

December 1996

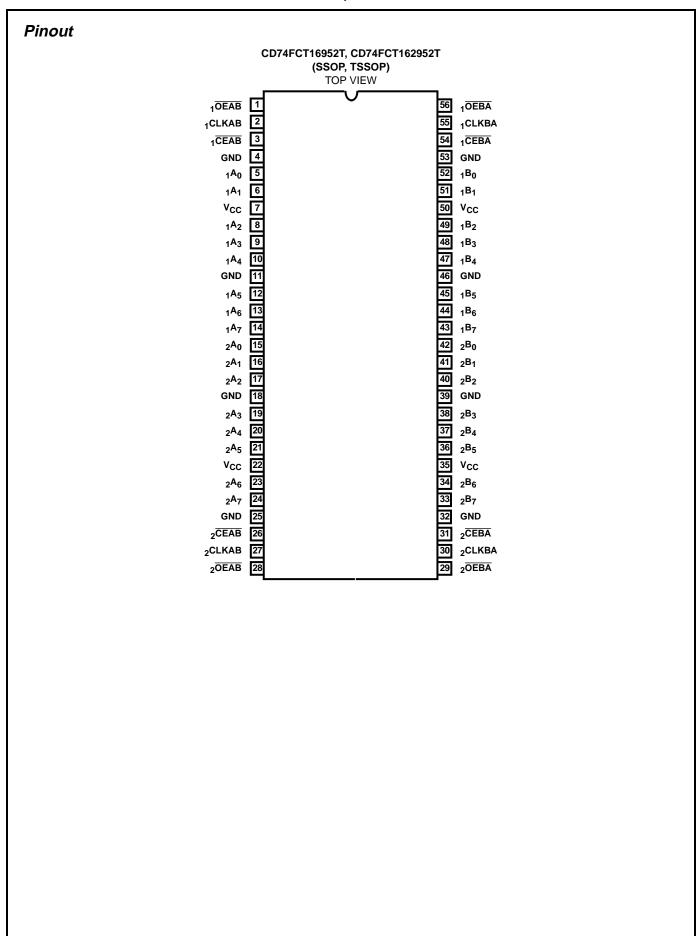
Fast CMOS 16-Bit Registered Transceiver

Features

- Advanced 0.6 micron CMOS Technology
- These Devices Are High-speed, Low Power Devices with High Current Drive
- V_{CC} = 5V ±10%
- · Hysteresis on All Inputs
- CD74FCT16952T
 - High Output Drive: I_{OH} = -32mA; I_{OL} = 64mA
 - Power Off Disable Outputs Permit "Live Insertion"
 - Typical V_{OLP} (Output Ground Bounce) < 1.0V at $V_{CC} = 5V$, $T_A = 25^{\circ}C$
- CD74FCT162952T
 - Balanced Output Drivers: ±24mA
 - Reduced System Switching Noise
 - Typical V_{OLP} (Output Ground Bounce) < 0.6V at V_{CC} = 5V, T_A = 25°C

Description

These devices are 16-bit registered transceivers organized with two sets of eight D-type latches with separate input and output controls for each set. For data flow from A-to-B, for example, the A-to-B Enable ($\chi \overline{CEAB}$) input must be LOW in order to enter data from χA_X . The data present on the A port will be clocked on the B register when $\chi CLKAB$ toggles from LOW-to-HIGH. The $\chi \overline{OEAB}$ control performs the output enable function on the B port. Control of data from B-to-A is similar, but uses the $\chi \overline{CEBA}$, $\chi CLKBA$, and $\chi \overline{OEBA}$ inputs. By connecting the control pins of the two independent transceivers together, a full 16-bit operation can be achieved. The output buffers are designed with a Power-Off disable allowing "live insertion" of boards when used as backplane drivers.


The CD74FCT16952T output buffers are designed with a Power-Off disable allowing "live insertion" of boards when used as backplane drivers.

The CD74FCT162952T has ± 24 mA balanced output drivers. It is designed with current limiting resistors at its outputs to control the output edge rate resulting in lower ground bounce and undershoot. This eliminates the need for external terminating resistors for most interface applications.

