

AUIRF3004WL

WIDELEAD HEXFET® Power MOSFET

$V_{(BR)DSS}$	40V
$R_{DS(on)}$ typ.	1.27mΩ
max.	1.40mΩ
I_D (Silicon Limited)	386A ①
I_D (Package Limited)	240A

G	D	S
Gate	Drain	Source

Description

Specifically design for automotive applications this Widelead TO-262 package part has the advantage of having over 50% lower lead resistance and delivering over 20% lower $R_{ds(on)}$ when compared with a traditional TO-262 package housing the same silicon die. This greatly helps in reducing conduction losses, achieving higher current levels or enabling a system to run cooler and have improved efficiency. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive and other applications.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

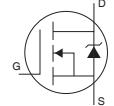
	Parameter	Max.	Units
I_D @ $T_C = 25^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$ (Silicon Limited)	386①	A
I_D @ $T_C = 100^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$ (Silicon Limited)	273①	
I_D @ $T_C = 25^\circ\text{C}$	Continuous Drain Current, $V_{GS} @ 10\text{V}$ (Package Limited)	240	
I_{DM}	Pulsed Drain Current ②	1544	
P_D @ $T_C = 25^\circ\text{C}$	Maximum Power Dissipation	375	W
	Linear Derating Factor	2.5	W/ $^\circ\text{C}$
V_{GS}	Gate-to-Source Voltage	± 20	V
E_{AS} (Thermally limited)	Single Pulse Avalanche Energy ③	470	mJ
I_{AR}	Avalanche Current ②	See Fig. 14, 15, 22a, 22b,	A
E_{AR}	Repetitive Avalanche Energy ②		mJ
dv/dt	Peak Diode Recovery ④	6.1	V/ns
T_J	Operating Junction and	-55 to + 175	$^\circ\text{C}$
T_{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Typ.	Max.	Units
R_{eJC}	Junction-to-Case ⑤	—	0.40	$^\circ\text{C/W}$

HEXFET® is a registered trademark of International Rectifier.

*Qualification standards can be found at <http://www.irf.com/>


Static Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
$V_{(\text{BR})\text{DSS}}$	Drain-to-Source Breakdown Voltage	40	—	—	V	$V_{\text{GS}} = 0\text{V}$, $I_D = 250\mu\text{A}$
$\Delta V_{(\text{BR})\text{DSS}}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.038	—	V/ $^\circ\text{C}$	Reference to 25°C , $I_D = 5\text{mA}$ ⑤
$R_{\text{DS}(\text{on})}$	Static Drain-to-Source On-Resistance	—	1.27	1.40	$\text{m}\Omega$	$V_{\text{GS}} = 10\text{V}$, $I_D = 195\text{A}$ ⑤
$V_{\text{GS}(\text{th})}$	Gate Threshold Voltage	2.0	—	4.0	V	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 250\mu\text{A}$
g_{fs}	Forward Transconductance	330	—	—	S	$V_{\text{DS}} = 10\text{V}$, $I_D = 195\text{A}$
R_G	Internal Gate Resistance	—	2.7	—	Ω	
I_{DSS}	Drain-to-Source Leakage Current	—	—	20	μA	$V_{\text{DS}} = 40\text{V}$, $V_{\text{GS}} = 0\text{V}$
		—	—	250		$V_{\text{DS}} = 32\text{V}$, $V_{\text{GS}} = 0\text{V}$, $T_J = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	100	nA	$V_{\text{GS}} = 20\text{V}$
	Gate-to-Source Reverse Leakage	—	—	-100		$V_{\text{GS}} = -20\text{V}$

Dynamic Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
Q_g	Total Gate Charge	—	140	210	nC	$I_D = 232\text{A}$
Q_{gs}	Gate-to-Source Charge	—	53	—		$V_{\text{DS}} = 20\text{V}$
Q_{gd}	Gate-to-Drain ("Miller") Charge	—	49	—		$V_{\text{GS}} = 10\text{V}$ ⑤
Q_{sync}	Total Gate Charge Sync. ($Q_g - Q_{\text{gd}}$)	—	91	—		$I_D = 232\text{A}$, $V_{\text{DS}} = 0\text{V}$, $V_{\text{GS}} = 10\text{V}$ ⑤
$t_{\text{d}(\text{on})}$	Turn-On Delay Time	—	19	—	ns	$V_{\text{DD}} = 26\text{V}$
t_r	Rise Time	—	220	—		$I_D = 232\text{A}$
$t_{\text{d}(\text{off})}$	Turn-Off Delay Time	—	90	—		$R_G = 2.7\Omega$
t_f	Fall Time	—	130	—		$V_{\text{GS}} = 10\text{V}$ ⑤
C_{iss}	Input Capacitance	—	9450	—	pF	$V_{\text{GS}} = 0\text{V}$
C_{oss}	Output Capacitance	—	1930	—		$V_{\text{DS}} = 32\text{V}$
C_{rss}	Reverse Transfer Capacitance	—	975	—		$f = 1.0\text{MHz}$, See Fig.5
C_{oss} eff. (ER)	Effective Output Capacitance (Energy Related)	—	2330	—		$V_{\text{GS}} = 0\text{V}$, $V_{\text{DS}} = 0\text{V}$ to 32V ⑦, See Fig.11
C_{oss} eff. (TR)	Effective Output Capacitance (Time Related)	—	2815	—		$V_{\text{GS}} = 0\text{V}$, $V_{\text{DS}} = 0\text{V}$ to 32V ⑥

