

FEATURES

- UL60950 recognition pending
- Output regulation <1%
- Single isolated output
- 3kVDC isolation 'Hi-Pot Test'
- 3.3V & 5V input
- 3.3V & 5V output
- SMD construction
- Patent protected
- Short circuit protection

DESCRIPTION

The NXF1 series of DC-DC converters is used where a tightly regulated supply is required. They are ideal for situations where the input voltage is not tightly controlled. The single rail regulated output makes the ideal choice to power sensors, such as pressure transducers, hall effect sensors and mass airflow sensors.

NXF1 Series

Isolated 1W Regulated Single Output DC-DC Converters

SELECTION GUIDE

Order Code ¹	Nominal Input Voltage	Output Voltage	Output Current	Ripple & Noise (Typ.)	Ripple & Noise (Max.)	Input Current (Typ.)	Efficiency (Min.)	Efficiency (Typ.)	Isolation Capacitance	MTTF ²
	V	V	mA	mVp-p	mA	%	%	pF	kHrs MIL TEL	
NXF1S0303MC³	3.3	3.3	303	10	30	510	56	59	3	1093 9499
NXF1S0305MC	3.3	5	200	15	40	510	55.5	59	3	1053 11148
NXF1S0505MC	5	5	200	15	40	310	62	65	3	937 14652

INPUT CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Voltage range	Continuous operation, 3.3V input types	3.135	3.3	3.465	V
	Continuous operation, 5V input types	4.75	5	5.25	
Reflected ripple current	3.3V Input types		15		mA p-p
	5V Input types		5		

OUTPUT CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Voltage set point accuracy	3.3V Output		±1		%
	5V Output		±2		
Rated power	T _A = -40°C to 85°C			1	W
	High VIN to low VIN	3.3V Output	0.03	0.1	
Line regulation	5V output	0.01	0.1		%/%
	3.3V output types (10% load to rated load)	0.5	1		
Load regulation	5V output types	0.4	1		%

ABSOLUTE MAXIMUM RATINGS

Short-circuit protection	Continuous and auto recovery
Input voltage V _{IN} , NXF1S03 types	4V
Input voltage V _{IN} , NXF1S05 types	7V

ISOLATION CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Isolation test voltage	Production tested for 1 second	3000			VDC
	Qualification tested for 1 minute	3300			
Resistance	V _{iso} = 1kVDC	10			GΩ

GENERAL CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Switching frequency	NXF1S0303MC		90		kHz
	NXF1S0305MC		106		
	NXF1S0505MC		270		

TEMPERATURE CHARACTERISTICS

Parameter	Conditions	Min.	Typ.	Max.	Units
Specification	See derating graphs	3.3V Input types	-40	90	°C
		5V input types	-40	105	
Storage		-50		125	
	3.3V input types		36		
Product temperature above ambient	5V input type		28		
	Free air convection				

1. Components are supplied in tape and reel packaging, please refer to package specification section. Orderable part numbers are NXF1SXXXXMC-R7 (160 pieces per reel), or NXF1SXXXXMC-R13 (740 pieces per reel).

2. Calculated using MIL-HDBK-217F with nominal input voltage at full load.

3. NXF1S0303MC is in preliminary stages.

All specifications typical at T_A=25°C, nominal input voltage and rated output current unless otherwise specified.

For full details go to
www.murata-ps.com/rohs

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions NXF1 series of DC-DC converters are all 100% production tested at 3kVDC for 1 second and has been qualification tested at 3.3kVDC for 1 minute.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The NXF1 series is pending recognition by Underwriters Laboratory to 125 Vrms Reinforced Insulation and 250Vrms Basic insulation, please see safety approval section below.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. The NXF1 series has a PCB embedded isolated transformer, using FR4 as an insulation barrier between primary and secondary windings. While parts can be expected to withstand several times the stated test voltage, the isolation capability does depend on the FR4 insulation properties. Any material, including FR4 is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage should be reduced by 20% from specified test voltage.

This consideration equally applies to agency recognized parts rated for better than functional isolation where the insulation is always supplemented by a further insulation system of physical spacing or barriers.

SAFETY APPROVAL

ANSI/AAMI ES60601-1

The NXF1 series is pending recognition by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 2 MOOP (Means Of Operator Protection) and 1MOPP (Means of patient protection) based upon a working voltage of 250 Vrms max, between Primary and Secondary.

