CYPRESS 8-Bit Serial Receiver

PERFORM

The following RX8 timing diagram illustrates the operation of the RX8 User Module.

Figure 3. RX8 Timing Diagram
Input Clock - 8%

Rx Input
Bit Clock

Start

1 0 1 1 o 1 0 [Parity Stop

Rx Shift Register 0000070 § 000010700001 1070) 0011070 §0T011010Y TTgF 1010

/]
Rx Buffer Register I % % oTo711070
R Active @ =
Rx Register Full
Parity/Overrin/
Framing Error LV e
Int Request

&

Read Rx Control
Rx Data Out TqStet 0 [T L0 [T 10 [1 0 [Party Stop

(LSE) (MSE)
Data Clock Out

Figure Notes

1. The start bit is detected, causing the generation and synchronization of a divide-by-eight bit clock. The
rising edge of the bit clock is used to sample the input bit stream.

2. The detection of the start bit causes the Rx Active status bit to be set in the Rx Control/Status register.

3. Beginning with the next bit clk rising edge and for the next 8 clocks, the input is sampled and shifted
into the Rx Shift register.

4. When the stop bit is detected, data is transferred into the Rx Buffer, Rx Active is cleared, Rx Register
Full is set, parity/overrun/framing error are computed, and the interrupt request is triggered if enabled.

5. Aread of the Rx Control register puts the status data onto the data bus and clears all of the status bits.
When parity or overflow errors are detected, the firmware should not need to perform any actions. If a
framing error is detected, the framer will immediately begin looking for the next data byte. If there's a
chance in the system that the RX input could be stuck at logic 0 for an extended period of time, the
receiver should be stopped and the line should be polled for a return to logic 1 before the re-enabling
of receiver. If the RX input is stuck at logic 0, this avoids repeated detection of 'false' start bits while the
line is logic 0 and resulting framing errors when a logic 0 is also detected where the start bit should be.

Communication System Accuracy

For reliable UART communication, the maximum deviation allowed in the clock source is +4%. The IMO of
the PSoC 1 has a maximum tolerance of 2.5% and, therefore, can be used. However, the 6-MHz SLIMO
clock cannot be used because it has a tolerance of £4.2%, which is not acceptable for a reliable UART
communication.

Some of the PSoC 1 devices, such as CY24x94 and CY21x34, have an IMO with a tolerance of >=4%.
When connected to the USB bus, the IMO is synced to the USB clock and, therefore, becomes as
accurate as the USB bus clock. When not connected to USB bus, it runs at +4% tolerance. In these
devices, when you place a RX8 User Module, the Design Rule Checker gives a warning. For example,
when you place the RX8 User Module in CY8C24x94, the warning generated is “RX8 should not be used
in the CY8C24x94 devices without connection to the USB bus”.

Document Number: 001-13585 Rev. *M Page 4 of 24

= CYPRESS 8-Bit Serial Receiver

PERFORM

The system error, or the sum of the error at both ends of the communication link, should be less than 4%
for the UART communication to work properly. See the device datasheets for more information about the
accuracy of SysCIk.

DC and AC Electrical Characteristics
Table 1. RX8 DC and AC Electrical Characteristics

Parameter Conditions and Notes Typical Limit Units

e Maximum receive frequency 6 Mbits/s

Placement
The RX8 User Module may be placed in any of the Digital Communication blocks.

Parameters and Resources

Clock

RX8 is clocked by one of 16 possible sources. The Global 1/0 busses may be used to connect the
clock input to an external pin or a clock function generated by a different PSoC block. When using an
external digital clock for the block, the row input synchronization should be turned off for best accu-
racy, and sleep operation.The 48 MHz clock, the CPU_32 kHz clock, one of the divided clocks, 24V1
or 24V2, or another PSoC block output can be specified as the RX8 clock input.

The clock rate must be set to eight times the desired bit receive rate.
The following examples show how you can set a different transmit rate.

If the desired rate is 9600 Kbps, the clock to the RX8 User Module should be 8 x 9600 = 76.8 KHz.
To get a frequency of 76.8 KHz from 24 MHz, the required divider is 312.5. Unfortunately, we cannot
have a fraction in the divider and have to round off to 312 or 313. Some of the options to generate this
divider are:

SysCIlk = 24 MHz, VC1 divider = 8, VC3 Source = VC1, and VC3 divider = 39.
SysClk = 24 MHz, VC1 divider = 2, VC2 divider = 4, VC3 Source = VC2, and VC3 divider = 39.
SysClk = 24 MHz, VC1 divider = 2, VC3 Source = VC1, and VC3 divider = 156.