Ordering Information

		г	T
PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
CD74FCT16952ATMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT16952ATSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT16952TMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT16952TSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT16952CTMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT16952CTSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT16952DTMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT16952DTSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT16952ETMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT16952ETSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT162952ATMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT162952ATSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT162952TMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT162952TSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT162952CTMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT162952CTSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT162952DTMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT162952DTSM	-40 to 85	56 Ld SSOP	M56.300-P
CD74FCT162952ETMT	-40 to 85	56 Ld TSSOP	M56.240-P
CD74FCT162952ETSM	-40 to 85	56 Ld SSOP	M56.300-P

NOTE: When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.

Functional Block Diagram 20EBA 1CEBA 1CEBA 1CEAB 1CEA

TRUTH TABLE (NOTES 1, 2)

TO 7 OTHER CHANNELS

	OUTPUTS			
_X ŒAB	_X CLKAB	χΒχ		
Н	X	L	X	B (Note 3)
Х	L	L	X	B (Note 3)
L	1	L	L	L
L	1	L	Н	Н
Х	Х	Н	X	High Z

NOTES:

- 1. H = High Voltage Level
 - L = Low Voltage Level
 - X = Don't Care or Irrelevant

TO 7 OTHER CHANNELS

- ↑ = LOW-to-HIGH Transition
- Z = High Impedance
- 2. A-to-B data flow shown. B-to-A flow control is the same, except using $\chi \overline{\text{CEBA}}$, χCLKBA , and $\chi \overline{\text{OEBA}}$.
- 3. Level of B before the indicated steady-state input conditions were established.

Pin Descriptions

PIN NAME	DESCRIPTION
XOEAB	A-to-B Output Enable Input (Active LOW)
χ <mark>ΌΕΒΑ</mark>	B-to-A Output Enable Input (Active LOW)
_X CEAB	A-to-B Clock Enable Input (Active LOW)
_X CEBA	B-to-A Clock Enable Input (Active LOW)
XCLKAB	A-to-B Clock Input
XCLKBA	B-to-A Clock Input
хАх	A-to-B Data Inputs or B-to-A Three-State Outputs (Note 4)
χΒχ	B-to-A Data Inputs or A-to-B Three-State Outputs (Note 4)
GND	Ground
V _{CC}	Power

Absolute Maximum Ratings Thermal Information θ_{JA} (°C/W) DC Input Voltage-0.5V to 7.0V Thermal Resistance (Typical, Note 4) 85 **Operating Conditions** Maximum Storage Temperature Range $\,\ldots\ldots\,$.-65°C to 150°C Supply Voltage to Ground Potential Maximum Lead Temperature (Soldering 10s).....300°C Inputs and V_{CC} Only.....-0.5V to 7.0V (Lead Tips Only) Supply Voltage to Ground Potential Outputs and D/O Only.....-0.5V to 7.0V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

4. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

PARAMETERS	SYMBOL	(NOTE 5 TEST CONDIT	MIN	(NOTE 6) TYP	MAX	UNITS	
DC ELECTRICAL SPE	CIFICATION	IS Over the Operating Range, T	$T_A = -40^{\circ}$ C to 85°C, V	CC = 5.0V ±1	0%		
Input HIGH Voltage	V_{IH}	Guaranteed Logic HIGH Level		2.0	-	-	V
Input LOW Voltage	V _{IL}	Guaranteed Logic LOW Level		-	-	0.8	V
Input HIGH Current	I _{IH}	Standard Input, V _{CC} = Max	$V_{IN} = V_{CC}$	-	-	1	μА
Input HIGH Current	I _{IH}	Standard I/O, V _{CC} = Max	V _{IN} = V _{CC}	-	-	1	μА
Input HIGH Current	lіН	Bus Hold Input (Note 8) V _{CC} = Max	$V_{IN} = V_{CC}$	-	-	±100	μА
Input HIGH Current	lіН	Bus Hold I/O (Note 8) $V_{IN} = V_{CC}$ $V_{CC} = Max$		-	-	±100	μА
Input LOW Current	I _{IL}	Standard Input, $V_{CC} = Min$ $V_{IN} = GND$		-	-	-1	μА
Input LOW Current	I _{IL}	Standard I/O, $V_{CC} = Min$ $V_{IN} = GND$		-	-	-1	μА
Input LOW Current	I _{IL}	Bus Hold Input (Note 8) $V_{IN} = GND$ $V_{CC} = Min$		-	-	±100	μА
Input LOW Current	I _{IL}	Bus Hold I/O (Note 8) V _{CC} = Min	V _{IN} = GND	-	-	±100	μА
Bus Hold	Івнн	Bus Hold Input (Note 8)	V _{IN} = 2.0V	-50	-	i	μА
Sustain Current	I _{BHL}	V _{CC} = Min	V _{IN} = 0.8V	50	-	-	μА
High Impedance Out-	I _{OZH}	V _{CC} = Max	V _{OUT} = 2.7V	-	-	1	μА
put Current (Three- State) (Note 10)	I _{OZL}	V _{CC} = Max	V _{OUT} = 0.5V	-	-	-1	μА
Clamp Diode Voltage	V _{IK}	V _{CC} = Min, I _{IN} = -18mA	-	-0.7	-1.2	V	
Short Circuit Current	los	V _{CC} = Max (Note 7), V _{OUT} = 0	-80	-140	-200	mA	
Output Drive Current	Io	V _{CC} = Max (Note 7), V _{OUT} = 2	-50	-	-180	mA	
Input Hysteresis	V _H		-	100	-	mV	

