
The RF Line NPN Silicon Power Transistor
6.0W, 1.6GHz, 28V

 M/A-COM Products
Released - Rev. 07.07

Product Image

Designed for 28 V microwave large-signal, common base, Class C, CW amplifier applications in the range 1600 – 1640 MHz.

- Specified 28 V, 1.6 GHz Class C characteristics
 - Output power = 6 W
 - Minimum gain = 7.4 dB, @ 6 W
 - Minimum efficiency = 40% @ 6 W
- Characterized with series equivalent large-signal parameters from 1500 MHz to 1700 MHz
- Silicon nitride passivated
- Gold metalized, emitter ballasted for long life and resistance to metal migration

CASE 395C-01, STYLE 2
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	60	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector-Current	I _C	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	26 0.15	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case (1) (2)	R _{θJC}	6.8	°C/W
---	------------------	-----	------

(1) Thermal measurement performed using CW RF operating condition.

(2) Thermal resistance is determined under specified RF operating conditions by infrared measurement techniques.

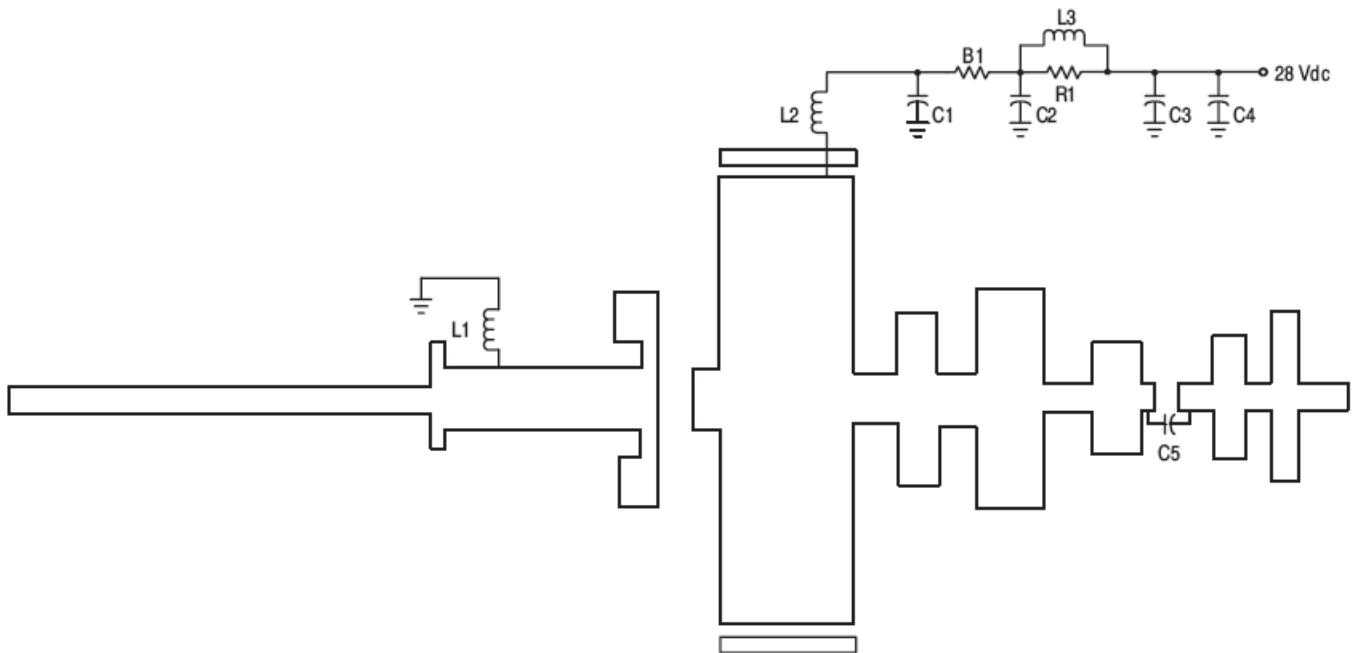
The RF Line NPN Silicon Power Transistor
 6.0W, 1.6GHz, 28V

 M/A-COM Products
 Released - Rev. 07.07

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($I_C = 40 \text{ mA}_\text{dc}$, $V_{BE} = 0$)	$V_{(BR)CES}$	55	—	—	Vdc
Collector-Base Breakdown Voltage ($I_C = 40 \text{ mA}_\text{dc}$, $I_E = 0$)	$V_{(BR)CBO}$	55	—	—	Vdc
Emitter-Base Breakdown Voltage ($I_E = 2.5 \text{ mA}_\text{dc}$, $I_C = 0$)	$V_{(BR)EBO}$	4.0	—	—	Vdc
Collector Cutoff Current ($V_{CE} = 28 \text{ Vdc}$, $V_{BE} = 0$)	I_{CES}	—	—	2.5	mA_dc