In all the above cases, the Clock parameter is set to VC3.

In another example, the desired rate is 19200 Kbps. Here, the clock to the RX8 User Module should
be 8 x 115200 = 153.6 KHz. To get a frequency of 153.6 KHz from 24 MHz, the required divider is
156.25. In this case, the divider will be rounded off to 156. Some of the options to generate this divider
are:

B SysClk = 24 MHz, VC1 divider = 4, VC3 Source = VC1, and VC3 divider = 39

B SysClk = 24 MHz, VC1 divider = 2, VC2 divider = 2, VC3 Source = VC2 and VC3 divider = 39.
B SysClk = 24 MHz, VC3 Source = SysClk/1 and VC3 divider = 156.

In all the above cases, the Clock parameter is set to VC3.
Input

As a general rule, input through desired bus option to a source of asynchronous data. Using a global
bus, the input can be connected to one of the external pins.

Document Number: 001-13585 Rev. *M Page 5 of 24

8-Bit Serial Receiver

ClockSync

In the PSoC devices, digital blocks may provide clock sources in addition to the system clocks. Digital
clock sources may even be chained in ripple fashion. This introduces skew with respect to the system
clocks. These skews are more critical in the CY8C29/27/24/22/21xxx and CY8CLEDO04/08/16 PSoC
device families because of various data-path optimizations, particularly those applied to the system
busses. This parameter may be used to control clock skew and ensure proper operation when reading
and writing PSoC block register values. Appropriate values for this parameter should be determined
from the following table.

ClockSync Value Use

Sync to SysClk Use this setting for any 24 MHz (SysClk) derived clock source that is divided by two or more.
Examples include VC1, VC2, VC3 (when VC3 is driven by SysClk), 32KHz, and digital PSoC
blocks with SysClk-based sources. Externally generated clock sources should also use this
value to ensure that proper synchronization occurs.

Sync to SysClk*2 Use this setting for any 48 MHz (SysClk*2) based clock unless the resulting frequency is 48
MHz (in other words, when the product of all divisors is 1).

Use SysClk Direct Use when a 24 MHz (SysClIk/1) clock is desired. This does not actually perform
synchronization but provides low-skew access to the system clock itself. If selected, this
option overrides the setting of the Clock parameter, above. It should always be used instead
of VC1, VC2, VC3 or Digital Blocks where the net result of all dividers in combination
produces a 24 Mhz output.

Unsynchronized Use when the 48 MHz (SysClk*2) input is selected.
Use when unsynchronized inputs are desired. In general this use is advisable only when
interrupt generation is the sole application of the Counter.

RX Output

This parameter allows the Input signal to be routed to one of the row busses. This signal along with
the Data Clock Out can be used to facilitate data verification functions such as Cyclical Redundancy
Checks using the CRC16 User Module.

Data Clock Out

This parameter allows the bit clock in SPI Mode 3 to be routed to one of the row busses. The bit clock
is the Clock input divided by eight. The rising edge of the Data Clock Out signal corresponds to the

time when the data is stable and should be sampled. Use the signal along with the RX Output to use
data verification functions such as Cyclical Redundancy Checks using the CRC16 User Module.

RxCmdBuffer
This parameter enables the receive command buffer and firmware used for command processing.
The command buffer works in the UART RX interrupt service routine to collect the characters in a
buffer until the command terminator character is received. After the terminator character is received,
a flag is set to signal that the command buffer is ready to be read. The UART RX interrupt must be
enabled for the command buffer to operate.

RxBufferSize

This parameter determines how many RAM locations are reserved for the receive buffer. The largest
command that can be received is one less than the buffer size selected, since the string must be null
terminated. This parameter is only valid when the RxCmdBuffer is enabled and the UART RX interrupt
is enabled.

Document Number: 001-13585 Rev. *M Page 6 of 24

8-Bit Serial Receiver

Invertinput

This parameter allows the user to invert the RX input signal. This option may be used for certain
RS232 transceivers that produce an inverted output.