Electrical Specifications (Continued)

PARAMETERS	SYMBOL	(NOTE 5) TEST CONDITI	MIN	(NOTE 6) TYP	MAX	UNITS	
CD74FCT16952T OUT	PUT DRIVE	SPECIFICATIONS Over the Ope	erating Range	•			
Output HIGH Voltage	V _{OH}	$V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -3.0mA	2.5	3.5	-	V
			I _{OH} = -15.0mA	2.4	3.5	-	V
			I _{OH} = -32.0mA	2.0	3.0	-	V
Output LOW Voltage	V _{OL}	$V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 64mA	-	0.2	0.55	V
Power Down Disable	l _{OFF}	$V_{CC} = 0V$, V_{IN} or $V_{OUT} \le 4.5V$		=	-	±100	μΑ
CD74FCT162952T OU	TPUT DRIVI	E SPECIFICATIONS Over the Op	perating Range				
Output HIGH Voltage	V _{OH}	$V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -24.0mA	2.4	3.3	-	V
Output LOW Voltage	V _{OL}	$V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 24mA	=	0.3	0.55	V
Output LOW Current	l _{ODL}	$V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , V_{O}	UT = 1.5V (Note 7)	60	115	150	mA
Output HIGH Current	I _{ODH}	$V_{CC} = 5V$, $V_{IN} = V_{IH}$ or V_{IL} , V_{O}	_{UT} = 1.5V (Note 7)	-60	-115	-150	mA
CAPACITANCE T _A = 2	25 ⁰ C, f = 1Ml						
Input Capacitance (Note 10)	C _{IN}	V _{IN} = 0V		-	4.5	6	pF
Output Capacitance (Note 10)	C _{OUT}	V _{OUT} = 0V		-	5.5	8	pF
POWER SUPPLY SPE	CIFICATION	IS			•		
Quiescent Power Supply Current	Icc	V _{CC} = Max	V _{IN} = GND or V _{CC}	-	0.1	500	μА
Supply Current per Input at TTL HIGH	Δl _{CC}	V _{CC} = Max	V _{IN} = 3.4V (Note 11)	-	0.5	1.5	mA
Supply Current per Input per MHz (Note 12)	ICCD	V_{CC} = Max, Outputs Open $_{\chi}\overline{\text{OEAB}}$ or $_{\chi}\overline{\text{OEBA}}$ = GND One Input Toggling 50% Duty Cycle	V _{IN} = V _{CC} V _{IN} = GND	-	75	120	μΑ/ MHz
Total Power Supply Current (Note 14)	Ic	V _{CC} = Max, Outputs Open f _{CP} = 10MHz (xCLKAB)	$V_{IN} = V_{CC}$ $V_{IN} = GND$	-	0.8	1.7 (Note 13)	mA
		50% Duty Cycle $\chi \overline{OEAB} = \chi \overline{CEAB} = GND$ $\chi \overline{CEBA} = V_{CC}$ One Bit Toggling, $f_I = 5MHz$	V _{IN} = 3.4V V _{IN} = GND	-	1.3	3.2 (Note 13)	mA
		V _{CC} = Max, Outputs Open f _{CP} = 10MHz (_X CLKAB)	$V_{IN} = V_{CC}$ $V_{IN} = GND$	-	3.8	6.5 (Note 13)	mA
		50% Duty Cycle $\chi\overline{OEAB} = \chi\overline{CEAB} = GND$ $\chi\overline{CEBA} = V_{CC}$ 16 Bits Toggling, $f_{I} = 2.5MHz$ 50% Duty Cycle	V _{IN} = 3.4V V _{IN} = GND	-	8.3	20.5 (Note 13)	mA