Diode Characteristics

	Parameter	Min.	Typ.	Max.	Units	Conditions
I_S	Continuous Source Current (Body Diode)	—	—	386①	A	MOSFET symbol showing the integral reverse p-n junction diode.
I_{SM}	Pulsed Source Current (Body Diode) ②	—	—	1544		
V_{SD}	Diode Forward Voltage	—	—	1.3	V	$T_J = 25^\circ\text{C}$, $I_S = 195\text{A}$, $V_{\text{GS}} = 0\text{V}$ ⑤
t_{rr}	Reverse Recovery Time	—	41	62	ns	$T_J = 25^\circ\text{C}$ $V_R = 34\text{V}$,
		—	51	77		$T_J = 125^\circ\text{C}$ $I_F = 232\text{A}$
Q_{rr}	Reverse Recovery Charge	—	62	93	nC	$T_J = 25^\circ\text{C}$ $\text{di}/\text{dt} = 100\text{A}/\mu\text{s}$ ⑤
		—	99	149		$T_J = 125^\circ\text{C}$
I_{RRM}	Reverse Recovery Current	—	2.3	—	A	$T_J = 25^\circ\text{C}$
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

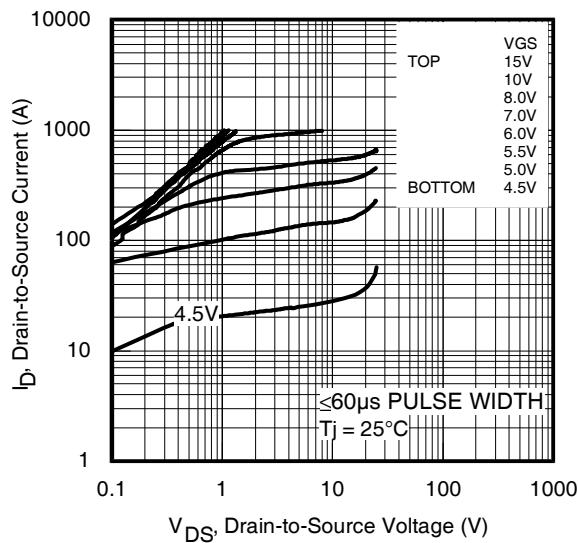
① Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.(Refer to AN-1140

<http://www.irf.com/technical-info/appnotes/an-1140.pdf>

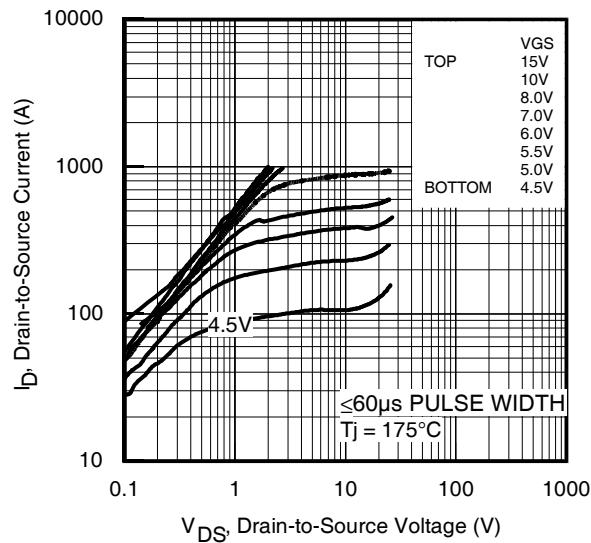
② Repetitive rating; pulse width limited by max. junction temperature.