CommandTerminator

This parameter selects the character that signals the end of a command. When received, a flag is set
signaling a complete command has been received. Once this flag is set, additional characters are no
longer accepted until the cmdReset() function is called.

Param_Delimiter

This parameter selects the character used to delimit the command and parameters in the command
receiver buffer. For example, if the Param_Delimiter is set to a space character (32), each substring
separated by a space would be a parameter. Given the string ‘cmd foo bar c*, the parameters would
be ‘cmd’, foo’, ‘bar’, and ‘c’. Each call of szGetParam() returns a pointer to the next substring in order
of placement from left to right as a null terminated string.

IgnoreCharsBelow

This parameter enables characters below a set value to be ignored by the receive buffer. The char-
acters will be received, but will not be added to the receive buffer. This parameter is only valid when
the RxCmdBuffer is enabled and the UART RX interrupt is active.

Interrupt Generation Control

There are two additional parameters that become available when the Enable interrupt generation
control check box in PSoC Designer is checked. This is available under Project > Settings > Chip
Editor. Interrupt Generation Control is important when multiple overlays are used with interrupts shared
by multiple user modules across overlays:

B Interrupt API
B [ntDispatchMode

InterruptAPI

The InterruptAPI parameter allows conditional generation of a user module’s interrupt handler and
interrupt vector table entry. Select “Enable” to generate the interrupt handler and interrupt vector table
entry. Select “Disable” to bypass the generation of the interrupt handler and interrupt vector table
entry. If the Receive Command Buffer is to be used then the InterruptAPI parameter should be set to
“Enable”. Properly selecting whether an Interrupt APl is to be generated is recommended particularly
with projects that have multiple overlays where a single block resource is used by the different over-
lays. By selecting Interrupt API generation only when it is necessary the need to generate an interrupt
dispatch code might be eliminated, thereby reducing overhead.

IntDispatchMode

The IntDispatchMode parameter is used to specify how an interrupt request is handled for interrupts
shared by multiple user modules existing in the same block but in different overlays. Selecting
“ActiveStatus” causes firmware to test which overlay is active before servicing the shared interrupt
request. This test occurs every time the shared interrupt is requested. This adds latency and also
produces a nondeterministic procedure of servicing shared interrupt requests, but does not require
any RAM. Selecting “OffsetPreCalc” causes firmware to calculate the source of a shared interrupt
request only when an overlay is initially loaded. This calculation decreases interrupt latency and

Document Number: 001-13585 Rev. *M Page 7 of 24

8-Bit Serial Receiver

produces a deterministic procedure for servicing shared interrupt requests, but at the expense of a

byte of RAM.

Application Programming Interface

The Application Programming Interface (API) routines are provided as part of the user module to allow the
designer to deal with the module at a higher level. This section specifies the interface to each function
together with related constants provided by the “include” files.

Note

In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X prior to the call if
those values are required after the call. This “registers are volatile” policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they

will do so in the future.

For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.

The API routines allow programmatic control of the RX8 User Module. The following tables list the low
level and high level RX8supplied API functions.

Table 2. Low Level RX8 API

Function
void RX8_Start(BYTE parity)
void RX8_Stop(void)
void RX8 Enablelnt(void)
void RX8 Disablelnt(void)
BYTE RX8_ bReadRxData(void)

BYTE RX8_ bReadRxStatus(void)

Document Number: 001-13585 Rev. *M

Description
Enable user module and set parity.
Disable user module.
Enable interrupts.
Disable interrupts.

Return data in RX Data register without checking status of
character is valid.

Check status of RX Status register.

Page 8 of 24

e
CYPRESS 8-Bit Serial Receiver

PERFORM

Table 3. High Level RX8 API

Function Description

char RX8_cGetChar(void) Return character from RX Data register when valid data is
available. Function will not return until character is received.

char RX8_cReadChar(void) Read RX Data register immediately. If valid data not available,
return 0, otherwise ASCII char between 1 and 255 is returned.

int RX8_iReadChar(void) Read Rx Data register immediately. If data is not available or an
error condition exists, return an error status in the MSB. The
received char is returned in the LSB.

void RX8_CmdReset(void) Reset Rx command buffer.

BYTE RX8_bCmdCheck(void) Returns a non-zero value if a valid command terminator has
been received.

BYTE RX8_ bCmdLength(void) Returns the current command length.

char * RX8_szGetParam(void) Return pointer to next parameter in RX buffer.

char * RX8_szGetRestOfParams(void) Return pointer to remaining parameter string.

