

Very low drop voltage regulator

Features

- Operating DC supply voltage range 6 V to 28 V
- Transient supply voltage up to 40 V
- Extremely low quiescent current
- High precision output voltage
- Output current capability up to 500 mA
- Very low dropout voltage less than 0.6 V
- Reset circuit sensing the output voltage
- Programmable reset pulse delay with external capacitor
- Thermal shutdown and short circuit protections

Description

The L4925 is a monolithic integrated 5 V voltage regulator with a very low dropout output and additional functions such as power-on reset and programmable reset delay time.

It is designed for supplying microcomputer controlled systems especially in automotive applications.

Table 1. Device summary

Package	Order codes	
	Tube	Tape and reel
PowerSO-20	L4925PD	L4925PD013TR

Contents

1	Block and pin connections diagrams	5
1.1	Thermal data	5
2	Electrical specifications	6
2.1	Absolute maximum ratings	6
2.2	Electrical characteristics	6
3	Functional description	8
3.1	Voltage regulator	8
3.2	Reset circuit	9
4	Application information	11
4.1	Supply voltage transients	11
4.2	Application circuit	11
5	Package Informations	12
6	Revision history	13

List of tables

Table 2.	Thermal data.....	5
Table 3.	Absolute maximum ratings	6
Table 4.	Electrical characteristics	6
Table 5.	Document revision history	13

List of figures

Figure 1.	Block diagram	5
Figure 2.	PowerSO-20 pin connections (top view)	5
Figure 3.	Foldback characteristics of V_O	8
Figure 4.	Output voltage vs input voltage	9
Figure 5.	Quiescent current vs supply voltage	9
Figure 6.	Block circuit diagram	10
Figure 7.	Reset output waveforms	10
Figure 8.	Application circuit diagram	11
Figure 9.	PowerSO-20 mechanical data and package dimensions	12

1 Block and pin connections diagrams

Figure 1. Block diagram

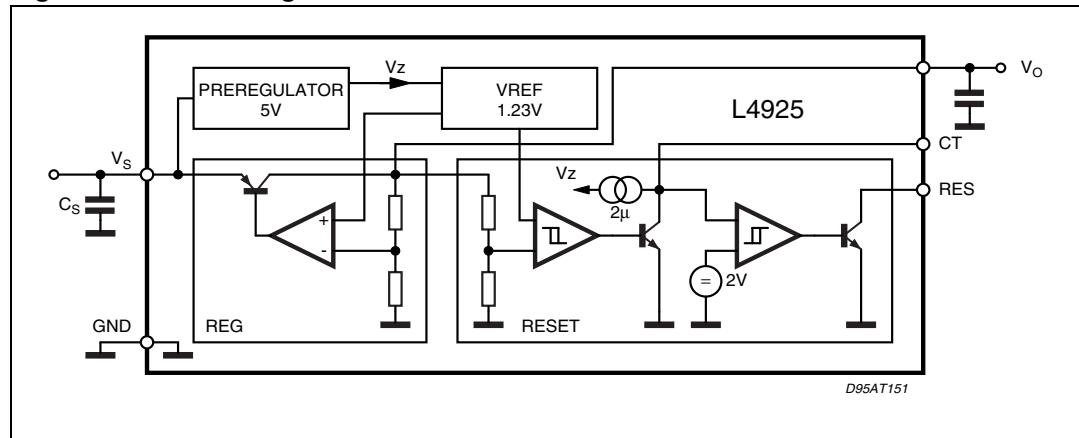
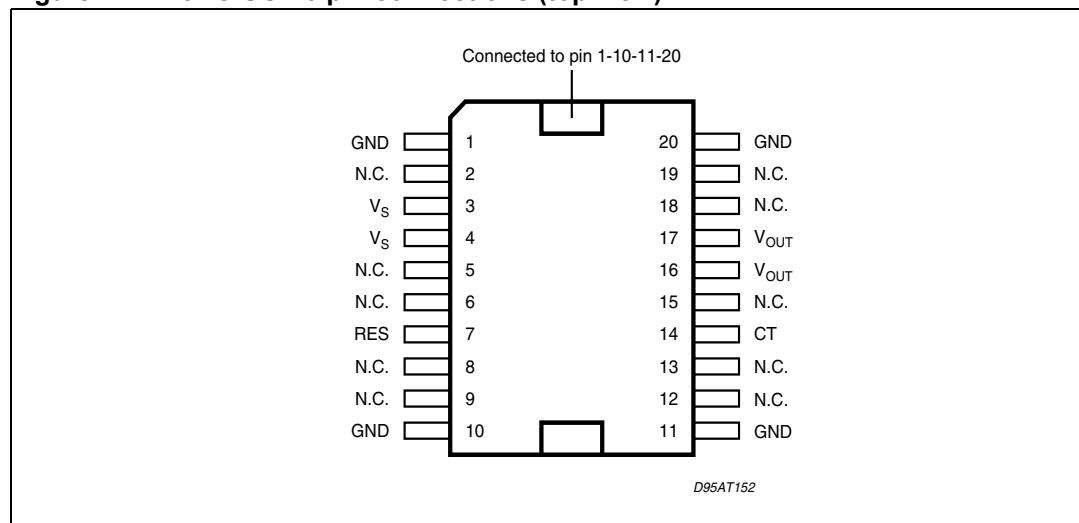