UL60950

The NXF1 series is pending recognition by Underwriters Laboratory (UL) to UL60950 for reinforced insulation to a working voltage of 125 Vrms and for basic insulation to a working voltage of 250Vrms.

RoHS COMPLIANCE INFORMATION

This series is compatible with Pb-Free soldering systems and is also backward compatible with Sn/Pb soldering systems.

The NXF1 series can be soldered in accordance with J-STD-020 and have a classification temperature of 260°C and moisture sensitivity level 2. The termination finish on this product is Gold with plating thickness 0.12 microns.

APPLICATION NOTES (continued)

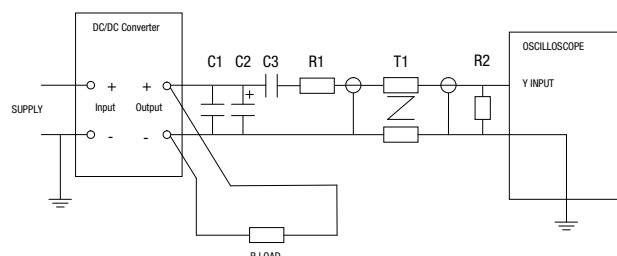
Capacitive loading and start up

Typical start up times for this series, with a typical input voltage rise time of 2.2 μ s and output capacitance of 10 μ F, are shown in the table below. In most applications an output capacitance is 10 μ F is usually sufficient, the maximum allowable output capacitance is as follows.

Output Voltage (V)	Maximum Output Capacitance
3.3	33
5	47

	Start-up time
	ms
NXF1S0303MC	0.35
NXF1S0305MC	0.24
NXF1S0505MC	15

NXF1S0505MC

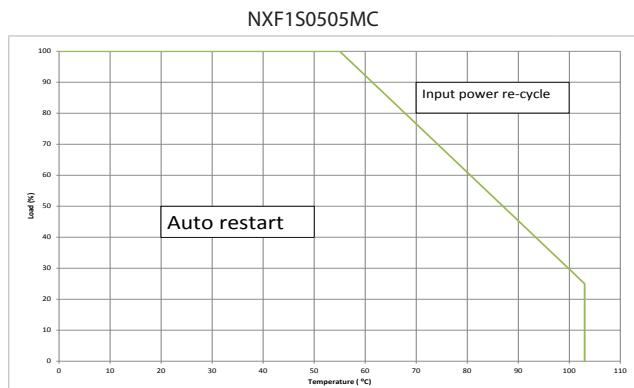

Ripple & Noise Characterisation Method

Ripple and noise measurements are performed with the following test configuration.

C1	1 μ F X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC-DC converter
C2	10 μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC-DC converter with an ESR of less than 100m Ω at 100 kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450 Ω resistor, carbon film, $\pm 1\%$ tolerance
R2	50 Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC-DC converter. Connections should be made via twisted wires

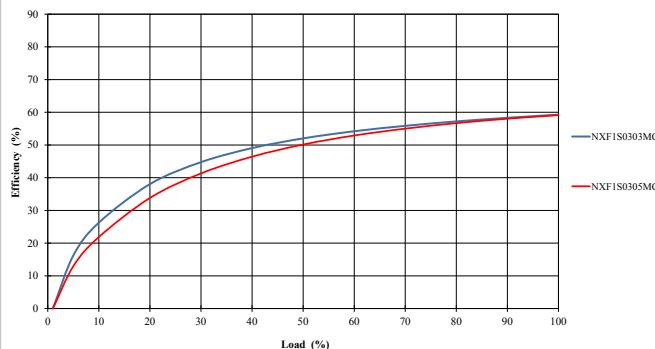
Measured values are multiplied by 10 to obtain the specified values.