BYTE RX8_bErrCheck(void) Return command buffer error status.

RX8_Start

Description:

Sets the parity of the RX8 receiver and enables the RX8 module, by setting the Rx Enable bit of the
Control register.

C Prototype:

void RX8 Start(BYTE bParitySetting)

Assembly:

mov A, RX8 PARITY NONE
lcall RX8 Start
Parameters:

bParitySetting: One byte that specifies the transmit parity. Symbolic names provided in C and
assembly, and their associated values, are given in the following table.

Symbolic Name Value
RX8_PARITY_NONE 0x00
RX8_PARITY_EVEN 0x02
RX8_PARITY_ODD 0x06

Return Value:
None

Document Number: 001-13585 Rev. *M Page 9 of 24

= CYPRESS 8-Bit Serial Receiver

PERFORM

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

RX8_Stop

Description:
Disables the RX8 module by clearing the Control register Enable bit.

C Prototype:
void RX8 Stop(void)

Assembly:

lcall RX8 Stop

Parameters:
None

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CYS8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

RX8_Enableint

Description:
Enables the RX8 interrupt on the Receive Register Full condition by setting the appropriate enable bit
in the Digital PSoC Block Interrupt Mask register.

C Prototype:
void RX8 Enablelnt (void)

Assembly:
lcall RX8 Enablelnt

Parameters:
None

Return Value:
None

Side Effects:

If an interrupt is pending and this APl is called, the interrupt will be triggered immediately. This call
should be made prior to calling Start(). The A and X registers may be modified by this or future imple-
mentations of this function. The same is true for all RAM page pointer registers in the Large Memory

Document Number: 001-13585 Rev. *M Page 10 of 24

8-Bit Serial Receiver

Model (CY8C29xxx and CY8CLED16). When necessary, it is the calling function's responsibility to
preserve the values across calls to fastcall16 functions.

RX8_ Disablelnt

Description:
Disables the RX8 Interrupt on Receive Register Full by clearing the appropriate enable bit in the
Digital PSoC Block Interrupt Mask register.

C Prototype:

void RX8 Disablelnt (void)

Assembly:
lcall RX8 DisablelInt

Parameters:
None

Return Value:
None

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CYS8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

RX8_bReadRxData

Description:
Reads received data byte from the Buffer register.

C Prototype:
BYTE RX8 bReadRxData (void)

Assembly:
lcall RX8 bReadRxData
mov [bRxDatal, A
Parameters:

None

Return Value:
Received data is returned in the Accumulator.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

Document Number: 001-13585 Rev. *M Page 11 of 24

e
CYPRESS 8-Bit Serial Receiver

PERFORM

RX8_bReadRxStatus
Description:
Reads and returns the status bits of the Control register.

C Prototype:
BYTE RX8 bReadRxStatus (void)

Assembly:
call RX8 bReadRxStatus
mov [bRxStatus], A
Parameters:

None

Return Value:

Returns status byte read. Use the defined masks below, to test for specific status conditions. Note
that masks can be OR’ed together to check for combined conditions.

RX Status Masks Value
RX8_RX_ACTIVE 0x10
RX8 RX_COMPLETE 0x08
RX8_RX_PARITY_ERROR 0x80
RX8_RX_OVERRUN_ERROR 0x40
RX8 RX_FRAMING_ERROR 0x20
RX8_RX_ERROR OxEO

Side Effects:

A read of this register clears all status bits. Care should be taken to check all applicable status condi-
tions before discarding the return value. The A and X registers may be modified by this or future imple-
mentations of this function. The same is true for all RAM page pointer registers in the Large Memory
Model (CY8C29xxx and CY8CLED16). When necessary, it is the calling function's responsibility to
preserve the values across calls to fastcall16 functions.

RX8_cGetChar

Description:
Waits for valid character in RX8 and return its value.

C Prototype:
CHAR RX8 cGetChar (void)

Assembler:

lcall RX8 cGetChar ; lcall function to print single character to
; serial port.

mov [CharBuffer], A ; Store retrieved character in buffer

Document Number: 001-13585 Rev. *M Page 12 of 24

8-Bit Serial Receiver

Parameters:

None

Return Value:
Char bData: Character read from RX8 is returned in the accumulator.