Switching Specifications Over Operating Range

			АТ	-	СТ	-	DT	•	ET	•	
PARAMETER	SYMBOL	(NOTE 16) TEST CONDITIONS	(NOTE 17) MIN	MAX	(NOTE 17) MIN	MAX	(NOTE 17) MIN	MAX	(NOTE 17) MIN	MAX	UNITS
Propagation Delay $_{\chi}$ CLKAB, $_{\chi}$ CLKBA to $_{\chi}$ B $_{\chi}$, $_{\chi}$ A $_{\chi}$	t _{PLH,} t _{PHL}	$C_L = 50pF$ $R_L = 500\Omega$	2.0	10.0	2.0	6.3	2.0	4.4	1.5	3.7	ns
Output Enable Time χ OEBA, χ OEAB to χ A χ , χ B χ	^t PZH, ^t PZL		1.5	10.5	1.5	7.0	1.5	4.8	1.5	4.4	ns
Output Disable Time (Note 18) χ OEBA, χ OEAB to χ A χ , χ B χ	t _{PHZ,} t _{PLZ}		1.5	10.0	1.5	6.5	1.5	4.0	1.5	4.0	ns
Setup Time HIGH or LOW, χA_{X} , χB_{X} to $\chi CLKAB$, $\chi CLKBA$	t _{SU}		2.5	-	2.5	-	2.0	-	1.5	-	ns
Hold Time HIGH or LOW, χA_{χ} , χB_{χ} to $\chi CLKAB$, $\chi CLKBA$	t _H		2.0	-	1.5	-	1.0	-	0.0	-	ns
Setup Time HIGH or LOW, χ CEAB, χ CEBA to χ CLK-AB, χ CLKBA	t _{SU}		3.0	-	3.0	-	2.0	-	2.0	-	ns
Hold Time HIGH or LOW, $_\chi \overline{\text{CEAB}}, _\chi \overline{\text{CEBA}}$ to $_\chi \text{CLK-AB}, _\chi \text{CLKBA}$	t _H		2.0	-	2.0	-	1.5	-	0.0	-	ns
Pulse Width HIGH (Note 18) or LOW, _X CLKAB or _X CLKBA	t _W		3.0	-	3.0	-	3.0	-	3.0	-	ns
Output Skew (Note 19)	t _{SK(O)}		-	0.5	-	0.5	-	0.5	-	0.5	ns

NOTES:

- 5. For conditions shown as Max or Min, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 6. Typical values are at $V_{CC} = 5.0V$, 25° C ambient and maximum loading, except as noted.
- 7. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 8. Pins with Bus Hold are identified in the pin description.
- 9. This specification does not apply to bi-directional functionalities with Bus Hold.
- 10. This parameter is determined by device characterization but is not production tested.
- 11. Per TTL driven input ($V_{IN} = 3.4V$); all other inputs at V_{CC} or GND.
- 12. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 13. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.
- 14. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $I_{C} = I_{CC} + \Delta I_{CC} D_{H} N_{T} + I_{CCD} (f_{CP}/2 + f_{I} N_{I})$

I_{CC} = Quiescent Current

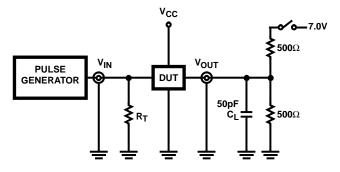
 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)

D_H = Duty Cycle for TTL Inputs High

 N_T = Number of TTL Inputs at D_H

I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)


f_I = Input Frequency

 $N_I = Number of Inputs at f_I$

All currents are in milliamps and all frequencies are in megahertz.

- 15. See test circuit and wave forms.
- 16. Minimum limits are guaranteed but not tested on Propagation Delays.
- 17. This parameter is guaranteed but not production tested.
- 18. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

Test Circuits and Waveforms

SWITCH POSITION

TEST	SWITCH
t _{PLZ} , t _{PZL}	Closed
t _{PHZ} , t _{PZH} , t _{PLH} , t _{PHL}	Open

DEFINITIONS:

 C_L = Load capacitance, includes jig and probe capacitance.

 R_T^- = Termination resistance, should be equal to Z_{OUT}^- of the Pulse Generator.