Differential Mode Noise Test Schematic

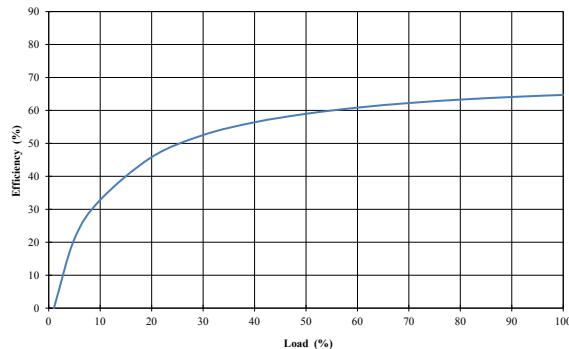


APPLICATION NOTES

Short Circuit Performance

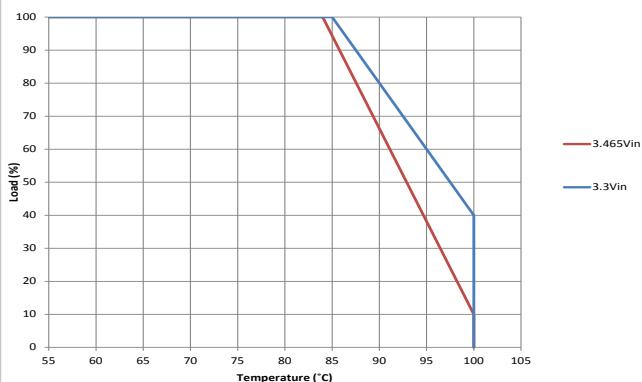

The NXF1 series short circuit protection is continuous, the NXF1S0303MC and NXF1S0305MC will auto restart under all datasheet operating conditions after a short circuit.

For the NXF1S0505MC, the short circuit protection is continuous, however, at higher temperatures or output current, the part will not automatically restart following a short circuit condition. At higher temperatures or higher load as shown in the below graph, the input power must be re-cycled for the part to restart.