Side Effects:

Program flow stays in this function until a character is received or a character was previously received
but not read. The RX8 interrupt should be disabled when this function is used. The A and X registers
may be modified by this or future implementations of this function. The same is true for all RAM page
pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16). When necessary, it is
the calling function's responsibility to preserve the values across calls to fastcall16 functions.

RX8_cReadChar

Description:

Reads RX8 port immediately, if data is not available or an error condition exists, or zero is returned;
otherwise, character is read and returned.

C Prototype:
CHAR RX8 cReadChar (void)

Assembler:

lcall RX8 cReadChar
cmp A, 0x00

Jjz ProcessError
mov [CharBuffer], A

lcall function to read a character
Check for error

If error, Process the error condition
Store retrieved character in buffer

Ne Ne Ne N

Parameters:
None

Return Value:
CHAR bData: Character read from RX8 port. ASCII characters from 1 to 255 are valid. A returned
zero signifies an error condition or no data available.

Side Effects:

Function only accepts characters from 1 to 255 as valid. A 0x00 (null) character is detected as an error
condition. The A and X registers may be modified by this or future implementations of this function.
The same is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and
CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across
calls to fastcall16 functions.

RX8_iReadChar

Description:
Reads RX8 port immediately, returns received character and error condition.

C Prototype:
INT RX8 iReadChar (void)

Document Number: 001-13585 Rev. *M Page 13 of 24

e
CYPRESS 8-Bit Serial Receiver

PERFORM

Assembler:
lcall RX8 iReadChar ; lcall function to read a character
swap A, X ; Swap the contain of A and X, to have error condition in A
cmp A, 0x00 ; Check for error
jnz ProcessError ; If error, Process the error condition
swap A, X ; Swap the contain of A and X, to have a character in A
mov [CharBuffer],A ; Store retrieved character in buffer
Parameters:
None

Return Value:

unsigned int iData: MSB contains status and LSB contains UART RX data. If the MSB is non-zero, an
error has occurred. The table below shows possible returned error codes in the MSB.

Error Flags Value Description
RX8 RX_PARITY_ERROR 0x80 Parity Error
RX8 RX OVERRUN_ERROR 0x40 Buffer Overrun Error
RX8 RX FRAMING ERROR 0x20 Character Framing Error
RX8 RX_NO_ERROR 0x0E No error
RX8_RX_NO_DATA 0x01 No data available

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CYS8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

RX8_CmdReset

Description:
Resets command buffer and flags. This allows characters for the next command to be accepted.
C Prototype:
void RX8 CmdReset (void)
Assembler:
lcall RX8 CmdReset ; lcall function to reset command buffer.
Parameters:

None

Return Value:
None
Side Effects:

Resets RX8 character count and clears receive buffer. Any characters remaining in the buffer will be
lost. The A and X registers may be modified by this or future implementations of this function. The

Document Number: 001-13585 Rev. *M Page 14 of 24

8-Bit Serial Receiver

same is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and
CYBCLED16). When necessary, it is the calling function's responsibility to preserve the values across
calls to fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

RX8_bCmdCheck

Description:
Checks if command terminator has been received.

C Prototype:
BYTE RX8 bCmdCheck (void)

Assembler:
lcall RX8 bCmdCheck ; lcall function to get command complete status.
cmp A, 0x00 ; Check if command complete
jnz ProcessCmd ; Process command buffer
Parameters:
None

Return Value:
A non-zero value will be returned if a command terminator has been received.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

RX8_bCmdLength

Description:
Returns length of characters in the command buffer. This command will return the current command
length, whether a command terminator has been received or not.

C Prototype:

BYTE RX8 bCmdLength (void)

Assembler:
lcall RX8 bCmdLength ; lcall function to get current command
; Command length is returned in Accumulator
Parameters:
None

Return Value:
Length of current string in receive buffer.

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).

Document Number: 001-13585 Rev. *M Page 15 of 24

oz
CYPRESS 8-Bit Serial Receiver

PERFORM

When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

RX8_ szGetParam

Description:
Returns the next parameter from the receive buffer, which is delimited by the Param_Delimiter set in
the Device Editor. After all parameters have been returned, any subsequent calls will return a null
pointer (zero).

