

IRFM240 2N7219

MECHANICAL DATA

Dimensions in mm (inches)

N-CHANNEL POWER MOSFET

VDSS **200V** I_{D(cont)} 18A 0.18Ω R_{DS(on)}

FEATURES

- N-CHANNEL MOSFET
- HIGH VOLTAGE
- HERMETIC ISOLATED TO-254 PACKAGE
- ELECTRICALLY ISOLATED

TO-254AA - Isolated Metal Package

Pin 1 - Drain Pin 2 - Source Pin 3 - Gate

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage		±20V		
I_{D}	Continuous Drain Current	@ $V_{GS} = 10V$, $T_{C} = 25^{\circ}C$	18A		
		@ $V_{GS} = 10V$, $T_{C} = 100^{\circ}C$	11A		
I_{DM}	Pulsed Drain Current		72A		
P_{D}	Max. Power Dissipation	@ T _C = 25°C	125W		
	Linear Derating Factor		1.0W / °C		
I_{AR}	Avalanche Current ¹	18			
dv / dt	Peak Diode Recovery ²	5.0V / ns			
$R_{ heta JC}$	Thermal Resistance Junction -	1.0°C / W			
$R_{ hetaJA}$	Thermal Resistance Junction -	48°C / W			
T_J , T_STG	Operating Junction and Storag	−55 to 150°C			
T_L	Lead Temperature (1.6mm from	300°C			

- $V_{DD} = 50V$, Starting $T_J = 25^{\circ}C$, $L \ge 1.3 mH$, $V_{GS} = 10V$, Peak $I_L = 18A$ 1)
- 2) $I_{SD} \le 18 A$, di/dt $\le 150 A$ / μS , $V_{DD} \le 200 V$, $T_J \le 150 ^{\circ} C$

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

E-mail: sales@semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Website: http://www.semelab.co.uk

IRFM240 2N7219

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise stated)

	arameter Test Conditions		Min.	Тур.	Max.	Unit		
	STATIC ELECTRICAL RATINGS	•			1		.1	
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	200			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			0.00		1//00	
ΔT_{J}	Breakdown Voltage	$I_D = 1mA$			0.29		V/°C	
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = 10V$	I _D = 11A			0.18	Ω	
	Resistance ²	$V_{GS} = 10V$	I _D = 18A			0.25		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2.0		4.0	V	
9 _{fs}	Forward Transconductance ²	V _{DS} ≥ 15V	I _{DS} = 11A	6.1			S(\Omega)	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 160V$ $T_{J} = 125^{\circ}C$			25 250	μА	
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V	11 - 120 0			100		
	Reverse Gate – Source Leakage	$V_{GS} = 20V$ $V_{GS} = -20V$				-100	nA	
I _{GSS}	DYNAMIC CHARACTERISTICS							
C _{iss}	Input Capacitance	$V_{GS} = 0$		Τ	1300			
C _{oss}	Output Capacitance	V _{DS} = 25V f = 1MHz			400		pF	
C _{rss}	Reverse Transfer Capacitance				130			
Q _g	Total Gate Charge	V _{GS} = 10V			100	60		
Q _{gs}	Gate – Source Charge	I _D = 18A V _{DS} = 100V				10.6	nC	
Q _{gd}	Gate – Drain ("Miller") Charge					37.6		
t _{d(on)}	Turn- On Delay Time	-				20	ns	
t _r	Rise Time	V _{DD} = 100V	= 18A V _{GS} = 10V			105		
t _{d(off)}	Turn-Off Delay Time	I _D = 18A				58		
t _f	Fall Time	$R_G = 9.1\Omega$				67		
1	SOURCE – DRAIN DIODE CHARACTERISTICS							
I _S	Continuous Source Current					18	A	
I _{SM}	Pulse Source Current ¹					72		
V _{SD}	Diode Forward Voltage ²	I _S = 18A V _{GS} = 0	T _J = 25°C			1.5	V	
t _{rr}	Reverse Recovery Time ²	I _F = 18A	T _J = 25°C			500	ns	
Q _{rr}	Reverse Recovery Charge ²	d _i / d _t ≤ 100A/μ	us V _{DD} ≤ 50V			5.3	μС	
t _{on}	Forward Turn-On Time				Negligible			
	PACKAGE CHARACTERISTICS							
L _D	Internal Drain Inductance Measured from drain lead (6mm / 0.25in from package) to				4.0			
L _S	Internal Source Inductance source lead (6mm / 0.25in from pa		4.0		nH		

¹⁾ Repetitive Rating - Pulse width limited by Maximum Junction Temperature

E-mail: sales@semelab.co.uk

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Website: http://www.semelab.co.uk

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

²⁾ Pulse Test: Pulse Width $\leq 300 \mu s$, $\delta \leq 2\%$.