Figure 2. PowerSO-20 pin connections (top view)

1.1 Thermal data

Table 2. Thermal data

Symbol	Parameter	PowerSO-20	Unit
$R_{th(j-amb)}$	Thermal resistance junction to ambient	15 to 60	$^{\circ}\text{C/W}$
$R_{th(j-c)}$	Thermal resistance junction to case (max)	3.5	$^{\circ}\text{C/W}$

2 Electrical specifications

2.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{SDC}	DC operating supply voltage	28	V
V_{STR}	Transient supply voltage ($t < 1s$)	40	V
I_O	Output current	internally limited	
V_O	Output voltage	20	V
V_{RES}	Output voltage	20	V
I_{RES}	Output current	5	mA
T_{stg}	Storage temperature	-55 to 150	°C
T_j	Operating junction temperature	-40 to 150	°C
T_{j-SD}	Thermal shutdown-junction temperature	165	°C

Note: The circuit is ESD protected according to MIL-STD-883C. According to ISO/DIS 7637 the transients must be clamped with external circuitry (see Application Circuit).

2.2 Electrical characteristics

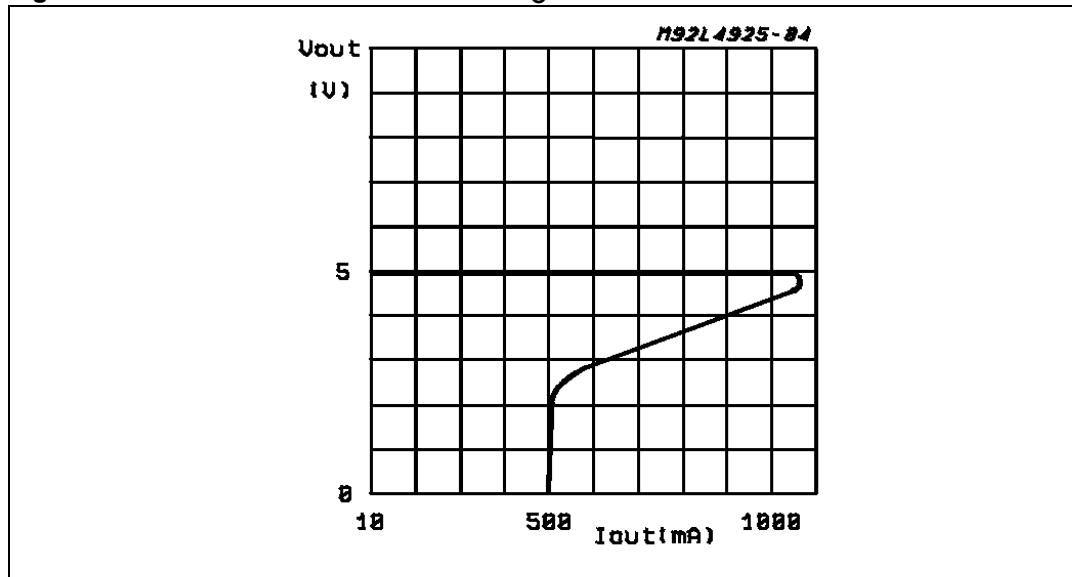
$V_S = 14$ V; $T_j = -40$ to 125 °C unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
V_O	Output voltage	$V_I = 6$ to 28 V; $I_O = 1$ to 500 mA	4.90	5	5.10	V
V_O	Output voltage	$V_I = 35$ V; $T < 1$ s; $I_O = 1$ to 500 mA			5.50	V
V_{DP}	Dropout voltage	$I_O = 100$ mA		0.2	0.3	V
		$I_O = 500$ mA		0.3	0.6	V
V_{IO}	Input to output voltage difference in undervoltage condition	$V_I = 4$ V; $I_O = 100$ mA			0.5	V
V_{OL}	Line regulation	$V_I = 6$ to 28 V; $I_O = 1$ to 1 mA			10	mV
V_{OLO}	Load regulation	$I_O = 1$ to 500 mA			50	mV
I_{LIM}	Current limit	$V_O = 4.5$ V;	550	1000	1500	mA
		$V_O = 0$; Foldback characteristic		250		mA
I_{QSE}	Quiescent current	$I_O = 0.3$ mA		190	360	μA
I_Q	Quiescent current	$I_O = 500$ mA			20	mA