C Prototype:

char * RX8 szGetParam(void)

Assembler:
lcall RX8 szGetParam ; lcall function to return pointer to the
; next parameter.
; Pointer is returned in A and X.
Parameters:
None

Return Value:
char * strPtr: Pointer to parameter string.

Side Effects:

The receive buffer is modified each time szGetParam is called. Nulls are placed after each parameter.
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, the CUR_PP and IDX_PP page pointer registers are modified.

RX8_szGetRestOfParams

Description:
Returns a pointer to the remainder of the receive buffer string that has not been returned with szGet-
Param. If this function is called before szGetParam, a pointer to the entire receive buffer is returned.
C Prototype:
char * RX8 szGetRestOfParams (void)

Assembler:
lcall RX8 szGetRestOfParams ; lcall function to return pointer to the
; remainder of the receive buffer.
; Pointer is returned in A and X.
Parameters:
None

Return Value:
char * strPtr: Pointer to remainder of receive string.

Document Number: 001-13585 Rev. *M Page 16 of 24

8-Bit Serial Receiver

Side Effects:

The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

RX8_bErrCheck
Description:
Checks command error since the last time bErrCheck was called.

C Prototype:
BYTE RX8 bErrCheck (void)

Assembler:
lcall RX8 bErrCheck ; lcall function to return error status
cmp A, 0x00 ; Check for error
jnz ProcessError ; If error, Process the error condition
Parameters:

None

Return Value:

BYTE bErr: MSB contains status of any error condition that may have occurred since the last time this
function was called.

Error Flags Value Description
RX8_RX_PARITY_ERROR 0x80 Parity Error
RX8 RX OVERRUN_ERROR 0x40 Buffer overrun Error
RX8_RX_FRAMING_ERROR 0x20 Character framing Error
RX8 RX BUF_OVERRUN 0x10 Software RX buffer overrun

Side Effects:

Error status is cleared. The A and X registers may be modified by this or future implementations of
this function. The same is true for all RAM page pointer registers in the Large Memory Model
(CY8C29xxx and CY8CLED16). When necessary, it is the calling function's responsibility to preserve
the values across calls to fastcall16 functions. Currently, only the CUR_PP page pointer register is
modified.

Document Number: 001-13585 Rev. *M Page 17 of 24

8-Bit Serial Receiver

Sample Firmware Source Code

The following sample firmware illustrates how to use the API functions to create a routine that waits for the
RX8 receiver to receive a byte of data.

; This sample shows how to read the resived byte.

; OVERVIEW:

; The RX8 input can be routed to any pin.
; In this example the RX8 input is routed to PO[O0].

;The following changes need to be made to the default settings in the Device Editor:

Select RX8 user module.

The User Module will occupy the space in dedicated system resources.
Rename User Module's instance name to RXS8.

Set RX8's Clock Parameter to VC2.

Set RX8's Input Parameter to Row 0 Input 0.

Set RX8's ClockSync Parameter to SyncSysClk.

Set RX8's RxCmdBuffer Parameter to Disable.

Set RX8's RX Output Parameter to None.

Set RX8's Data Clock Out Parameter to None.

; 9. Other RX8's Parameters don't change.

; 10.Click on Row O Input 0 and connect Row O Input 0 to GloballInEven O.
; 11.Select GlobalInEven 0 for PO[0] in the Pinout.

O J oy 0 Ul WD

; CONFIGURATION DETAILS:

; 1. The UM's instance name must be shortened to RXS8.

; PROJECT SETTINGS:

; CPU Colck = 1.5 MHz(SysClk/16) System clock is set to 1.5MHz
; VC1=SysClk/N = 16 (default)
; VC2=VC1/N = 16 (default)

; USER MODULE PARAMETER SETTINGS:

; UM Parameter Value Comments

; RX8 Name RX8 UM's instance name
; Clock vC2

H Input Row O Input O

; ClockSync SyncSysClk

Document Number: 001-13585 Rev. *M Page 18 of 24

L
CYPRESS

PERFORM

; RxCmdBuffer Disable
; RxBufferSize 16 Bytes

; Command Terminator 13

; Param Delimiter32

; IgnoreCharsBelow32

; RX Output None

; Data Clock Out None

; InvertInput Normal

; Code begins here

include "m8c.inc" ; part specific constants and macros

include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules
export fWaitToReceiveByte ; assembly routine label

export fWaitToReceiveByte ; C code label

; Rx data storage
export DbRxData ; assembly routine label
export DbRxData ; C code label