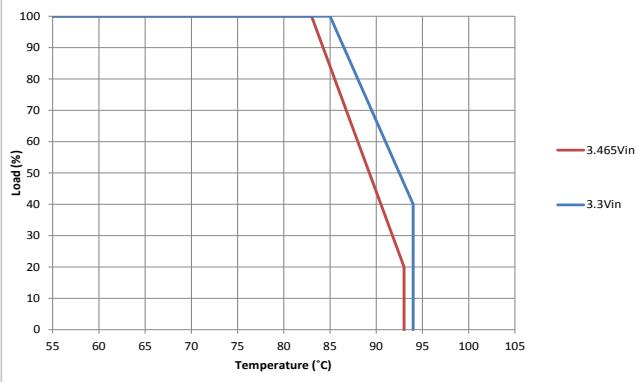


EFFICIENCY VS LOAD

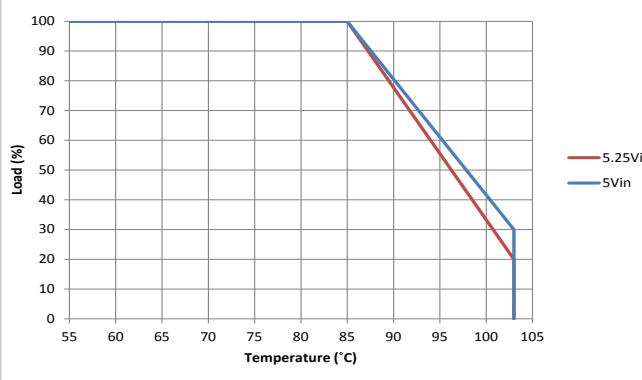
3.3V Input



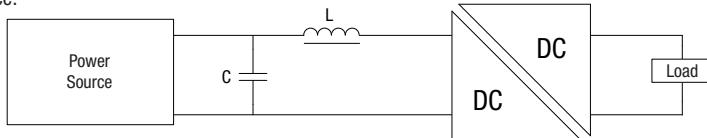
5V Input



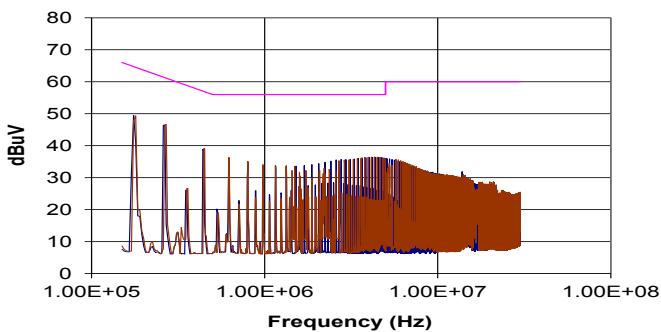
DERATING CURVES


NXF1S0303MC

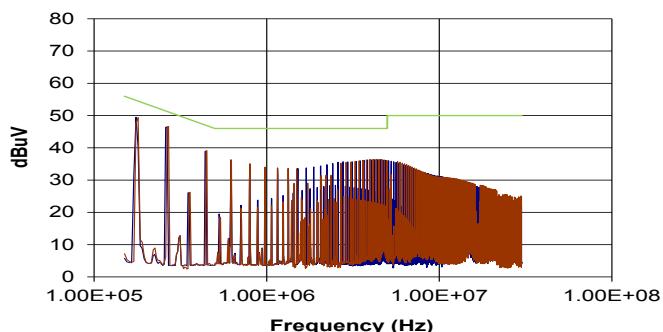
NXF1S0305MC


NXF1S0505MC

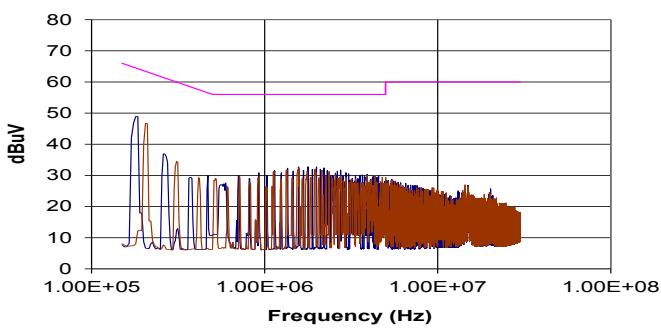
EMC FILTERING AND SPECTRA

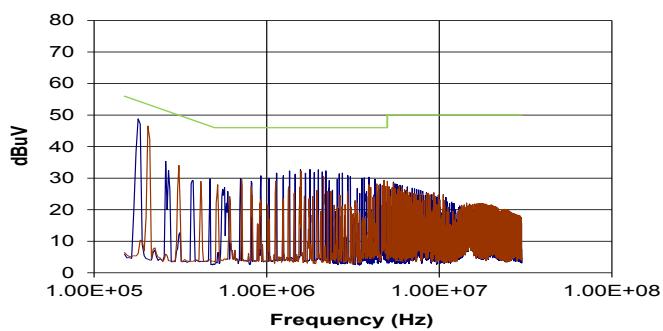

FILTERING

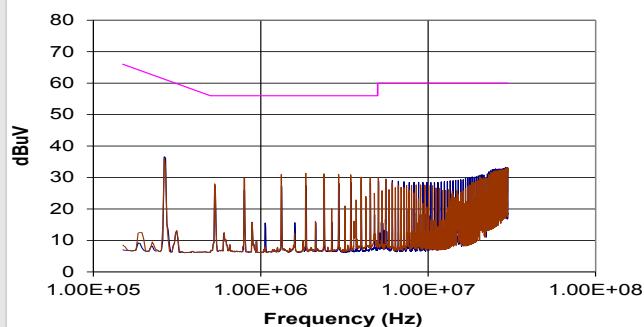
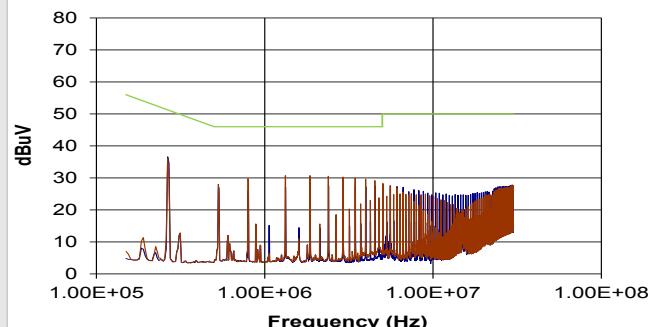
The following filter circuit and filter table shows the input filters typically required to meet conducted emissions limits for EN 55022 curve B using Quasi-Peak (pink line) and average (green line) detectors according to CISPR 22. The following plots show measurements of the positive (L1) and negative (L2) inputs for both Quasi-peak limit B adherence and Average limit B adherence.