③ Limited by T_{Jmax} , starting $T_J = 25^\circ\text{C}$, $L = 0.018\text{mH}$

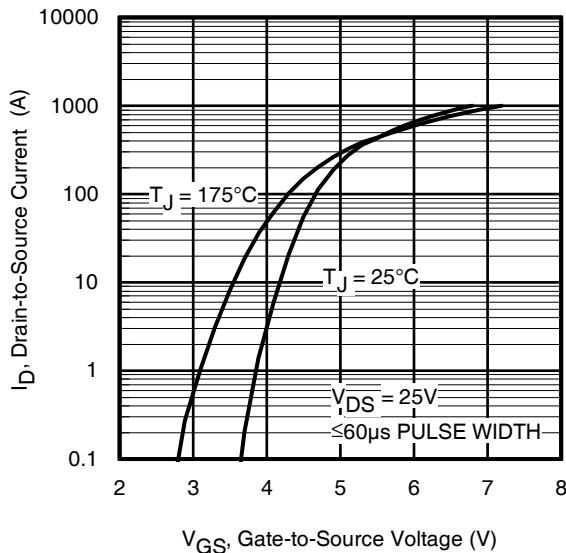
$R_G = 50\Omega$, $I_{\text{AS}} = 232\text{A}$, $V_{\text{GS}} = 10\text{V}$. Part not recommended for use above this value.

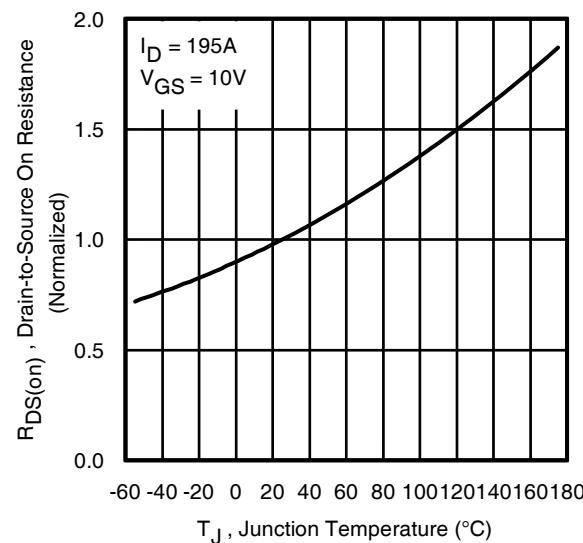

④ $I_{\text{SD}} \leq 232\text{A}$, $\text{di}/\text{dt} \leq 907\text{A}/\mu\text{s}$, $V_{\text{DD}} \leq V_{(\text{BR})\text{DSS}}$, $T_J \leq 175^\circ\text{C}$.

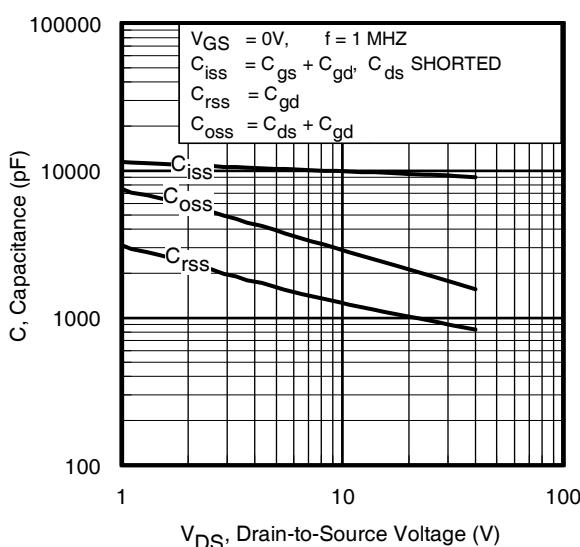
⑤ Pulse width $\leq 400\mu\text{s}$; duty cycle $\leq 2\%$.