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
Reset						
V_{RT}	Reset threshold voltage		4.2		4.8	V
V_{RTH}	Reset threshold		50	100	200	mV
t_{RD}	Reset pulse delay	$C_T = 100 \text{ nF}; t_R \geq 100 \mu\text{s}$	60	100	140	ms
t_{RR}	Reset reaction time	$C_T = 100 \text{ nF};$		5	30	μs
V_{RL}	Reset output low voltage	$R_{RES} = 10 \text{ K}\Omega \text{ to } V_O; V_S = \geq 3 \text{ V}$			0.4	V
I_{RH}	Reset output high leakage current	$V_{RES} = 5 \text{ V}$			1	μA
V_{CTth}	Delay comparator threshold			2		V
$V_{CTth\ hy}$	Delay comparator threshold hysteresis			200		mV


3 Functional description

The L4925 is a monolithic integrated voltage regulator, based on the STM modular voltage regulator approach. Several outstanding features and auxiliary functions are implemented to meet the requirements of supplying microprocessor systems in automotive applications. Nevertheless, it is suitable also in other applications where the present functions are required. The modular approach of this device allows to get easily also other features and functions when required.

3.1 Voltage regulator

The voltage regulator uses an Isolated Collector Vertical PNP transistor as a regulating element. With this structure very low dropout voltage at currents up to 500 mA is obtained.

Figure 3. Foldback characteristics of V_O

The dropout operation of the standby regulator is maintained down to 3 V input supply voltage. The output voltage is regulated up to the transient input supply voltage of 35 V. With this feature no functional interruption due to overvoltage pulses is generated.

The typical curve showing the standby output voltage as a function of the input supply voltage is shown in [Figure 4](#).

The current consumption of the device (quiescent current) is less than 250 μ A. To reduce the quiescent current peak in the undervoltage region and to improve the transient response in this region, the dropout voltage is controlled.

The quiescent current as a function of the supply input voltage is shown in [Figure 5](#).