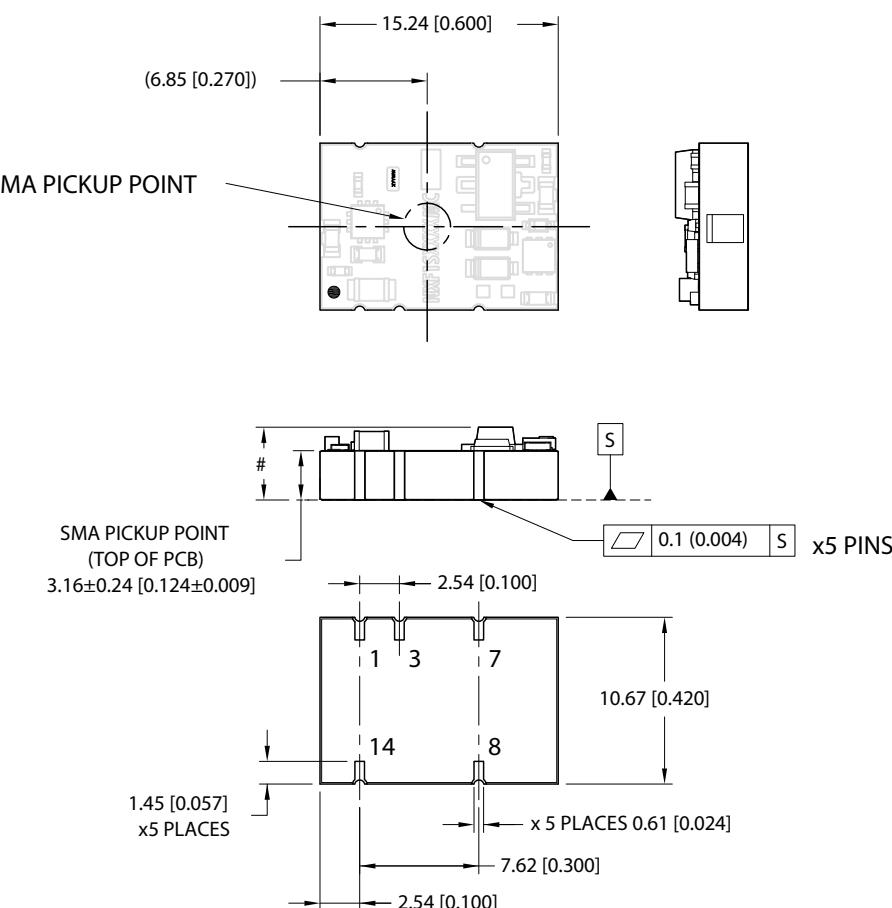
	Inductor			Capacitor	
	L, μ H	SMD	Through Hole	C, μ F	SMD
NXF1S0303MC	15	84103C	11R103C	10	GRM21BD70J226ME44
NXF1S0305MC	15	84103C	11R103C	10	GRM21BD70J226ME44
NXF1S0505MC	3.3	82472C	11R472C	4.7	GRM21BR71A475KA73


NXF1S0303MC (Quasi-Peak)


NXF1S0303MC (Average)

NXF1S0305MC (Quasi-Peak)


NXF1S0305MC (Average)

EMC FILTERING AND SPECTRA (continued)**NXF1S0505MC (Quasi-Peak)****NXF1S0505MC (Average)**

PACKAGE SPECIFICATIONS

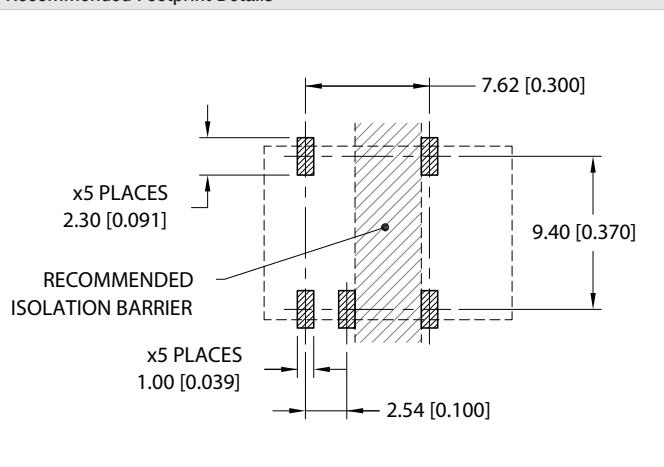
Mechanical Dimensions

Pin Connections

Pin	Function
1	-Vin
3	+Vin
7	-Vout
8	+Vout
14	NC

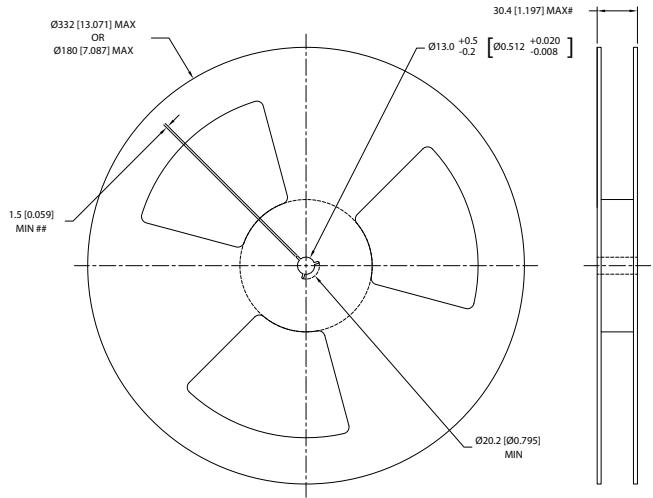
NC - No connection.