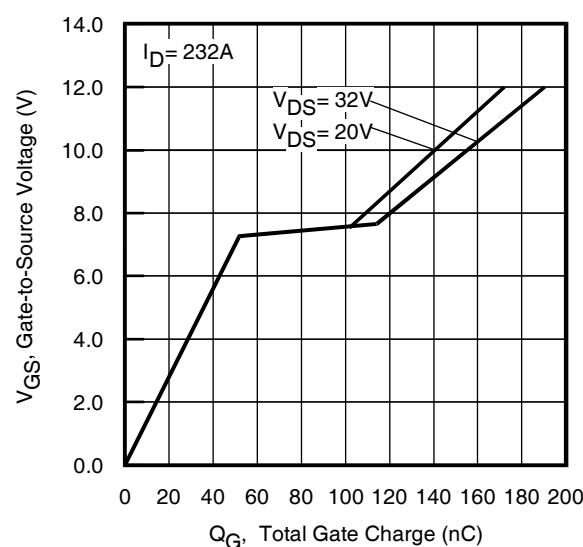

⑥ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

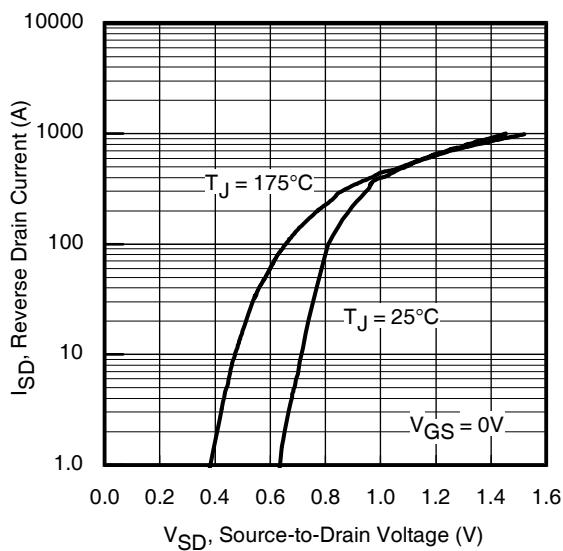
⑦ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

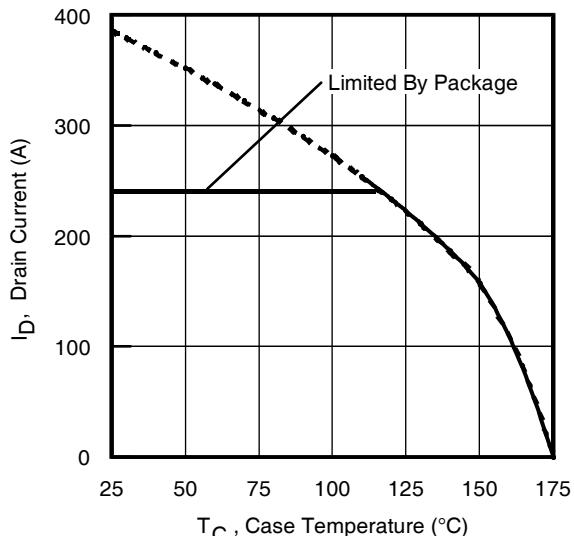

⑧ R_θ is measured at T_J approximately 90°C .