Figure 4. Output voltage vs input voltage

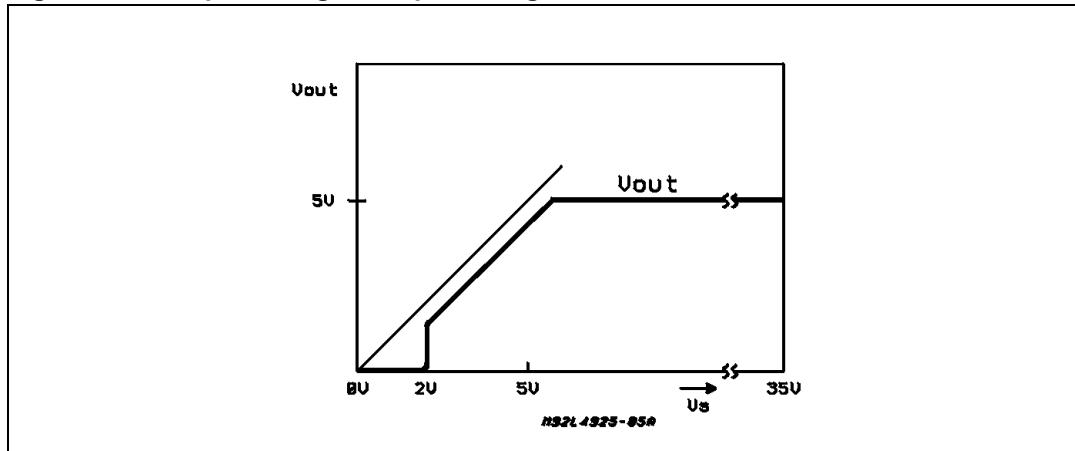
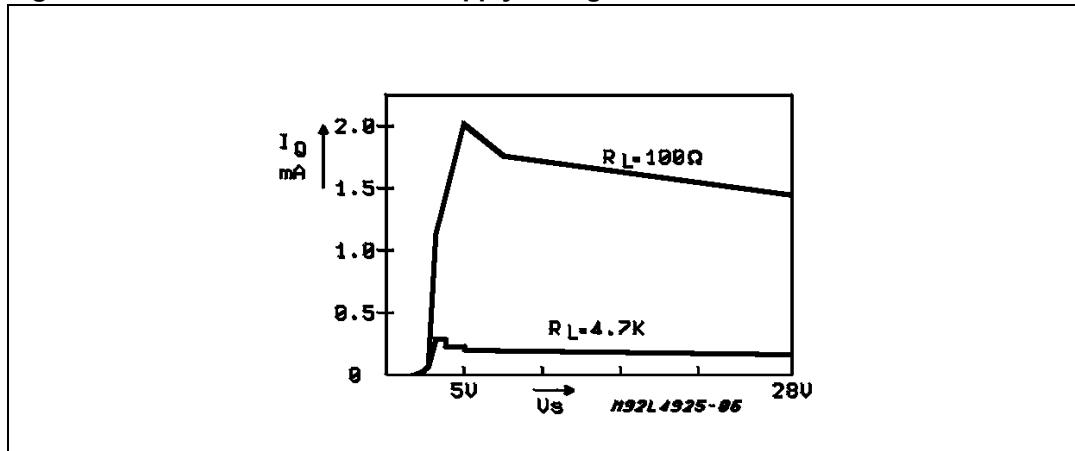
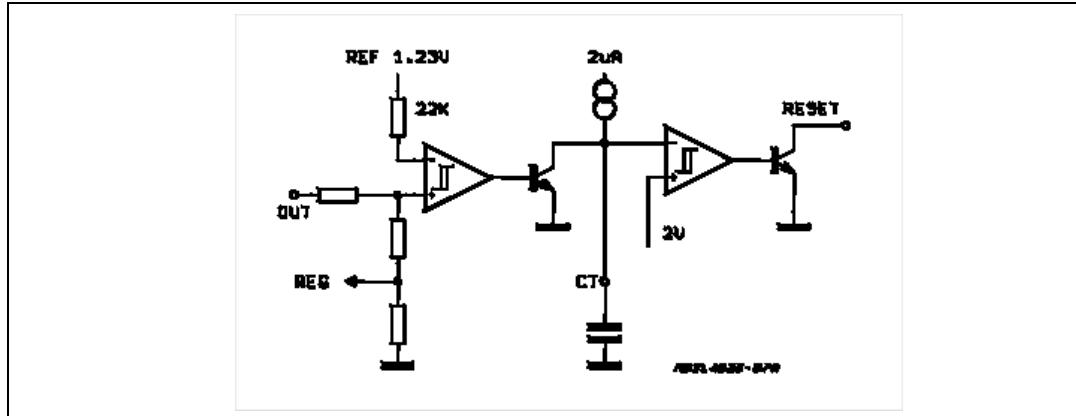
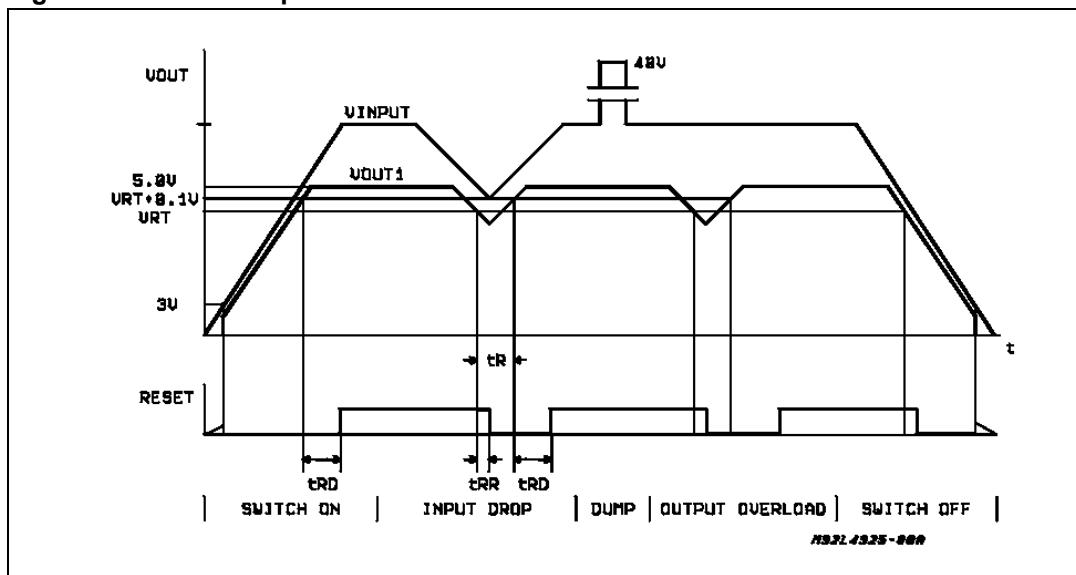