area bss (ram,con,rel)
bRxData: ; Rx data storage area
_bRxData:
blk 1

area text (rom,con,rel)

fWaitToReceiveByte::
_fWaitToReceiveByte::
; Wait for byte to be received
.WAIT FOR RX COMPLETE:
call RX8 bReadRxStatus

push A

and A, RX8 RX COMPLETE
jnz .CHECK_RX ERRORS

pop A

jmp .WAIT FOR RX COMPLETE

; Data completely received now check for errors

Document Number: 001-13585 Rev. *M

8-Bit Serial Receiver

Page 19 of 24

8-Bit Serial Receiver

.CHECK_RX_ERRORS:

pop A ; Restore status register state

and A, RX8 RX NO ERROR ; mask off non-status bits

jz .DATA RX WITH NO ERRORS ; data is valid - no error detected
; Errors detected in received data - return with error condition

; 1) A is set to FALSE indicating error condition
; 2) bRxData contains the RX status flags for further processing
.RX_ERRORS_FOUND:

mov [bRxData], A ; bRxData contains the status flags
call RX8 bReadRxData ; Read RxData reg to prevent future
; overrun error
mov A, FALSE ; Set A to FALSE condition
ret
; No error detected in received data - return with data

; 1) A is set to TRUE indicating NO error condition
; 2) bRxData contains the received data byte
.DATA RX WITH NO ERRORS:

call RX8 bReadRxData ; get the received data in A
mov [bRxDatal], A ; bRxData contains received

; data byte
mov A, TRUE ; set a to NO error condition
ret

END fWaitToReceiveByte:

export main
_main:
; M8C EnableGInt ; Uncomment this line to enable Global Interrupts
mov A, RX8 PARITY NONE
lcall RX8 Start ; Enable user module and set parity.
; Insert your main assembly code here.

.terminate:

.wait:
lcall fWaitToReceiveByte ; Wait for byte to be received
jz .wait
Jjmp .terminate

Here is a sample project written in C:
//

// This sample shows how to read the resived byte.

// In this example the RX8 input is routed to PO[O0].

//

//The following changes need to be made to the default settings in the Device Editor:
//

// 1. Select RX8 user module.

// 2. The User Module will occupy the space in dedicated system resources.
// 3. Rename User Module's instance name to RX8.

// 4. Set RX8's Clock Parameter to VC2.

// 5. Set RX8's Input Parameter to Row O Input O.

// 8. Set RX8's ClockSync Parameter to SyncSysClk.

// 6. Set RX8's RxCmdBuffer Parameter to Disable.

// 7. Set RX8's RX Output Parameter to None.

// 8. Set RX8's Data Clock Out Parameter to None.

Document Number: 001-13585 Rev. *M Page 20 of 24

L
CYPRESS

PERFORM

// 9.

Other RX8's Parameters don't change.
// 10.Click on Row 0 Input 0 and connect Row O Input O to GlobalInEven 0
// 11.Select GlobalInEven 0 for P0O[0]

System clock is set to 1.5MHz

in the Pinout.

8-Bit Serial Receiver

e

A

UM's instance name

//

// CONFIGURATION DETAILS:

//

// 1. The UM's instance name must be shortened to RXS8.
//

// PROJECT SETTINGS:

//

// CPU Colck = 1.5 MHz(SysClk/16)

// VC1=SysClk/N = 16 (default)

// VC2=VC1l/N = 16 (default)

//

// USER MODULE PARAMETER SETTINGS:

//

// UM Parameter Value

// RX8 Name RX8

// Clock vC2

// Input Row 0 Input 0
// ClockSync SyncSysClk
// RxCmdBuffer Disable

// RxBufferSize 16 Bytes

// Command Terminator 13

// Param Delimiter 32

// IgnoreCharsBelow 32

// RX Output None

// Data Clock Out None

// InvertInput Normal

//

e

/* Code begins here */

#include <m8c.h>
#include "PSoCAPI.h"

// part specific constants and macros

// PSoC API definitions for all User Modules

/* Global bRxData - saves code - ptrs are expensive */

BYTE bRxData;

BOOL fWaitToReceiveByte (void)

{
BYTE bRxStatus;

/* Wait to receive full byte*/

while (
{

! (bRxStatus=RX8 bReadRxStatus ()