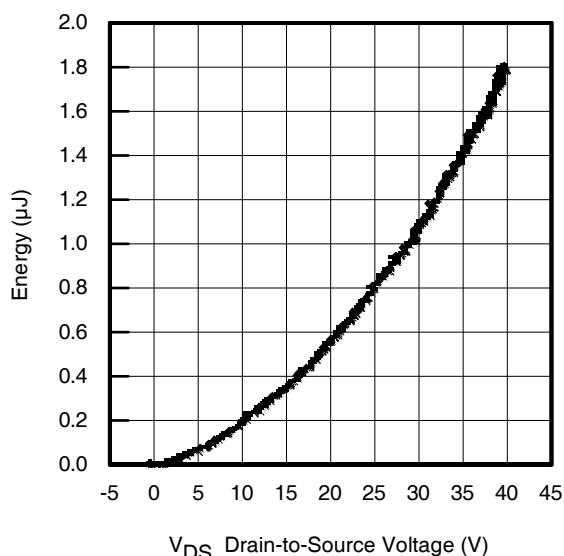

Fig 1. Typical Output Characteristics

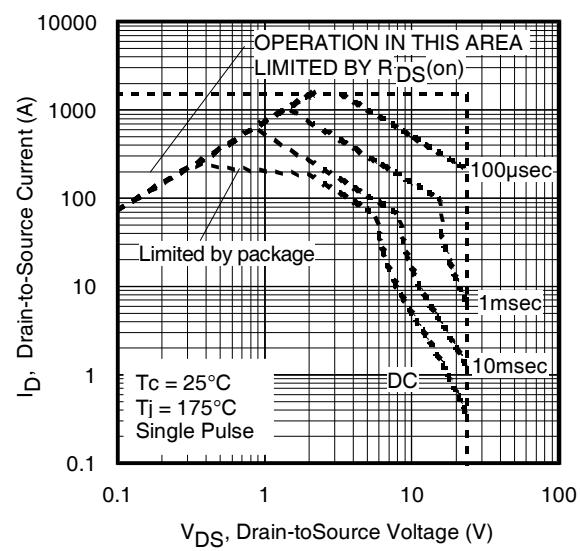

Fig 2. Typical Output Characteristics

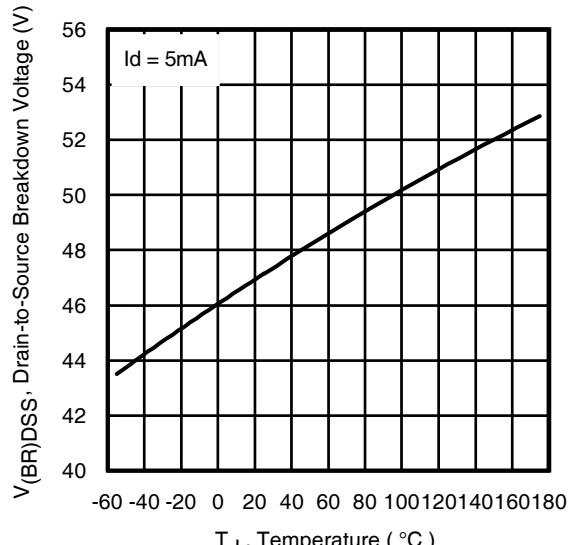

Fig 3. Typical Transfer Characteristics


Fig 4. Normalized On-Resistance vs. Temperature


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage


Fig 7. Typical Source-Drain Diode Forward Voltage


Fig 9. Maximum Drain Current vs. Case Temperature

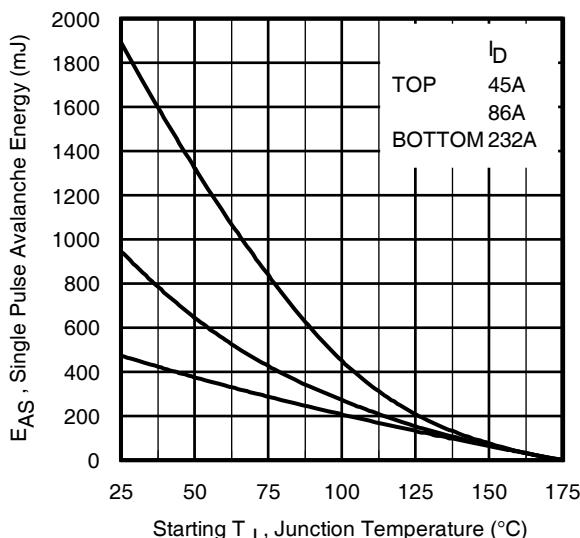

Fig 11. Typical C_{oss} Stored Energy

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 12. Maximum Avalanche Energy vs. Drain Current

