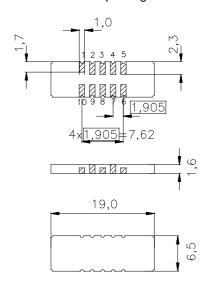


SAW Components

Data Sheet B3873

SAW Components	B3873
Low-Loss Filter	240,0 MHz

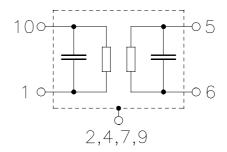
Data Sheet


Features

- High performance IF bandpass filter
- Temperature stable
- Hermetically sealed ceramic package

Terminals

Gold plated


Ceramic package DCC18

Dimensions in mm, approx. weight 0,7 g

Pin configuration

Input
Input ground
Output
Output ground
Ground
Case ground

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
B3873	B39241-B3873-U210	C61157-A7-A54	F61074-V8166-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range T		-40/ +85	°C
Storage temperature range T_s	stg	-40/ +85	°C
DC valtage 1/	DC	0	V
Source power P_s	s	0	dBm

SAW Components B3873

Low-Loss Filter 240,0 MHz

Data Sheet

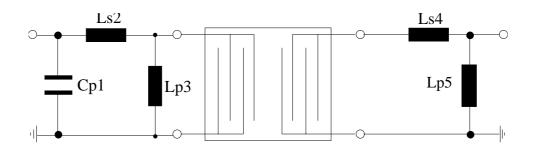
Characteristics

Operating temperature: T = -10..+85 °C

Terminating source impedance: Z_S =50 Ω and matching network Terminating load impedance: Z_S =50 Ω and matching network

		min.	typ.	max.	
Nominal frequency	f_{N}	_	240,0	_	MHz
Minimum insertion attenuation (including matching network)		12,0	14,0	16,0	dB
Passband width $\alpha_{rel} \le 1 \text{ dB}$	B_{1dB}	1,1	1,25	_	MHz
Amplitude ripple (p-p) $f_{\rm N} \pm 0{,}55~{\rm MHz}$	Δα	_	0,7	1,0	dB
Absolute group delay (at f_N)			1,8	3,5	μs
Group delay ripple (p-p) $f_{\rm N} \pm 0,55~{\rm MHz}$	Δτ	_	120	200	ns
Deviation of linear phase (p-p) $f_{\rm N} \pm 0{,}55~{\rm MHz}$		_	5	6	o
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10 25 32 35 38 40	15 30 35 40 42 45	_ _ _ _ _ _	dB dB dB dB dB dB
Temperature coefficient of frequency 1) Turnover temperature			- 0,036 40	_ 	ppm/K ²

 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A}) = f_{\rm c}(T_0)(1 + TC_{\rm f}(T_{\rm A} - T_0)^2)$


SAW Components B3873

Low-Loss Filter 240,0 MHz

Data Sheet

Matching network to 50 $\boldsymbol{\Omega}$

(Element values depend upon PCB layout)

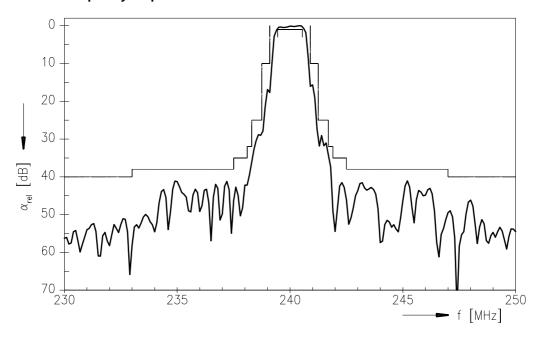
$$C_{p1} = 15 \text{ pF}$$

 $L_{s2} = 27 \text{ nH}$

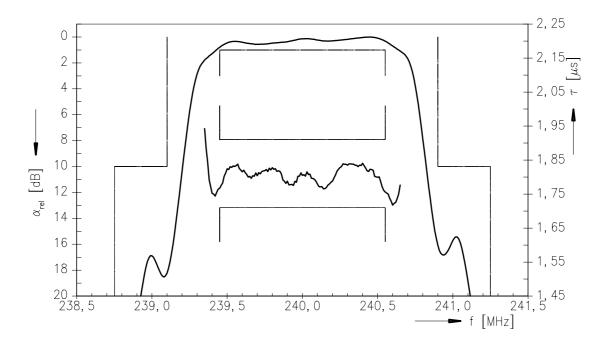
$$L_{p3} = 7.8 \text{ nH}$$

$$L_{s4} = 10 \text{ nH}$$

$$L_{p5} = 10 \text{ nH}$$



SAW Components B3873


Low-Loss Filter 240,0 MHz

Data Sheet

Normalized frequency response

Normalized frequency response (pass band)

SAW Components B3873
Low-Loss Filter 240,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.