NOTE:

1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; Z_{OUT} \leq 500; $t_{\rm f},\,t_{\rm f} \leq$ 2.5ns.

FIGURE 1. TEST CIRCUIT

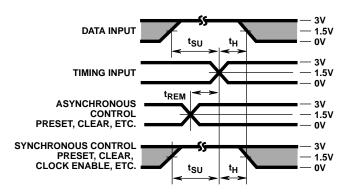


FIGURE 2. SETUP, HOLD, AND RELEASE TIMING

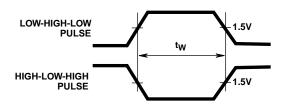


FIGURE 3. PULSE WIDTH

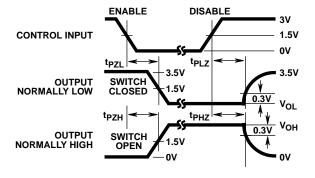


FIGURE 4. ENABLE AND DISABLE TIMING

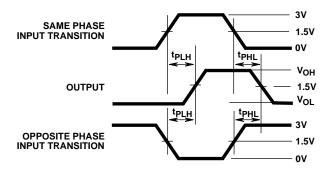
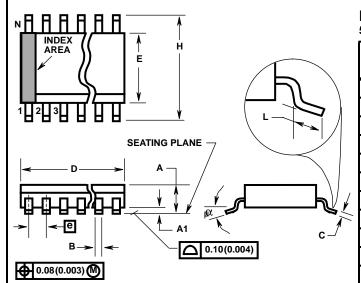
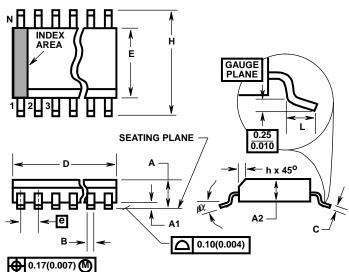



FIGURE 5. PROPAGATION DELAY

Thin Shrink Small Outline Plastic Packages (TSSOP)

M56.240-P 56 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE


	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.041	0.047	1.05	1.20	-
A1	0.002	0.006	0.05	0.15	-
В	0.007	0.010	0.178	0.254	-
С	0.004	0.008	0.102	0.203	-
D	0.547	0.555	13.90	14.09	1
Е	0.236	0.244	6.00	6.19	2
е	0.019	7 BSC	0.50	BSC	-
Н	0.307	0.330	7.80	8.38	-
L	0.020	0.030	0.51	0.76	3
N	56		56		4
α	0°	8 ⁰	0°	0° 8°	

Rev. 0 6/96

NOTES:

- Dimension "D" does not include mold flash, protrusions or gate burrs.
- 2. Dimension "E" does not include interlead flash or protrusions.
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. "N" is the number of terminal positions.
- 5. Terminal numbers are shown for reference only.
- Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

Shrink Small Outline Plastic Packages (SSOP)

NOTES:

- 1. These package dimensions are within allowable dimensions of JECEC MO-118-AB, Issue B.
- 2. Dimension "D" does not include mold flash, protrusions or gate
- 3. Dimension "E" does not include interlead flash or protrusions.
- 4. "L" is the length of terminal for soldering to a substrate.
- 5. "N" is the number of terminal positions.
- 6. Terminal numbers are shown for reference only.
- 7. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

M56.300-P

56 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.096	0.108	2.44	2.74	-
A1	0.008	0.016	0.20	0.41	-
A2	0.088	0.092	2.24	2.34	-
В	0.008	0.0135	0.20	0.34	-
С	0.005	0.010	0.13	0.25	-
D	0.720	0.730	18.29	18.54	2
Е	0.291	0.299	7.39	7.59	3
е	0.025	BSC	0.635 BSC		-
Н	0.395	0.415	10.03	10.54	-
h	0.015	0.025	0.381	0.635	-
L	0.020	0.040	0.51	1.01	4
N	56		56		5
α	0°	8 ⁰	0 ₀ 8 ₀		-

Rev. 0 5/96

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA

Harris Semiconductor P. O. Box 883, Mail Stop 53-210 Melbourne, FL 32902 TEL: 1-800-442-7747

(407) 729-4984 FAX: (407) 729-5321

EUROPE

Harris Semiconductor Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

Harris Semiconductor PTE Ltd. No. 1 Tannery Road Cencon 1, #09-01 Singapore 1334 TEL: (65) 748-4200 FAX: (65) 748-0400