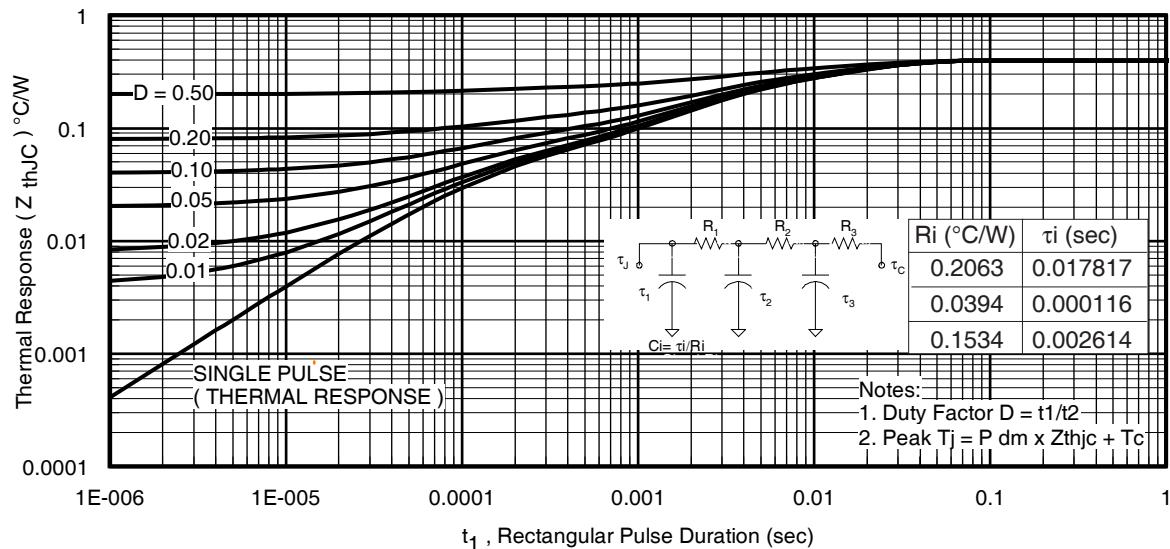


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

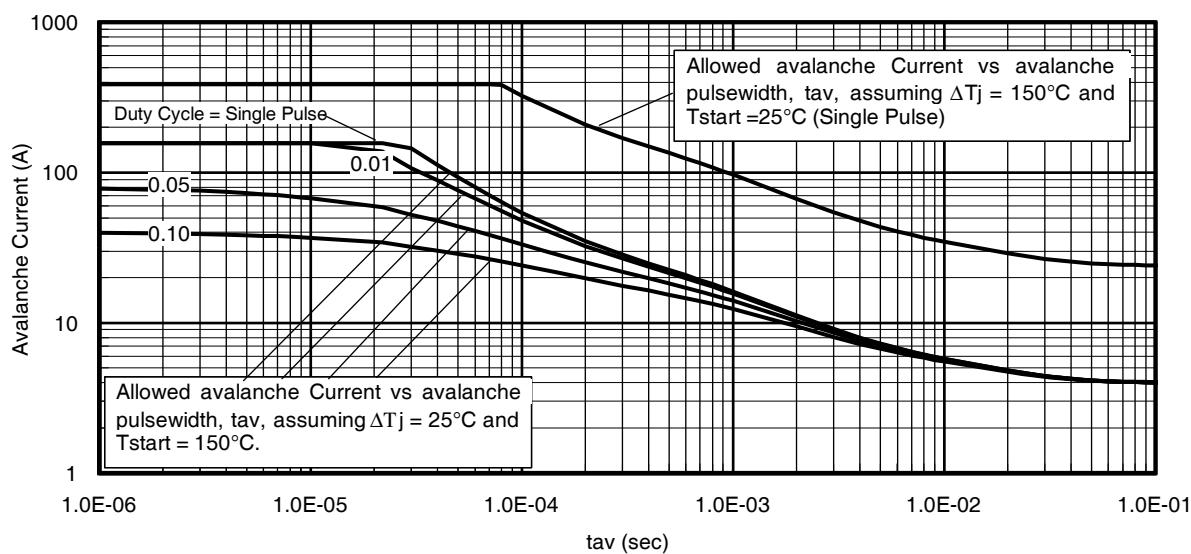
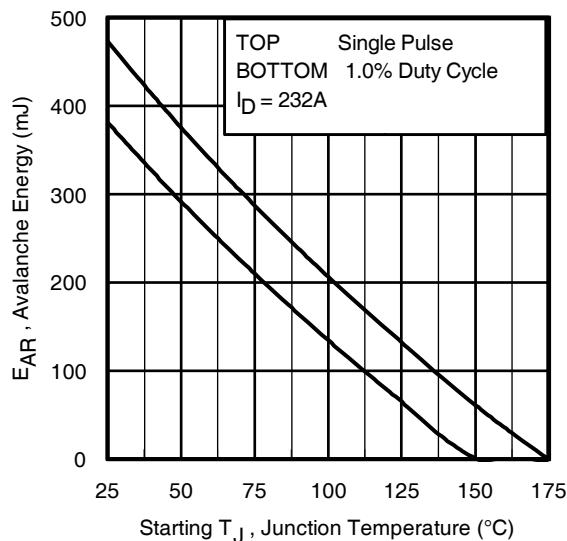
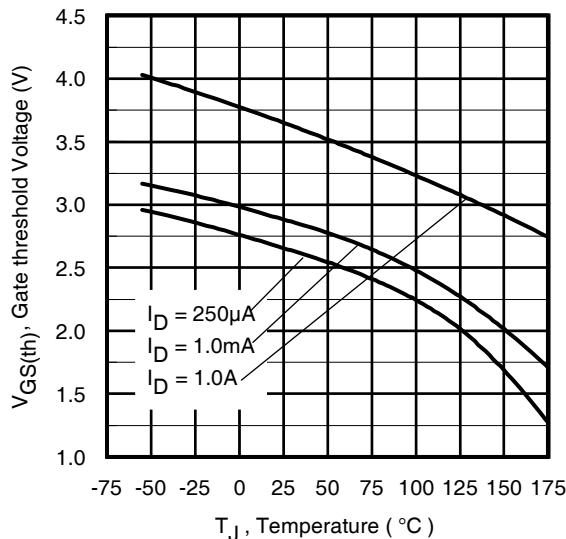
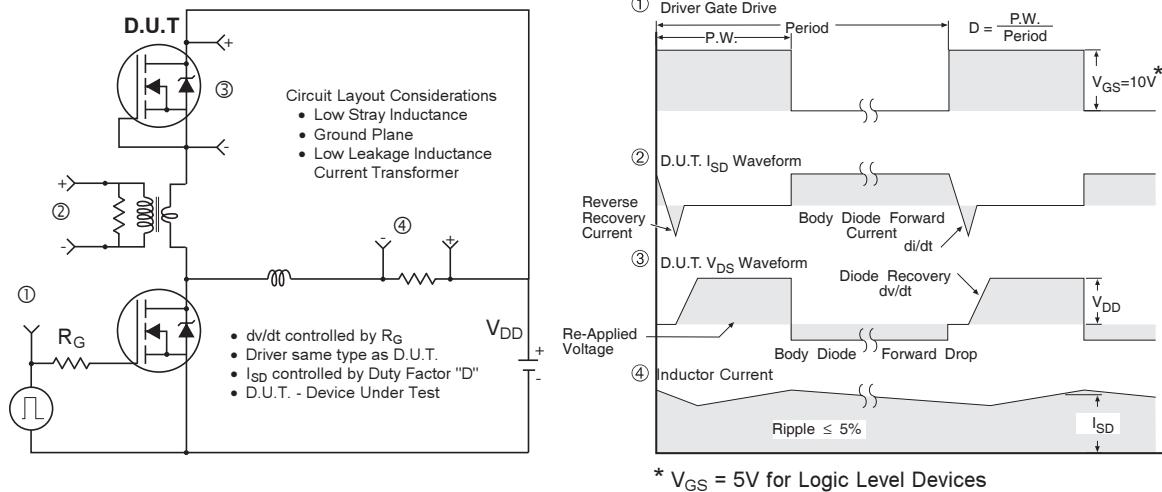