ON CHARACTERISTICS

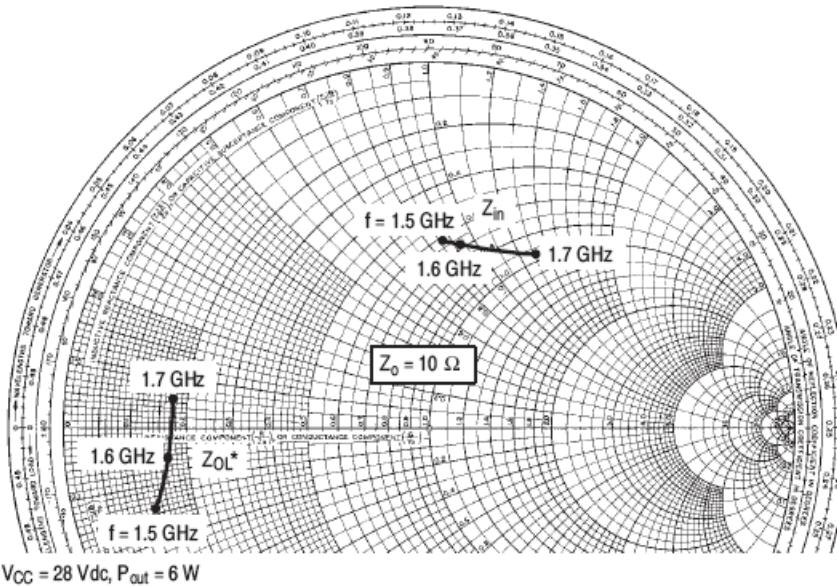

DC Current Gain ($I_{CE} = 0.2 \text{ Adc}$, $V_{CE} = 5.0 \text{ Vdc}$)	h_{FE}	20	—	80	—
--	----------	----	---	----	---

DYNAMIC CHARACTERISTICS

Output Capacitance ($V_{CB} = 28 \text{ Vdc}$, $f = 1.0 \text{ MHz}$)	C_{ob}	11	—	—	pf
---	----------	----	---	---	----

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain ($V_{CC} = 28 \text{ Vdc}$, $P_{out} = 6 \text{ Watts}$, $f = 1600/1640 \text{ MHz}$)	G_{pe}	7.4	—	—	dB
Collector Efficiency ($V_{CC} = 28 \text{ Vdc}$, $P_{out} = 6 \text{ Watts}$, $f = 1600/1640 \text{ MHz}$)	η	40	45	—	%
Return Loss ($V_{CC} = 28 \text{ Vdc}$, $P_{out} = 6 \text{ Watts}$, $f = 1600/1640 \text{ MHz}$)	$ RL $	—	8.0	—	dB
Output Mismatch Stress ($V_{CC} = 28 \text{ Vdc}$, $P_{out} = 6 \text{ Watts}$, $f = 1600 \text{ MHz}$, Load VSWR = 3:1 all phase angles at frequency of test)	Ψ	No Degradation in Output Power			



Board Material – Teflon® Glass Laminate Dielectric
Thickness – 0.30", ϵ_r = 2.55", 2.0 oz. Copper

B1 Fair Rite Bead on #24 Wire
C1, C5 100 pF, B Case, ATC Chip Cap
C2 0.1 μ F, Dipped Mica Cap
C3 0.1 μ F, Chip Cap

C4 47 μ F, 50 V, Electrolytic Cap
L1, L2 3 Turns, #18, 0.133" ID, 0.15" Long
L3 9 Turns, #24 Enamel
R1 82 Ω , 1.0 W, Carbon Resistor

Figure 1. MRF16006 Test Fixture Schematic

f MHz	Z _{in} Ohms	Z _{OL*} Ohms
1500	6.28 + j 8.53	1.22 - j 1.37
1600	7.04 + j 9.00	1.58 - j 0.53
1700	9.55 + j 12.86	1.71 + j 0.39

Z_{OL*} = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 2. Series Equivalent Input/Output Impedance