Figure 5. Quiescent current vs supply voltage

3.2 Reset circuit


The block circuit diagram of the reset circuit is shown in [Figure 6](#). The reset circuit supervises the output voltage. The reset threshold of 4.5 V is defined with the internal reference voltage and standby output divider. The reset pulse delay time t_{RD} is defined with the charge time of an external capacitor CT:

$$t_{RD} = \frac{C_T \cdot 2V}{2\mu A}$$

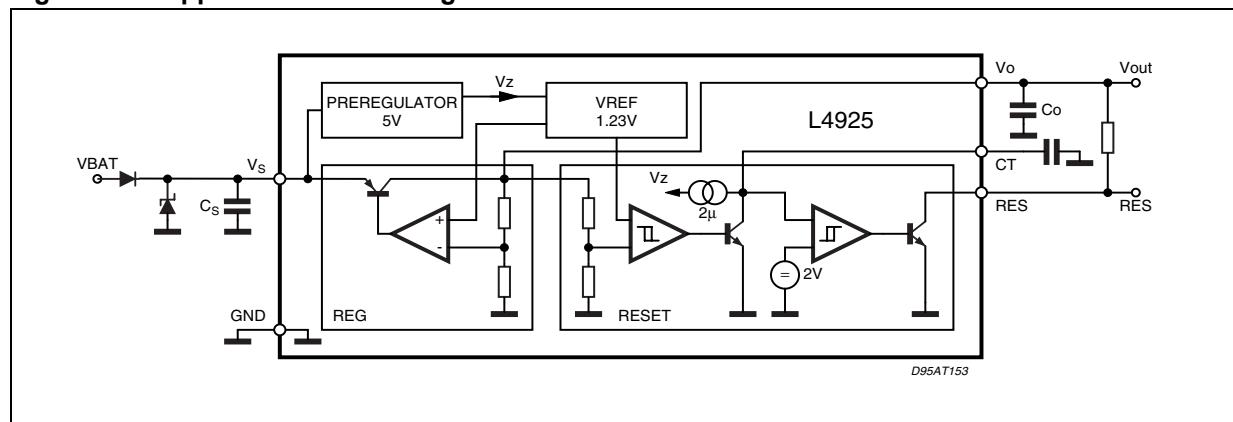

The reaction time of the reset circuit originates from the discharge time limitation of the reset capacitor CT and it is proportional to the value of CT. The reaction time of the reset circuit increases the noise immunity. Standby output voltage drops below the reset threshold only a bit longer than the reaction time results in a shorter reset delay time.

The nominal reset delay time is generated for standby output voltage drops longer than approximately 50 ms. The typical reset output waveforms are shown in [Figure 7](#).