Fig 14. Typical Avalanche Current vs. Pulsewidth

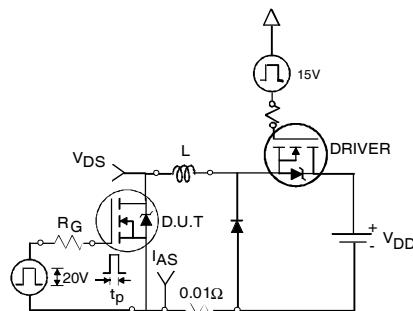
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)

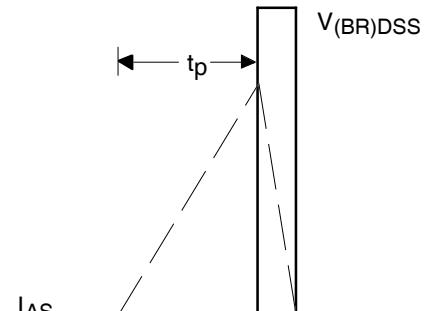

1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
3. Equation below based on circuit and waveforms shown in Figure 22a, 22b.
4. $P_D(\text{ave})$ = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
6. I_{av} = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).
8. t_{av} = Average time in avalanche.
9. D = Duty cycle in avalanche = $t_{av} \cdot f$
10. $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13

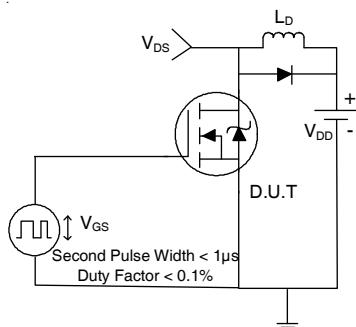
$$P_D(\text{ave}) = 1/2 (1.3 \cdot BV \cdot I_{av}) = \Delta T / Z_{thJC}$$

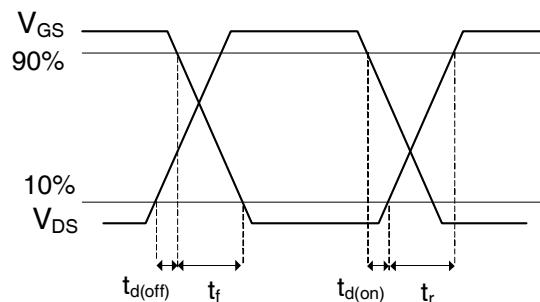

$$I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$$

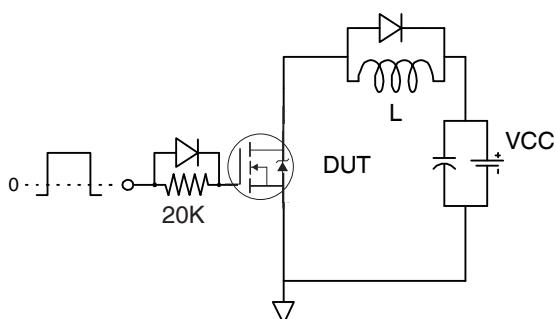
$$E_{AS(AR)} = P_D(\text{ave}) \cdot t_{av}$$


