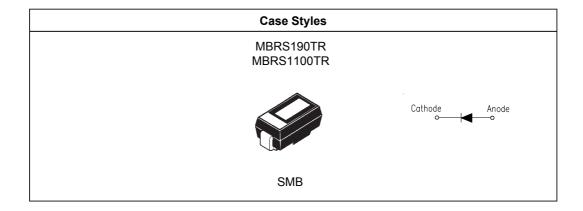
International Rectifier

MBRS190TR MBRS1100TR

SCHOTTKY RECTIFIER

1 Amp

 $I_{F(AV)} = 1 \text{ Amp}$ $V_R = 90-100 \text{ V}$


Major Ratings and Characteristics

., 9					
Characteristics	MBR190TR MBR1100TR	Units			
I _{F(AV)} Rectangular waveform	1.0	А			
V _{RRM}	90 - 100	V			
I _{FSM} @tp=5 µs sine	870	А			
V _F @1.0 Apk, T _J =125°C	0.63	V			
T _J range	- 55 to 175	°C			

Description/ Features

The MBRS190TR, MBRS1100TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

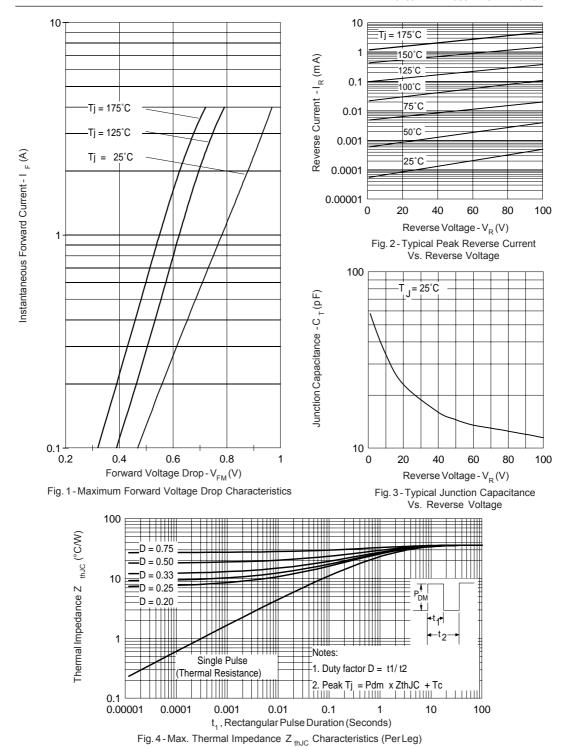
Part number	MBRS190TR	MBRS1100TR
V _R Max. DC Reverse Voltage (V)	90	100
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 147 °C, rectangular wave for	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	870	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	50		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	1.0	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 0.5\text{A}, L = 8\text{mH}$	
I _{AR}	Repetitive Avalanche Current	0.5	А	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Value	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.78	V	@ 1A	T _J = 25 °C
	* See Fig. 1	0.62	V	@ 1A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	\/ = ratad \/
	* See Fig. 2	1.0	mA	T _J = 125 °C	V _R = rated V _R
C _T	Typical Junction Capacitance	42	pF	$V_R = 5V_{DC}$, (test signal range 100kHz to 1MHz) 25°C	
L _s	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Volatge Rate of Charge	10000	V/ µs		
	(Rated V _R)				


⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-55 to 175	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 175	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	36	°C/W	DC operation (See Fig. 4)
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.10 (0.003)	g (oz.)	
	Case Style	SMB		Similar to DO-214AA
	Device Marking	IR19-IR10		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \qquad \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

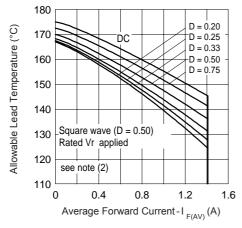


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

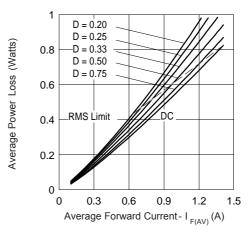
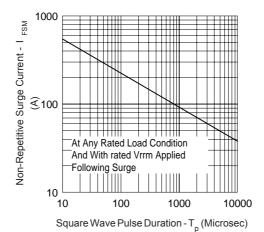
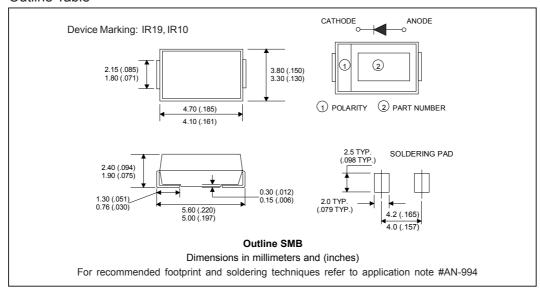
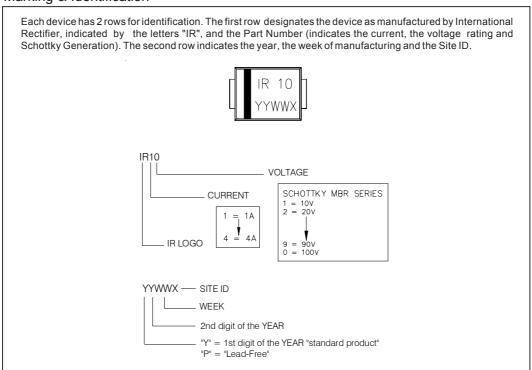
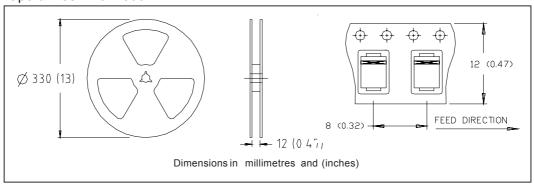


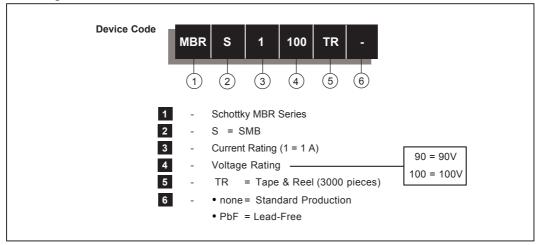
Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current


Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

 $\begin{tabular}{ll} \textbf{(2)} & Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{IhJC};$ \\ & Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D) \end{tabular} & (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1-D); I_R @ V_{R1} = 80\% \end{tabular} & (see Fig. 6); \\ & Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1-D); I_R @ V_{R1} = 80\% \end{tabular}$


Outline Table


Marking & Identification

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/04