Dimension Information

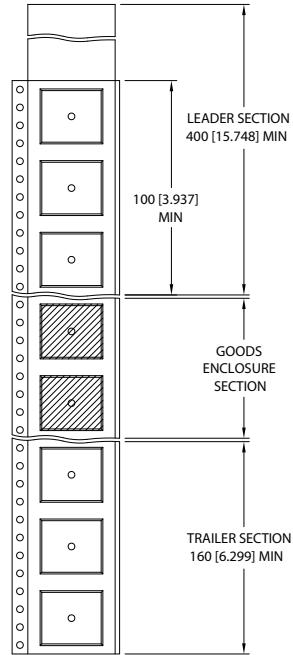

Variant	Dim #
NXF1S0303MC	4.41±0.4mm [0.174±0.016]
NXF1S0305MC	4.66±0.35mm
NXF1S0505MC	[0.183±0.014]

All dimensions in mm (inches), Controlling dimension is mm. Tolerances (unless otherwise stated) ±0.20 (0.008). Components shown for reference only

All dimensions in mm (inches), Controlling dimension is mm. Tolerances (unless otherwise stated) ±0.20 (0.008). Components shown for reference only

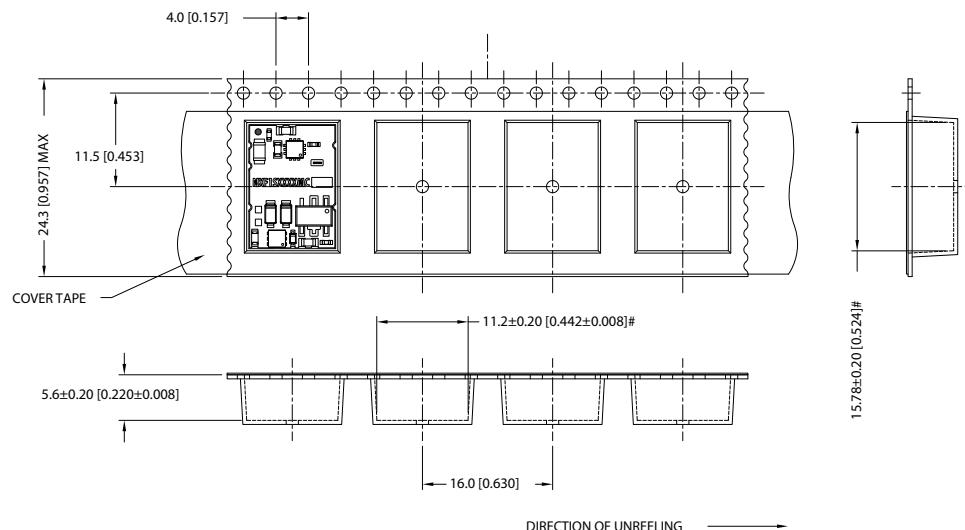

Weight: 1.3g

Recommended Footprint Details


TAPE & REEL SPECIFICATIONS

REEL OUTLINE DIMENSIONS

TAPE & REEL SPECIFICATIONS SHALL CONFORM WITH CURRENT EIA-481 STANDARD
UNLESS OTHERWISE STATED ALL DIMENSIONS IN mm (INCHES)
CONTROLLING DIMENSION IS mm
MEASURED AT HUB
SIX EQUI-SPACED SLOTS ON 180mm/7" REEL


REEL PACKAGING DETAILS

Carrier tape pockets shown are
illustrative only - Refer to carrier tape
diagram for actual pocket details.

Reel Quantity: 7" - 160 or 13" - 740

TAPE OUTLINE DIMENSIONS

Tape & Reel specifications shall conform with current EIA-481 standard
Unless otherwise stated all dimensions in mm(inches) ±0.1mm (±0.004 Inches)
Controlling dimension is mm
Components shall be orientated within the carrier tape as indicated
Measured on a plane 0.3mm above the bottom pocket

This product is subject to the following [operating requirements](#)
and the [Life and Safety Critical Application Sales Policy](#):
Refer to: <http://www.murata-ps.com/requirements/>

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2018 Murata Power Solutions, Inc.