Fig 15. Maximum Avalanche Energy vs. Temperature


Fig 16. Threshold Voltage vs. Temperature


Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs


Fig 22a. Unclamped Inductive Test Circuit


Fig 22b. Unclamped Inductive Waveforms

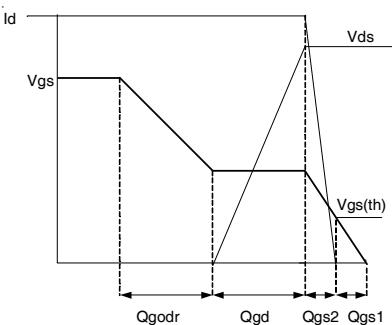

Fig 23a. Switching Time Test Circuit

Fig 23b. Switching Time Waveforms

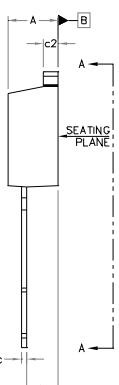
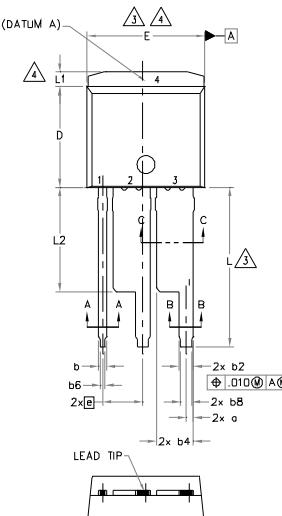


Fig 24a. Gate Charge Test Circuit

Fig 24b. Gate Charge Waveform

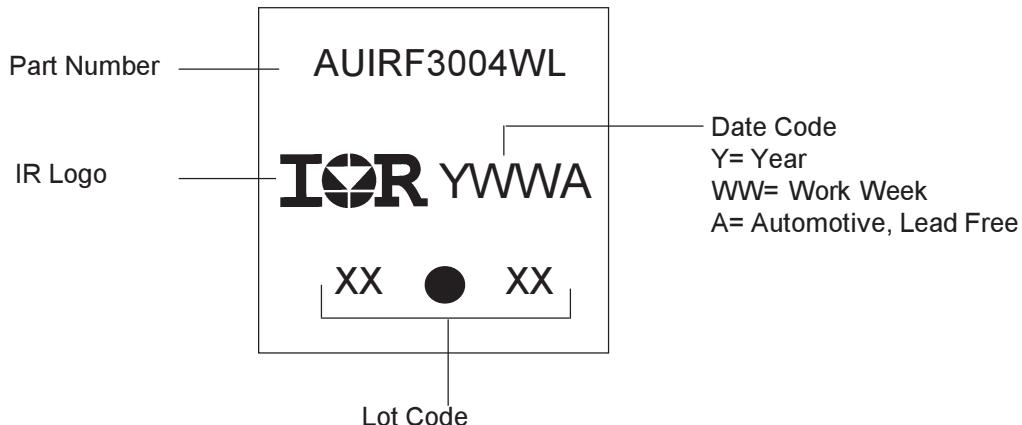
TO-262 WideLead Package Outline

Dimensions are shown in millimeters (inches)

S Y M B O L	DIMENSIONS				N O T E S	
	MILLIMETERS		INCHES			
	MIN.	MAX.	MIN.	MAX.		
A	4.06	4.83	.160	.190		
A1	2.03	3.02	.080	.119		
b	0.20	0.51	.008	.020		
b1	0.51	0.91	.020	.036	5	
b2	1.07	1.47	.042	.058		
b3	1.07	1.37	.042	.054	5	
b4	3.05	3.45	.120	.136		
b5	3.05	3.35	.120	.132	5	
b6	0.25	0.61	.010	.024		
b7	0.25	0.51	.010	.020	5	
b8	0.76	1.17	.030	.046		
b9	0.76	1.07	.030	.022	5	
c	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.51	9.65	.335	.380	3	
D1	6.86	7.42	.270	.292	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	8.48	.245	.334	4	
e	3.81	BSC	.150	BSC		
L	13.46	14.10	.530	.555		
L1	—	1.65	—	.065	4	
L2	8.64	9.40	.340	.370		


NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
5. DIMENSION b3, b5, b7, b9 AND c1 APPLY TO BASE METAL ONLY.
6. CONTROLLING DIMENSION: INCH.
7. OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.


LEAD ASSIGNMENTS

HEXFET

1. GATE
2. DRAIN
3. SOURCE

TO-262 WideLead Part Marking Information

Note: For the most current drawing please refer to IR website at <http://www.irf.com/package/>

Ordering Information

Base part number	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIRF3004WL	TO-262 WideLead	Tube	50	AUIRF3004WL

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center
<http://www.irf.com/technical-info/>

WORLD HEADQUARTERS:
101 N. Sepulveda Blvd., El Segundo, California 90245
Tel: (310) 252-7105