& RX8 RX COMPLETE)

/* might want to sleep or keep track of time */

/* data received,
if ((bRxStatus &
{

now check for errors
RX8 RX NO ERROR) ==

Document Number: 001-13585 Rev. *M

*/
0

)

)

Page 21 of 24

e
CYPRESS 8-Bit Serial Receiver

PERFORM

/* no error detected */
bRxData = RX8 bReadRxData();
return(TRUE);

}

else

{

/* error detected */
bRxData = bRxStatus;
return(FALSE);

}

void main (void)
{
M8C_EnableGInt; // Enable Global Interrupts
RX8 EnableInt();// Enable the RX8 interrupt
RX8 Start (RX8 PARITY NONE); // Set the parity of the RX8 receiver and enable the
//RX8 module

while (1)

{
while (!fWaitToReceiveByte()); // wait to resive byte
// Insert your main routine code here.

Configuration Registers

The Digital Communication Type A PSoC block registers used to configure the RX8 User Module are
described below. Only the parameterized symbols are explained.

Table 4. Block RX, Register: Function
Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 1 0 1

This register defines the personality of this Digital Communications block to be an RX8 User Module.
Table 5. Block RX, Register: Input
Bit 7 (] 5 4 3 2 1 0

Value Input Source Clock Source

Input Source selects the RX8 input source. Clock Source selects the clock to drive the receiver timing.
Table 6. Block RX, Register: Output
Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 0 0 0

This register is not used.

Document Number: 001-13585 Rev. *M Page 22 of 24

(YPRESS 8-Bit Serial Receiver

Table 7. Block RX, Data Shift Register: DRO
Bit 7 6 5 4 3 2 1 0

Value RX8 Shift Register

RX8 Shift Register: When a start bit is detected on the input, the RX8 state machine hardware generates a
divide-by-8 bit clock that shifts data into this register.

Table 8. Block RX, Data Register: DR1
Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 0 0 0

This register is not used.
Table 9. Block RX, Data Buffer Register: DR2
Bit 7 6 5 4 3 2 1 0

Value RX8 Buffer Register

RX8 Buffer Register: Data is transferred from the RX8 Shift register after the stop bit has been sampled.
Table 10. Block RX, Control/Status Register: CRO
Bit 7 6 5 4 3 2 1 0

Value Parity Error Overrun Framing Rx Active Rx Reg Parity Type Parity Rx Enable
Error Error Full Enable

Parity Error is a flag that indicates parity computation result of received data byte.
Overrun Error is a flag that indicates that the RX Buffer register data is overwritten.
Framing Error is a flag that indicates the stop bit was properly received.

Rx Active is a flag that indicates whether or not a data byte is actively being received.

Rx Reg Full is a flag that indicates a data byte has been completely received, the data byte has been
transferred to the Rx Buffer Register, and the error conditions are valid.

Parity Type is a type of parity to compute. This bit is a “don’t care if Parity Enable bit is not set.”

Parity Enable enables or disables the computation of the received parity bit. Parity is selected by setting
the Parity Type bit.

Rx Enable enables or disables the RX8 receiver.

Document Number: 001-13585 Rev. *M Page 23 of 24

8-Bit Serial Receiver

Version History

Version Originator Description
3.4 DHA Added compatibility for Large Memory Model chips.
Added DRC that informs the user not to use the 32 kHz option unless an external crystal
is used.
3.50 DHA Added support for CY8C21x12 devices.
3.50.b DHA Updated the datasheet example.

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Document Number: 001-13585 Rev. *M Revised March 3, 2015 Page 24 of 24

Copyright © 2002-2015 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features and Overview
	Functional Description
	High-Level API

	Timing
	Communication System Accuracy

	DC and AC Electrical Characteristics
	Placement
	Parameters and Resources
	Interrupt Generation Control

	Application Programming Interface
	RX8_Start
	RX8_Stop
	RX8_EnableInt
	RX8_DisableInt
	RX8_bReadRxData
	RX8_bReadRxStatus
	RX8_cGetChar
	RX8_cReadChar
	RX8_iReadChar
	RX8_CmdReset
	RX8_bCmdCheck
	RX8_bCmdLength
	RX8_szGetParam
	RX8_szGetRestOfParams
	RX8_bErrCheck

	Sample Firmware Source Code
	Configuration Registers
	Version History