Figure 6. Block circuit diagram

Figure 7. Reset output waveforms

4 Application information

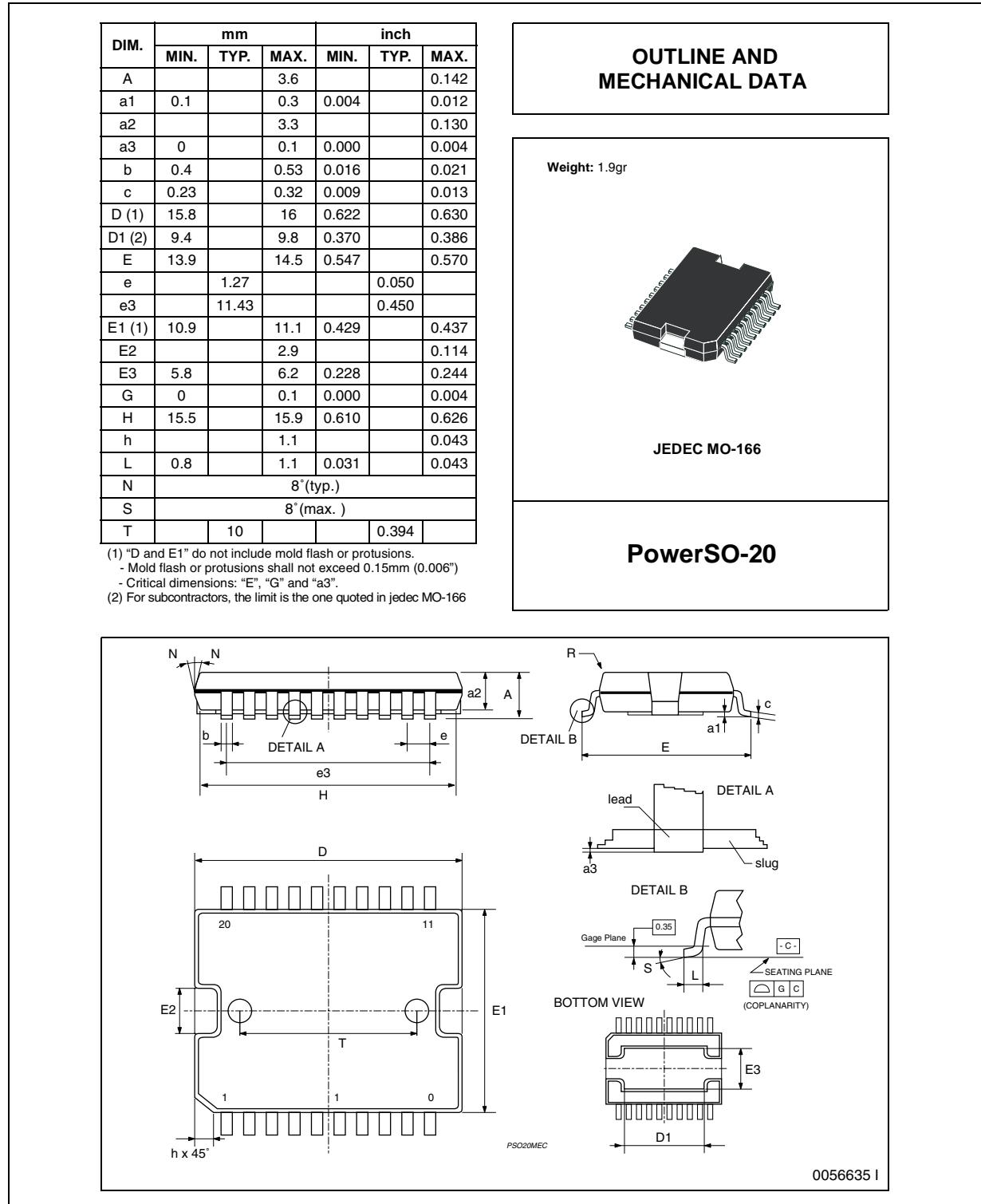

4.1 Supply voltage transients

High supply voltage transients can cause a reset output signal disturbance.

For supply voltage greater than 8 V the circuit shows a high immunity of the reset output against supply transients of more than 100 V/ms. For supply voltage lower than 8 V, supply transients of more than 0.4 V/ms. can cause a reset signal disturbance.

4.2 Application circuit

Figure 8. Application circuit diagram



For stability: $C_S \geq 1 \mu\text{F}$; $C_O \geq 10 \mu\text{F}$; $\text{ESR} \leq 2.5 \Omega$ at 10 KHz

Recommended for application: $C_S = C_O = 10 \mu\text{F}$ to $100 \mu\text{F}$

5 Package Informations

Figure 9. PowerSO-20 mechanical data and package dimensions

6 Revision history

Table 5. Document revision history

Date	Revision	Changes
01-Oct-2003	4	First issue in EDOCD DMS
18-Nov-2005	5	Added GND pins to fig. 4 Added order code and changed the formatting style in compliance with the new template
03-Feb-2006	6	Reset Threshold Voltage changed from 4.5V / 5.2V (min/max) to 4.2V / 4.8V on Table 4 .
09-Feb-2010	7	Reformatted entire document. Removed PENTAWATT package Updated Table 2: Thermal data

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[STMicroelectronics:](#)

[L4925](#)