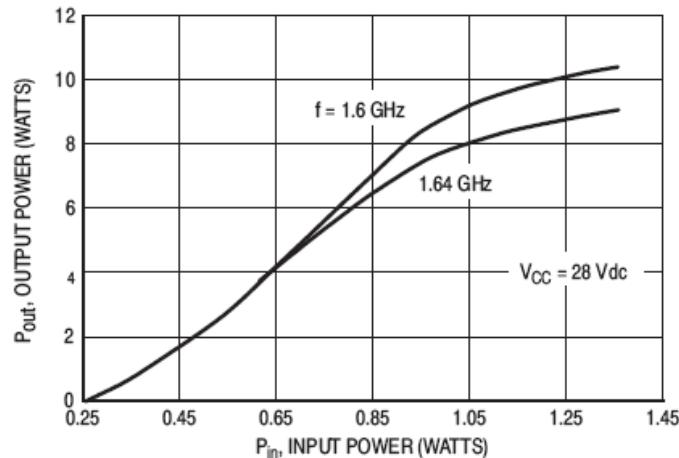
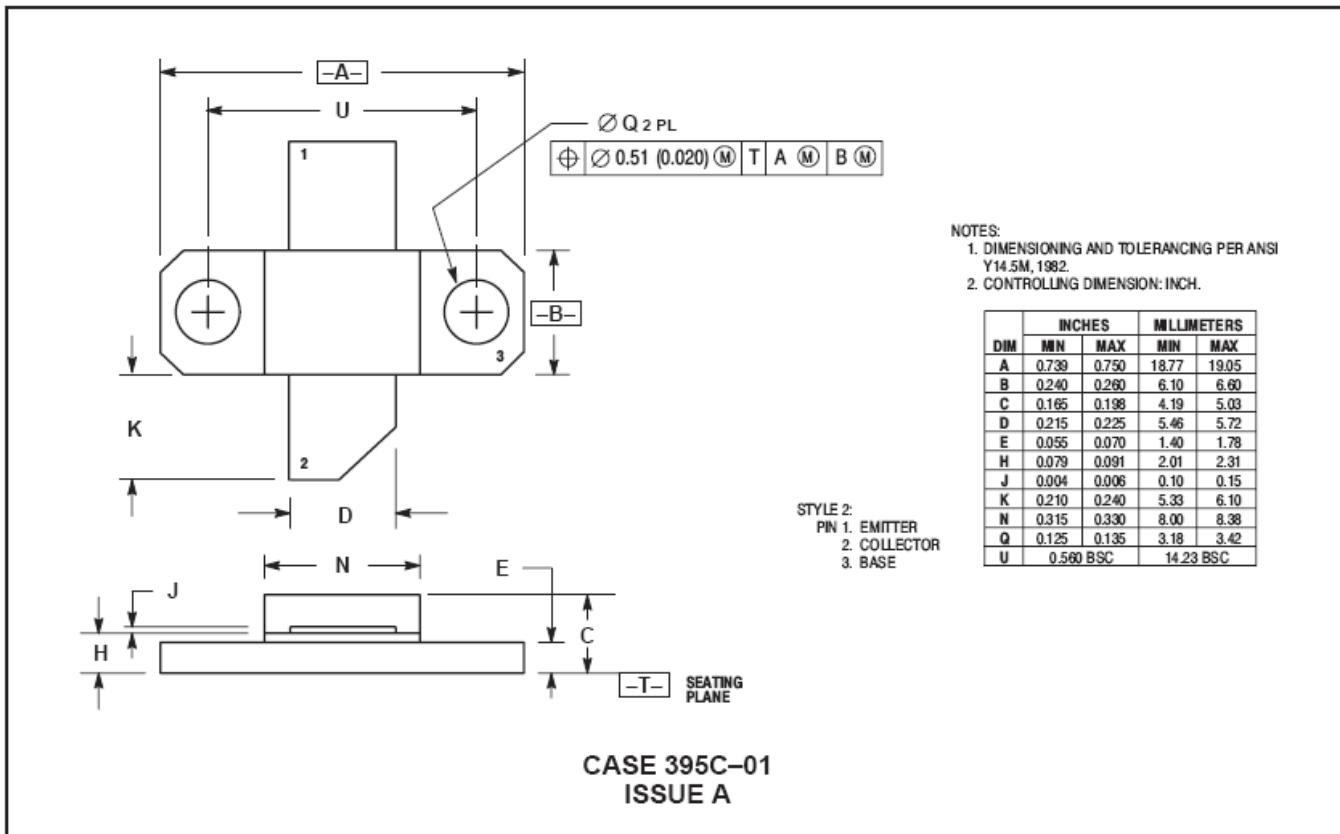



Figure 3. Output Power versus Input Power

The RF Line NPN Silicon Power Transistor
6.0W, 1.6GHz, 28V

M/A-COM Products
Released - Rev. 07.07

PACKAGE DIMENSIONS

